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ABSTRACT Vehicular Ad-hoc Network (VANET) is an emerging technique dedicated to wireless vehicular

communication to improve transportation safety by exchanging driving information between vehicles.

For safety purposes, vehicles periodically broadcast a safety packet via Vehicle-to-Vehicle (V2V) com-

munication. Accordingly, VANET safety applications demand a reliable exchange of the safety packet

with high Packet Delivery Ratio (PDR), acceptable latency, and communication fairness. However, the

communication performance significantly degrades due to numerous packet collisions when a large number

of vehicles simultaneously access limited channel resources for the safety broadcast. In particular, the

problem grows more severe in congested VANETs absent infrastructures since vehicles must control

channel access using a self-adaptive scheme without external assistance. Thus, a robust and decentralized

channel access protocol for VANETs is required to achieve road safety. In this paper, we propose an

intelligent channel access algorithm empowered by cooperative Reinforcement Learning (RL), in which

vehicles coordinate the channel access in a fully-decentralized manner. We also consider a proper inter-

action scheme between vehicles for enhancing the V2V safety broadcast in infrastructure-less congested

VANETs. We provide evaluation results with extensive simulations according to various levels of traffic

congestion. Simulations confirm the superior performance of the algorithm: the algorithm has a 20%

increase in PDR compared to the latest RL-based channel access scheme. Furthermore, the algorithm

satisfies the low latency requirement of VANET safety applications as well as both short-term and long-term

communication fairness.

INDEX TERMS Vehicular ad-hoc network, congestion control, decentralized channel access, reinforcement

learning, cooperative multi-agent systems.

I. INTRODUCTION

Vehicular ad-hoc Network (VANET) is an emerging tech-

nique that allows vehicular wireless communication to

achieve transportation safety by exchanging traffic infor-

mation between vehicles with infrastructures [1]. VANETs

employ Dedicated Short-Range Communication (DSRC)

The associate editor coordinating the review of this manuscript and
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protocol, which has seven communication channels in

5.9GHz band for communication. As designated by the pro-

tocol, vehicles periodically broadcast a safety packet that

contains a position, velocity, heading via Vehicle-to-Vehicle

(V2V) communication. However, the broadcast performance

is significantly deteriorated as the number of vehicles within

a network increases owing to packet collisions caused by

numerous simultaneous channel access [2]. Accordingly, the

operation of safety applications that require a high Packet
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Delivery Ratio (PDR)with an acceptable end-to-end delay [3]

will face challenges. Thus, the development of a robust chan-

nel access scheme for VANETs is a fundamental task to

enhance road safety.

Medium Access Control (MAC) layer is responsible for

defining a feasible channel access protocol to avoid packet

collisions. Since the MAC layer of VANETs is expected to

simultaneously manage more than 100 interconnected vehi-

cles, the operation of the channel access will become more

intricate [4]. There are two types of conventional solutions:

Centralized Channel Access (CCA) and Decentralized Chan-

nel Access (DCA) [5], [6]. In CCA-based solutions, such

as Time Division Multiple Access (TDMA), infrastructures

control the channel access of vehicles, which requires syn-

chronization and connection among vehicles controlled by

infrastructures [7]. Although CCA-based protocols [8] pro-

vide the highly stable performance on the safety broadcast,

these may not be optimal solutions due to the following

two distinctive features of VANETs: (1) infrastructures are

sparsely located, and these cannot provide unlimited commu-

nication coverage [9]; (2) network topology and components

are frequently changed by the dynamic movement of vehi-

cles, so the synchronization and connection cannot be steady

state [10]. Consequently, a DCA-based MAC unconstrained

from the existence of infrastructures and the synchronization

can be appropriate solution for VANETs.

Carrier-Sense Multiple Access with Collision Avoidance

(CSMA/CA) [11] is the representative DCA protocol. Fol-

lowing the protocol, vehicles randomly access the channel

according to the size of a selected Contention Window (CW )

that provides a random amount of waiting time, backoff,

before transmitting data. CSMA/CA-based DCA protocol

can offer a proper solution with the advantages of rapid

adaptability and scalability to dynamic changes of VANETs

without depending on infrastructures [12]–[14]. However, the

CSMA/CA-based DCA is highly challenging in congested

VANETs with hundreds of vehicles that exist within a one-

hop communication range, since vehicles are supposed to

access a channel by a self CW -adaptation [15]. The fol-

lowing inherent problems can occur in this situation. First,

vehicles suffer from a high packet collision rate since they

are unable to obtain precise network status information of

VANETs; therefore, they cannot adapt CW properly. More-

over, the large control data exchange via V2V communication

to recognize the status information of VANETs can disturb

the safety broadcast [12]. Finally, a communication fairness

problem can arise in which vehicles cannot gain the equal

opportunity of the channel access under network conges-

tion [16]. Therefore, an intelligent MAC protocol is required

that performs a suitable self CW -adaptation according to the

network variation to deal with the aforementioned fundamen-

tal problems.

In this paper, we employ Reinforcement Learning

(RL) [17] to develop an intelligent CSMA/CA-based DCA

protocol. The pioneering studies [18]–[20] on an RL-based

MAC for VANETs have demonstrated impressive

functionality from solving the fundamental problems of

the CSMA/CA-based DCA. Nevertheless, the previous

works have not achieved sufficiently high performance of

the safety broadcast due to the disregard for interactive

CW -adaptation among vehicles. They ignore the interactive

nature of VANETs, where the behaviors of adjacent vehicles

can mutually affect broadcast success. To address the low-

performance constraint, we propose a novel Cooperative

RL-basedMAC (CORL-MAC) algorithm using an interactive

CW -adaptation policy between vehicles.

We model the VANET channel access problem as a

Decentralized Partially Observable Markov Decision Pro-

cess (Dec-POMDP) [21] and enhance a decentralized

CW -adaptation policy with allowable cooperation among

vehicles via V2V communications. To prevent disruption of

the safety broadcast from a heavy extra transmission [22],

we consider the constraint of imperfect communication to

develop a suitable cooperation scheme contrary to previous

multi-agent RL studies that assume seamless communication

among agents [23], [24]. Furthermore, we deal with a stochas-

tic communication nature of VANETs where the broadcast

success is difficult to estimate owing to uncertain backoff

selections of neighboring vehicles. In such case, a return-

reward for RL training can be highly variable. Thus, we pro-

pose to exploit a distributional Deep Q Network (DQN) [25]

and analyze its impact on the safety broadcast performance

compared to the conventional DQN [26]. For the evaluation,

we provide a highway traffic scenario to demonstrate the

superior broadcast performance of the proposed algorithm in

terms of PDR, end-to-end delay, and communication fairness

from comparison with the latest previous work [20]. Our

distinctive contributions of this paper are as follows:

• We propose a novel cooperative RL-based channel

access algorithm employing Dec-POMDP modeling to

achieve high PDR, acceptable end-to-end delay, and

communication fairness for the safety broadcast in infra-

less congested VANETs.

• To improve the V2V safety broadcast performance, we

present a suitable Dec-POMDP model that includes a

semi-global state representation, a fairness-aware action

function, and a weighted reward function. We analyze

the cooperative behaviors between vehicles by applying

the proposed model for each agent, which overcomes

the limitation of the single-agent policy-based channel

access algorithms [18]–[20]. Also, we demonstrate that

a distributional DQN-based learning policy is a suitable

approach for VANETs.

• The proposed algorithm enables cooperation among

vehicles by exchanging minimal additional data fol-

lowing an alternative multi-channel protocol of DSRC,

which does not interfere with the safety broadcast.

This paper is organized as follows. In Section II, we pro-

vide a literature review of related studies and the improve-

ments in the present paper. Preliminaries of the study are

presented in Section III. Section IV introduces the proposed

algorithm in detail, and Section V evaluates the functionality
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of the algorithm. Lastly, the conclusion with a discussion of

future works is drawn in Section VI.

II. RELATED WORK

The importance of an adaptive MAC protocol for VANETs

has been strongly emphasized to improve the broadcast per-

formance of safety packets [5], [6]. For this purpose, roadside

infrastructures can be employed for a CCA since infras-

tructures can behave as a channel coordinator. Centralized

TDMA-based algorithms can reduce packet collision prob-

ability significantly [8]. Besides, studies based on the chan-

nel interval decision have been conducted in [27] and [28].

An optimization algorithm for multi-channel intervals of the

DSRC standard is presented to enhance the stability of the

broadcast [27]. The minimization of idle service interval

increases the performance of the broadcast using the reser-

vation time mechanism [28]. Although the CCA-based pro-

tocols provide the advantage of reliable packet delivery, they

are not suitable for VANETs absent infrastructures.

As a channel access solution of the V2V safety broadcast

for infra-less VANETs, decentralized manners depend on

self-adaptive channel access solely considering the interac-

tion among vehicles has been presented [12], [13], [29], [30].

Clustering-based DCA algorithms [12], [29] provide a stable

performance of the safety broadcast. Stable clusters boost

communication performance even in dense VANETs. In addi-

tion, a hybrid CSMA and TDMA-based DCA mechanisms

can guarantee fair medium sharing [13], [30]. Such schemes

amend the centralized TDMA by enabling vehicles to acquire

time slots more efficiently and to minimize slot conflicts.

However, the aforementioned DCA schemes may paralyze

channel operation and interfere with the safety broadcast due

to a large control data exchange to maintain coordination

between vehicles. Therefore, MAC protocols for VANETs

should be studied to maximize operation efficiency with min-

imal burden on communication channels.

RL-based distributed MAC protocols [18]–[20] can be

an optimal solution owing to its lightweight and decen-

tralized features. Previous studies have focused on a self

CW -adaptation that resolves contentions within VANETs.

A Q-learning [17] MAC algorithm is proposed that defines

each vehicle as a single agent and improves the perfor-

mance of packet transmitting, but it only considers the V2V

unicast case [18]. In order to enhance the V2V broadcast

performance, a Q-learning-based MAC protocol employ-

ing a collective contention estimation-based reward func-

tion is proposed, and various experiments are executed to

verify the performance improvement of the V2V broadcast

[19], [20]. Large control data exchanging between vehicles is

not required because the research only seek to improve the

performance by transmitting minimum acknowledgements

among vehicles. Accordingly, the protocol does not inter-

fere with safety broadcast and has a strong advantage in

the dynamic change of VANETs. However, the previous

RL-based algorithms still show low performance of PDR

in congested VANETs because they ignore the interactive

FIGURE 1. Spectrum of DSRC at 5.9GHz frequency band.

FIGURE 2. Alternating CCH and SCH intervals.

nature of VANETs. Due to the unstable PDR performance,

communication fairness issues may arise in highly congested

VANETs with more than 100 vehicles within one-hop com-

munication range. Furthermore, the previous RL-based pro-

tocols assume a single channel operation of the control chan-

nel (CCH) and do not consider a multi-channel operation of

the DSRC standard. There is a potential to further increase the

V2V broadcast performance in terms of PDR, latency, and

fairness by employing a proper cooperation scheme among

vehicles with an efficient multi-channel operation.

In contrast to previous studies [18]–[20] on the RL-based

VANET MAC that have seldom considered interactions

between vehicles, the salient contribution of this paper is that

the proposed CORL-MAC has strong robustness to infra-

less congested VANETs with a high level of traffic density

(40 − 120 vehicles in a one-hop communication range).

Moreover, the algorithm follows the operation standard of

DSRC alternating multi-channel coordination and slightly

revises the protocol with minimum additional data for the

cooperation. The present paper demonstrates the performance

merits of the proposed algorithm using numerous simulations

in three performance metrics: average PDR, average end-to-

end delay, and communication fairness.

III. PRELIMINARIES

This section provides the preliminaries of the paper.We intro-

duce the basics of VANETs including multi-channel DSRC,

various communication requirements, and the principle of

CSMA/CA. Also, we present a concept of RL-based CW -

adaptation with various learning policies.

A. OVERVIEW OF VANET CHANNEL ACCESS

1) DSRC MULTI-CHANNEL OPERATION WITH V2V SAFETY

BROADCAST

The DSRC standard allocates 75MHz of spectrum in the

5.9GHz frequency band for vehicular communications [1].

As shown in Fig. 1, the spectrum of DSRC consists of

seven 10MHz channels. Channel 178 corresponds to CCH,

which is allocated for the broadcast of safety packets.

There are six service channels (SCHs) primarily used for

non-safety packets. Fig. 2 shows an alternation concept of

DSRC multi-channel operation following IEEE 1609.4 stan-

dard [31]. The alternation is divided into a CCH interval
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TABLE 1. Example of various communication requirements.

(CCHI) and an SCH interval (SCHI), and each channel inter-

val is 50ms. Additionally, the IEEE 1609.4 standard typically

dictate a 4ms guard interval at the start of each interval

for the compensation of interval switching time and timing

inaccuracy between different DSRC devices. In principle,

the DSRC standard requires the rule that every vehicle in

VANETs broadcasts the safety packet for every 100ms during

CCHI. The safety packet is mainly exchanged by the V2V

links between vehicles in a one-hop communication range for

safety purposes. This requirement imposes a robust channel

access challenge to the DSRCMAC layer, especially in infra-

less congested VANETs.

2) VARIOUS COMMUNICATION REQUIREMENTS

Various types of VANET safety applications such as col-

lision warning, lane-changing, and cruise control exist;

communication requirements vary depending on the purpose

of applications. Vehicles broadcast safety packets com-

posed of various sizes according to specific applications.

Table 1 shows the various communication requirements of

VANET safety applications in previous studies [32]–[36]. For

Cooperative Collision Warning (CCW) and lane-changing

applications, 100 − 160-bytes of safety packet should be

broadcasted [32], [33]. Emergency broadcast applications

demand more than 256-byte safety packet exchanges among

vehicles [34]. Furthermore, Cooperative Adaptive Cruise

Control (CACC) [35], [36] require more than 300-bytes

packet exchanges for additional cooperation data. CACC typ-

ically demands ultra-low latency (≤ 20ms) for directly adapt-

ing control system of vehicles whereas the other applications

demand alleviated latency (≤ 100ms) [37].

3) CSMA/CA AND LIMITATIONS IN CONGESTED VANETs

Basically, DSRC inherits IEEE 802.11p protocol which

features a Distributed Coordination Function (DCF) for

MAC layer operation. In addition, IEEE 802.11p employs

CSMA/CA as the primary DCF-based channel access pol-

icy. CSMA/CA is a contention-based random channel access

scheme. When a vehicle senses that the channel is idle, i.e.,

no-one is using the channel, it waits a random amount of

time before transmitting data. This scheme is called a random

backoff and the waiting duration, backoff value, is decided

by the value of CW [11]. When vehicles sense the channel

is idle during a DCF Interframse Space (DIFS), they draw a

backoff value uniform randomly over the range of [0,CWmin].

Backoff values are decremented when the current channel

FIGURE 3. Reinforcement Learning-based CW -adaptation.

is idle during a specified time-slot. If the channel becomes

busy while decreasing a backoff value, vehicles have to wait

for an Arbitation Inter-Frame Spacing (AIFS) to resume the

countdown. When a backoff value decreases to 0, the packet

is transmitted via a channel. Senders acquire an acknowl-

edgement packet (ACK) to recognize a successful transmis-

sion, whereas CW value doubles for each packet collision

(no ACK) within a maximum CW (CWmax).

It is fundamental to adjust CW according to network den-

sity levels for a successful safety broadcast. However, the

adaptation is complicated due to a clear trade-off between

a successful packet delivery and a delay with transmission

fairness [16]. A small CW likely to causes a packet collision

in congested VANETs since two or more vehicles possibly

draw the same backoff value. In particular, the probability of

collision increases with periodic safety broadcasts. Although

higher CW values can offer a stable packet delivery, these

cause a huge delay as well as fairness issue. The adaptiveCW

decision is not simple work VANETs with dynamic nature.

Besides, the problem becomes worse since IEEE 802.11p

MAC prohibits the ACK transmission for broadcast packets

to prevent the ACK storm phenomenon [22]. In other words,

vehicles cannot obtain the information whether the safety

broadcast was successful, and the adjustment of CW accord-

ing to a network density is impossible. The broadcast opera-

tion of CSMA/CA becomes CSMA-like function without the

collision avoidance mechanism [3]. As a result, the perfor-

mance of the V2V safety broadcast is significantly degraded

due to the high packet collision rate in the infra-less congested

VANETs, and it interrupts the operation of V2V-based safety

applications. Therefore, in order to tackle the collision and

delay problems ofVANETs, a robust channel access is needed

that exploits a proper ACK transmission scheme to flexibly

adapt the CW . We address the problem with a RL-based

approach and consider a proper ACK scheme for the safety

broadcast. The detailed description of our approach is drawn

in Section. IV.

B. REINFORCEMENT LEARNING FOR CONTENTION

WINDOW ADAPTATION

1) BASICS OF REINFORCEMENT LEARNING APPROACH

RL designs a computational approach to interactive learning

with an environment. An agent learns which action is most

beneficial in each observed state by receiving a reward from

an environment. Markov Decision Process (MDP) provides

VOLUME 8, 2020 135543
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FIGURE 4. CW change according to the binary exponential backoff rule.

a mathematical foundation to represent the decision-making

process of RL agents. Amodel-freeMDP such as the VANET

channel access problem consists of <s, a, r, s′> tuple.

Fig. 3 illustrates the concept of RL-based CW -adaptation.

Agents (vehicles) learn to control optimalCW values to select

the channel access parameter backoff. Also, the following

introduces an example concept of MDP for RL-based CW

adaptation in reference to the previous works [18]–[20].

- Agent: All the vehicles in VANET are single agents.

- State (s): Agents observe the key features of the envi-

ronment. The state can be expressed as a current CW

value of an agent itself.

- Action (a): The action function adjusts the current

CW value following pre-defined rules such as Keep

(K), Increase (I), and Decrease (D). The previous

works [18]–[20] consider the CW change regarding the

binary exponential backoff [38] as shown in Fig. 4. There

are seven CW transitions following a currently-selected

action a;

- Reward (r): The reward function can be simplistic

binary feedback. Vehicles (agents) receive 1 from a

successful safety broadcast (ACK received) and −1 in

the case of a failed broadcast (packet collision).

- Next-State (s′): The changed state after the agent takes

action on state S. For example, the CW changes follow-

ing the chosen action.

Agents aim to maximize the sum of cumulative rewards

(future-oriented reward) that will be received until the final

time-step of learning. The cumulative reward at time-step t is

defined as

Rt = rt + γ (rt+1 + γ (rt+2 + . . .)) = rt + γRt+1, (1)

where the discount factor γ is for future discounting, between

0 and 1: closer to 0 is myopic and closer to 1 is far-sighted.

Since the agent cannot recognize an accurate return value

of the reward, the expectation value of the reward when the

action is taken in the observed state is defined as the function

called Q function as

Q(st , at ) = E
[

Rt+1|st , at
]

. (2)

The rule to select an action with the highest Q function value

for each state is called policy π (s),

π (s) = argmax
a

Q(s, a). (3)

The ultimate goal of the agent is to find the optimal action pol-

icy (π∗) that maximizes the cumulative reward when actions

are taken in all possible states. The Bellman optimality equa-

tion [17] can be used to find actions that maximize Q(s,a) in

each state, that is, the optimal action policy as

Qπ∗(s, a) = E
[

rt + γmax
a′
Qπ∗ (s

′, a′)|s, a
]

. (4)

2) DECENTRALIZED LEARNING ON CONTENTION

WINDOW ADAPTATION

In the previous sub-section, we explain the basic MDP model

for a RL-based CW adaptation. However, the conventional

MDP model is not suitable for the VANET channel access

problem. Vehicles cannot recognize the perfect status infor-

mation of other vehicles in VANETs since they observe

only partial information of the network due to the com-

munication imperfection. Accordingly, the VANET channel

access problem can be regarded as Partially Observable MDP

(POMDP) [39]. Moreover, decentralized vehicles interact

with the other communicational vehicles, so the Dec-

POMDP [21] is proper for theCW adaptation problem.With-

out considering the interactive nature of VANETs, vehicles

are likely to adjust CW that ignores the success transmis-

sion of other vehicles. Thus, it is essential to develop an

effective learning method that maximizes communication

performance in VANETs by considering a proper interaction

of numerous vehicles.

There are two training approaches: centralized and decen-

tralized policies to formulate the VANET channel access

problem. Fig. 5 shows the difference between these two

approaches. A centralized policy assumes global decision

making that maximizes the communication performance by

the centralized control. However, the centralized policy is

unsuitable for infra-less VANETs since vehicles are placed

in a decentralized network without the synchronization and

connection. Vehicles are supposed to adjust the CW by them-

selves following a decentralized policy. They observe the

network status only partially as a local state and choose

action from each local policy. Only an acceptable level of

cooperation via the V2V communication to enhance the local

policy without interfering with the safety broadcast. Thus, we

focus on Dec-POMDP for VANETs and enhance a decentral-

ized CW -adaptation policy using the proposed cooperation

technique.

3) A DISTRIBUTIONAL PERSPECTIVE ON REINFORCEMENT

LEARNING FOR STOCHASTIC VANET NATURE

Conventional RL [17] models the expectation of expected

scalar return as shown in equation (2). However, from the

stochastic nature of VANETs, it is hard to predict precise

reward values since safety broadcast results will be different

even in the same configuration of states and actions because

of unpredictable CW -adaptations (actions) of other vehi-

cles. For example, a state-action combination that introduces

success broadcast in the previous time-step t-1 may fail at

the current time-step t due to overlapping backoff values

with other vehicles. Accordingly, rewards from VANETs

are stochastic and can be represented by a multi-modal dis-

tribution. This phenomenon refers to a reward uncertainty.

Therefore, choosing actions based on expected scalar values
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FIGURE 5. Difference between a cetralized policy and a decentralized policy. (a) centrlized CW-adaptation policy, (b) decentralized
CW-adaptation policy.

FIGURE 6. Output distribution of the distributional RL.

following the conventional RL policy may lead to suboptimal

outcomes.

On the other hand, the distributional perspective on

RL [25], Q-function represented in Equation (2) of the con-

ventional DQN [26] is replaced by random variable Z (s, a) as

Z (s, a) = r + γZ (s′, a′), (5)

where Z represents the distribution of future rewards, which

is not a scalar value as Q(s, a). This replacement allows the

vehicles to select actions based on the distribution instead of

expected scalar values. Also, vehicles would choose actions

with smaller variance in the future reward distributions. The

multi-modal distributional approach provides more efficient

exploration in stochastic environments, inducing the vehicles

closer to the optimal behavioral policy. Fig. 6 illustrates the

discrete probability distribution Z of each action; the x-axis is

called the support zi that represents the value, and the y-axis

represents the probability of support.

The output of the network is the discrete probability distri-

bution Z of each action; the x-axis is called the support zi that

represents the value, and the y-axis represents the probability

of support. Accordingly, support values are divided at the

same intervals according to the selected support number Ns
range from the minimum value of Vmin to the maximum value

of Vmax . Then, the Q value of each action is calculated by

expectation of probabilities as

Q(xt , at ) =
∑

i

zipi(xt , at ), (6)

FIGURE 7. Proposed multi-channel operation.

where zi and pi correspond to the value and probability of

each support, respectively. For further detailed information

on the operating mechanism of the distributional approach,

refer to [25]. From this reward prediction step, vehicle can

effectively learn probabilistic action policy to deal with the

stochastic nature of VANETs.

IV. THE PROPOSED CORL-MAC ALGORITHM

In this section, we formulate the proposed CORL-MAC

algorithm with a Dec-POMDP model for a decentralized

and cooperative decision-making problem. Our Dec-POMDP

model is a tuple <I , S, A, πi, R>, where I and S correspond

to a finite set of agents and states, respectively. A = a1 ×

a2 × · · · ai is a finite set of actions of each agent I . πi is

the set of all observations for agents, and R corresponds to

a reward function. At every decision time-step t , agents indi-

vidually observe oti and select action a
t
i . From the joint action

at = {a
t
1, a

t
2, · · · , a

t
N } of agents, the environment state tran-

sitions from st to st+1.

A. OVERVIEW OF THE PROPOSED DEC-POMDP MODEL

Fig. 7 shows the proposed multi-channel operation. It basi-

cally follows the IEEE 1609.4 protocol [31]; we only add

minimal cooperation data to transmitted packets in each chan-

nel interval. DuringCCHI, every vehicle broadcasts the safety

packet with additional 10 bytes of contention information.

Also, following a probabilistic manner, some vehicles (only
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FIGURE 8. A schematic view on the operation concept of the proposed CORL-MAC.

10%) broadcast 150 bytes of a reward table to distribute

global acknowledgements for vehicles within a network

during SCHI. With this modification, a cooperative CW -

adaptation protocol can be established with a small amount

of additional data exchange between vehicles.

The overall operation concept of the algorithm is intro-

duced in Fig. 8. Every vehicle in a network acts as a decen-

tralized agent. Vehicles use the shared contention information

and Busy Slot Counter (BSC) for state observation, and they

choose an action for CW -adaptation during 50ms CCHI.

Next, vehicles utilize a distributed reward table to recognize

the broadcast success status of the network. In the next sub-

sections, we provide in-depth explanation of the proposed

Dec-POMDPmodel including the semi-global state represen-

tation, the fairness-aware action function, and the weighted

reward function as well as the decentralized training network

based on the distributional DQN [25].

B. STATE REPRESENTATION WITH DISTRIBUTED

OBSERVATION

Fig. 9 shows the taxonomy of the proposed semi-global

state representation. The state representation is divided into

the local state and global state; we define a state space

S = 〈Li,Gi〉 where Li and Gi are the local and global state of

vehicle i, repectively. The local state Li consists of collected

contention information from neighboring vehicles, and it is

only partially observed due to the imperfection of the safety

broadcast in dense VANETs. Also, the global state Gi can

be obtained by the channel status observation from a busy

slot counting mechanism regardless of the safety broadcast

success. The detailed configuration of the state space S is as

follows.

Local State: Fig. 10 represents a local state observation,

where Li is observed from the broadcasted contention infor-

mation including a vehicle ID, a currently selectedCW value,

and the broadcast success rate corresponding to the current

CW . Vehicles partially observe the local state since every

FIGURE 9. Taxonomy of the proposed state representation.

FIGURE 10. Local state observation.

vehicle in a congested network cannot succeed the safety

broadcast. Accordingly, the vehicles update the elements

of local state L t−1i to L ti by contention information packets

partially collected during CCHI. From the updated local state

Li, the indirect channel contention level can be estimated

by the relationship between the collected CWs and success

rates [40]. This is because in dense networks, the smaller CW

values increase the likelihood of packet collision probability

due to the overlapped backoff values among vehicles. In other

words, only larger CW values guarantee the higher success

rate of the safety broadcast by mitigating the backoff overlap

problem. In sparse networks, on the other hand, even smaller

CW values can yield high success rates. Therefore, this
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FIGURE 11. Average number of busy slots according to the number of
vehicles.

correlation allows vehicles to estimate the network

congestion level.

Global State: Inspired by [41], [42], we exploit a BSC for

the global state definition. Busy slot indicates the channel

status at each time slot: busy or not. Unlike the partially

observable local state, the global state is obtained by directly

analyzing the status of the wireless channel regardless of

whether the safety broadcast is successful or not. The global

state Gi corresponds to the observed BSC of agent i. The

inherent characteristics of the busy slot are as follows. The

number of the busy slots of the channel increases as the

number of broadcasting vehicles in VANETs grows since

channel access attempts will also grow [41], [42]. Fig. 11

shows the relationship between the average BSC values and

the number of vehicles. It is straightforward to recognize the

upward trend due to the periodic channel access of vehicles

for the safety broadcast. From the BSC observation, vehi-

cles can straightforwadly distinguish the network congestion

level. This global state can boost the learning performance

of vehicles by offering the precise state information of the

channel.

Distributed Observation: The observation πi represents the

current observation of each vehicle i following the state space

S. It is defined as

πi = 〈o
Li , oGi〉, i ⋐ N = {index of vehicles},

where oLi means the observed local state Li from vehicle i.

The local state also includes the self-information of vehicle

i. oLi is updated by the successful broadcast of other vehicles

in each time-step t . Otherwise, no vehicle succeeded in the

safety broadcast, oLi remains without the update. oGi corre-

sponds the observed global state Gi from agent i. This value

can be updated in every time-step.

C. FAIRNESS-AWARE ACTION FUNCTION

Previous works [18]–[20] present an action function consist-

ing of three choices such as keep, decrease, and variation

of CW value ranging from CWmin = 3 to CWmax = 255

FIGURE 12. Flow chart of the fairness-aware action function.

TABLE 2. Predefined 11 action sets according to lower and upper sets.

following the binary exponential backoff rule [38]. However,

the previous action function has the following two limita-

tions: 1) the limited seven transitions of CW as shown in

Fig. 4 may hinder the performance of the safety broadcast;

2) short-term fairness of packet delivery may not be achieved

in highly congested networks. Due to the unfair CW selec-

tions, some vehicles can converge to select minimum CW ,

while the others converge to select maximum CW .

In order to improve the performance and the fairness of the

safety broadcast, we propose the fairness-aware action func-

tion. We also present a new backoff rule enhancing the con-

ventional CSMA/CA. Fig. 12 introduces the concept of the

proposed function, where CW t−1
low means previously selected

CWlow and CWth is a threshold value. The explanation of the

proposed action function is as follows. First, the lowest CW

(CWmin) and the highest CW (CWmax) are defined as 3 and

255, respectively. Second, the action function consists of 11

actions, vehicles can select Change-actions to decide one of

10 predefined sets of a backoff drawing boundary (CWlow
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and CWhigh), or select Keep-action to maintain a previous

boundary condition. The value of backoff is extracted uniform

randomly within the boundary [CWlow,CWhigh]. Vehicles

decide the drawing boundary of backoff value from the action

ai. Furthermore, delay discrimination is executed to satisfy

communication fairness and solve the overlapped backoff

problem. We define the boundary selection rule restricted

to upper CW sets or lower CW sets based on the threshold

value CWth = 127 (CWmax / 2). If the selected CW t−1
low at

the previous time-step t − 1 less than or equal to CWth,

the boundary condition is drawn from the upper CW sets.

Otherwise, if the previously selected CW t−1
low is larger than

CWth, the drawing boundary is selected from the lower CW

sets. Table 2 shows the keep and 10 change actions regarding

the predefined boundary values of each lower and upper set.

From this function, vehicles alternately select between the

lower CW sets and the upper CW sets. The alternation of the

backoff selection boundary can solve the unfairness problem

that certain vehicles converge to a high or low CW selection

policy. Moreover, a high success rate of the safety broadcast

can be achieved by minimizing the overlapped backoff values

among vehicles. The change of CW boundary according to

a selected action is applied to both the CCHI and SCHI.

Algorithm 1 provides the protocol of the proposed action

function.

Algorithm 1 Delay Fairness Action Function

Input

CWmin = 3, CWmax = 255.

Notation

at : selected action (1− 11).

CWlow: lower boundary value.

CWhigh: upper boundary value.

CWth: a threshold value (CWmax/2).

t: time-step.
1: if at = 1(Keep) then
2: maintain the previous drawing boundary condition of

[CW t−1
low ,CW t−1

high]

3: else
4: if CW t−1

low ≤ CWth then
5: change [CWlow,CWhigh] following upper CW sets

in Table 2
6: else
7: change [CWlow,CWhigh] following lower CW sets

in Table 2
8: end if
9: end if

D. WEIGHTED REWARD FUNCTION

The acknowledgement packet provides a feedback on

whether the safety broadcast was successful for vehicles

to adjust CW size according to network congestion levels.

Although the feedback is required, numerous ACK trans-

missions must be avoided to prevent an ACK storm phe-

nomenon [22]. Thus, it is necessary to regulate an appropriate

FIGURE 13. Example of reward table definition.

FIGURE 14. Proposed distributional DQN architecture.

ACK scheme to define a reward function without exacerbat-

ing congestion on networks.

We propose a probabilistic broadcast ACK-based reward

function to consider the interactive nature of VANETs. Dur-

ing SCHI, vehicles responsible for the ACK broadcast are

selected uniform randomly with a 10% probability. A higher

value of the probability should be avoided because it can

interrupt non-safety packet transmissions. Selected vehi-

cles (ACK broadcasters) build the reward table as shown

in Fig. 13. The reward table contains Vehicle IDs and the

corresponding Boolean values (0 or 1) to inform the broadcast

result; 0 and 1mean success and failure, respectively. Accord-

ing to the distributed reward table, each vehicle can identify

whether the broadcast was successful in addition to broadcast

results of other vehicles in a network. From the obtained

reward tables from ACK broadcasters, vehicle i obtains a

reward r as

r ti = α

b
∑

x=0

ri + (1− α)(
1

N − 1

N−1
∑

j=0

b
∑

x=0

)rj,x , (7)

where b is the number of broadcasted reward tables and r is

the safety broadcast result (0 or 1) of each vehicle. N means

the number of vehicles identified byVehicle IDs in the reward

table. Finally, α is the weight value, and we set it as 0.7 to

present a higher reward to a self-success. According to the

reward function, vehicles learn a cooperative action decision

policy by considering not only the self-success of the safety

broadcast but also that of neighboring vehicles.

E. DISTRIBUTIONAL DEEP Q NETWORK

To mitigate the reward uncertainty from the stochastic broad-

cast success in VANETs, we employ the distributional
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Algorithm 2 Cooperative Reinforcement Learning-based

MAC
Input vehicle index i, safety packet Ptx , received packet

Prx , reward table Prew, success rate of contention window

RCWi , replay memory Mi, replay memory size m, number of

episodes E, epsilon greedy ǫ

Notation

CW : contention window.

t: time-step.
1: for episode=1 to E do
2: start CCHI
3: procedure state-observation(Prx )
4: if Prx .IsBroadcast then
5: update each element in local state oLi

6: end if
7: update global state oGi according to BSC
8: end procedure

9: select an action at+1i from Algorithm 1 according to ǫ-
greedy

10: CW t+1
i ← CWlow

11: procedure safety-broadcast(Ptx , backoff )

12: Ptx .AddContentionInformation(i,CW t+1
i ,RCW

t+1
i )

13: Broadcast(backoff,Ptx )
14: end procedure
15: start SCHI
16: procedure RewardTable-broadcast(Prx )
17: if IsACKBroadcaster then
18: Broadcast(Prew)
19: end if
20: end procedure
21: procedure Received-feedback(Prx )
22: if Prx .IsRewardTable && Prx .ValidLatency then
23: r ti is calculated as (5)
24: else
25: r ti ← 0
26: end if
27: update RCWi acccording to CW t+1

i and rt
28: end procedure
29: procedure Learning

30: store experience < π t
i , a

t+1
i , r ti , π

t+1
i > into Mi

31: t ← t+ 1
32: if M > m then
33: update network parameter θi following (8)
34: update taget network parameter θ ′i according to (9)
35: end if
36: end procedure
37: end for

DQN [25]. Fig. 14 shows the network structure of the pro-

posed distributional DQN consists of a Deep Neural Net-

work (DNN) including three successive hidden layers with

256, 128, and 64 output dimensions, and Leaky Rectified

Linear Unit (Leaky-ReLU) is used for the activation func-

tion. The observation πi = 〈o
Li , oGi〉 is the input, and the

output is the estimated distribution for 11-actions (Keep,

10-changes). In addition, the number of supports for the

output distribution is configured as 51 following the guide

on [25]. As a precaution against a local optimum problem,

we also utilize the ǫ-greedy algorithm [17] to balance the

exploration and exploitation in the action selection.We set the

initial and minimum values of ǫ, which gradually decreases

FIGURE 15. The highway traffic enviroment with four straight lanes.

over the time-step following the discount factor. The weight

parameter θ of the training network is updated along the

gradient of a loss function, and the target network is defined

to solve the problem in which the target that to be updated

changes over time. The target network has a weight param-

eter θ ′, that is different from the θ . Consequently, the distri-

butional DQN aims to predict the exact distribution output of

the target network. The loss function J is defined as the cross-

entropy of the difference between the target distribution and

the estimated distribution, and is calculated as

Loss = −
∑

i

mi log pi(xt , at ) (8)

where mi is the target distribution. Then, the network is

updated along the gradient θ of the loss function. Finally, θ ′

is updated as according to the following soft-update policy as

θ ′ = αθ ′ + (1− α)θ, (9)

where α is an update rate. The target network parameter θ ′

will move slightly to the value θ . Finally, Algorithm 2 shows

the learning process of the proposed distributional DQN

based on our Dec-POMDP model.

V. EVALUATION

This section presents the simulation-based experiments for

the performance evaluation of the proposed CORL-MAC

algorithm. We compare the proposed algorithm to the lat-

est RL-based MAC study [20] by highway scenario-based

simulations according to diverse traffic density with various

data sizes of the safety packet. Furthermore, we provide three

performance metrics including PDR, end-to-end delay, and

communication fairness. To build a simulation environment,

the Simulation of Urban Mobility (SUMO) is employed to

generate realistic traffic mobility. Then, the network simula-

tor NS-3 is coupled with the generated mobility from SUMO.

We also use the ns3-gym library [43] and Keras to implement

an RL programming baseline.

A. SIMULATION SETUP

1) TRAFFIC SCENARIO AND PARAMETERS

Fig. 15 describes the highway traffic scenario utilized for the

experiments. The highway topology consists of four straight

lanes with a length of 3km. In the traffic scenario, infrastruc-

ture is not deployed so vehicles are completely decentralized.

Vehicles are only able to communicate by V2Vwithout exter-

nal coordination for channel access.
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TABLE 3. Highway traffic parameters for the simulation.

Table 3 shows the traffic parameters for the simulation

experiments. We consider a varied number of vehicles to

simulate various traffic congestion levels. The number of

vehicles ranges from from 40 to 120 at 20 intervals (five con-

gestion levels), where 120 vehicles correspond to the vehicle

density during rush hour on a highway [44]. The congestion

levels are expressed such as 40-VANET, 100-VANET, and

120-VANET. Simulations are alternately conducted accord-

ing to the pre-defined five congestion levels. As the traffic

flow consideration, vehicles follow the Krauss-car following

model [45] with default parameters (σ = 0.5, τ = 1)

and the maximum velocity 16m/s. Furthermore, we imple-

ment the traffic scenario following two conditions: (1) All

the vehicles exist within the one-hop communication range

(∼ 1.2km) [46] and their position does not alter. From this

condition, packet collisions can be accurately measured as

the number of vehicles increases by eliminating the hidden

terminal problem. (2) Since this study primarily focuses on

the improvement of communication performance as the num-

ber of vehicles increases in a one-hop communication range,

obstacles such as buildings are not considered.

2) VANET PARAMETERS WITH VARIOUS PACKET

CONFIGURATION

To achieve diverse communication requirements, vehicles

broadcast safety packet of various sizes according to specific

applications [32]–[36]. In the experiments, the feasibility

of the proposed algorithm is verified based on simulations

regarding the three different size configurations of the safety

packet: 128, 256, 384-byte. Accordingly, PDR, end-to-end

delay and communication fairness are measured by each

dedicated data size.

Table 4 summarizes the network parameters of the VANET

considered for the simulation. The description of key param-

eters is as follows. First, we assign AIFS, CWmin, CWmax as

the same transmission priority for vehicles since we focus on

the broadcast function enhancement, not the priority enhance-

ment. Second, three sizes of the safety packet are set to

128 , 256 , and 384 bytes including 10 bytes of the proposed

contention information, and that of the non-safety packet

is 400bytes. Third, we set the transmission power and the

energy detection threshold as 25 dBm and -89 dBm, respec-

tively, to cover the intended one-hop communication range

(∼ 1.2km). We also configure the data rate to 6Mbps since

higher data rates may not provide communication coverage

up to 1 km because of the serious packet drop [47]. All

the vehicles broadcast the safety packet at 100ms intervals

(10Hz) via V2V links. Only some vehicles, decided by the

TABLE 4. VANET parameters for the simulation.

probability Sn, transmit a non-safety packet at the SCHI.

Simultaneously, the reward table broadcast is determined

by the probability Bn at the SCHI. Lastly, we employ the

Nakagami propagation model [48] to implement a realistic

wireless channel considering received signal strength varia-

tions according to the distances between vehicles.

3) CHANNEL COORDINATION WITH ASSUMPTIONS

The proposed algorithm operates based on the multi-channel

operation of IEEE 1609.4 [31]. The channel operation sce-

nario dictates a vehicle switches every 50 ms between the

CCH and the SCH according to the alternating channel access

scheme. In the simulation experiments, we assume the fol-

lowing four conditions of channel coordination to operate the

proposed algorithm appropriately.

(1) All the vehicles are equipped with a multi-channel

DSRC device which allows switching to different

channel frequencies. Also, DSRC devices equipped by

vehicles are time-synchronized with Global Position-

ing System (GPS) based on the Coordinated Universal

Time (UTC).

(2) Alternating channel access to CCH and SCH is utilized

for channel coordination. The equipped DSRC devices

are configured to alternatively monitor the CCH and

SCH with the 50ms interval. Also, the guard interval

is defined as 4ms to be tuned to another channel for

accommodating device differences [31]. Transmission

is not allowed during the guard interval. If a packet

transmission is not finished at the start of the guard

interval, the transmission is canceled and it is treated as

a transmission failure.

(3) Vehicles exploit one SCH among six SCHs such as

CH174 (5.870GHz), dedicated to the acknowledge-

ment (ACK) operation with the proposed reward table

broadcast.
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TABLE 5. DQN training parameters.

(4) Non-safety packets are generated uniform randomly in

the SCHI; this condition enables selected vehicles fol-

lowing the uniform probability Bn = 0.1 to broadcast

the reward table with a high success rate.

The assumptions may be not how VANETs operate in the real

world, however, these offer significant insight into the broad-

cast performance of the safety packet when the congestion

level of VANETs is varied.

4) EVALUATION TARGETS AND RL PARAMETERS

We compare three types of algorithms via the simulation as

follows:

• Q-MAC [20]: The simple Q-learning-based algorithm

that utilizes a presented collective contention estimation

in the latest study [20] that leads vehicles to select

similar CW values with neighboring vehicles.

• Distributional DQN-based CORL-MAC (D-CORL-

MAC): The proposed algorithm employing the distribu-

tional DQN for the learning process.

• Conventional DQN-based CORL-MAC (C-CORL-

MAC): The modified version of the proposed algorithm,

which uses the conventional DQN [26] structure without

the distributional reward prediction approach.

In comparison, we evaluate that the distribution approach is

suitable for VANETs from a self-comparison between the

D-CORL-MAC and the C-CORL-MAC. Table 5 shows the

network parameters for the learning process of the proposed

algorithm. In the learning process, one episode corresponds

to 10 seconds and 3, 000 training episodes are consumed for

each congestion level. We set the epsilon decay rate γ as

0.9995. As we consider the soft update scheme of the target

network, the update rate α is 0.001.

B. SIMULATION RESULTS

We provide the detailed numerical analysis to validate if the

three algorithms satisfy the various communication require-

ments as explained in Section III A. The numerous simulation

experiments are established based on the highway traffic

scenario. In order to investigate the impact of safety packet

size, we adopt the three applications including application

A, B, and C which is assigned 128, 256, and 384-byte

safety packet, respectively. For each application, we present

the five congestion levels-based evaluation results. More-

over, the evaluation results consist of the three metrics:

average PDR, average end-to-end delay, and communica-

tion fairness of packet delivery. The average values of the

three metrics indicate the measured numerical values from

all the operating vehicles in a network. Those values are

calculated by 300 test episodes after finishing the train-

ing process. We develop box plot results of the PDR and

delay focusing on the proposed D-CORL-MAC for detailed

analysis.

We also employ Jain’s fairness index J [49] as

J (x1, x2, . . . ., xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

, (10)

where n represents the number of vehicles and x is the

measured PDR value of each vehicle for the communication

fairness evaluation. J is calculated over a sampling window

range from 1 to 10 seconds (short-term to long-term) with a

step size of 0.5 seconds following the previous work on the

Q-MAC [20]. The fairness criterion is assigned as Jc = 95%.

We assess whether the algorithms satisfy the criterion Jc in

both the short and long term according to the lowest and the

highest congestion level (40-VANET and 120-VANET).

1) AVERAGE PACKET DELIVERY RATIO

We first examine the average PDR of the V2V safety broad-

cast regarding the three packet size configurations. Fig. 16

shows the PDR evaluation result when the three different

packet sizes are applied to the V2V safety broadcast oper-

ation. All the cases have a descending trend as vehicles

increase. It represents the fundamental resource constraint of

VANETs. In spite of the overall degradation, the proposed

D-CORL-MAC has the highest average PDRs in all cases,

while those of the C-CORL-MAC is relatively lower. From

this result, we confirm that the distributional reward predic-

tion is the suitable approach for VANETs which have the

inherent uncertainty from unpredictable backoff selections of

neighboring vehicles. Furthermore, the results show a clear

performance improvement of the D-CORL-MAC over the Q-

MAC since the D-CORL-MAC outperforms the Q-MAC in

all cases.We present the detailed analysis of numerical results

for each application as follows.

• Application A (128-byte packets), Fig. 16(a): When

the network congestion level is low such as the

40-VANET and 60-VANET, the average PDR of all

algorithms satisfy the high performance over than 88%.

In particular, the average PDR of the proposed D-

CORL-MAC is higher than 95%. However, as the num-

ber of vehicles increases, the performance differences

become noticeable, especially from the 80-VANET.

The largest difference can be identified in the 100-

VANET, where the D-CORL-MAC and C-CORL-MAC

outperforms the Q-MAC. The D-CORL-MAC shows a
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FIGURE 16. Average packet delivery ratio evaluation. (a) Evaluation result for 128-byte Packet, (b) Evaluation result for 256-byte
Packet, (c) Evaluation result for 384-byte Packet, (d) Evaluation summary for the proposed D-CORL-MAC.

13% performance improvement over the Q-MAC; the

D-CORL-MAChas around 91% average PDRwhile that

of the Q-MAC is about 78%. In the highest conges-

tion level, the 120-VANET, our D-CORL-MAC shows

around 79% average PDR, and that of the Q-MAC is

around 69%. In overall, the performance gap between

D-CORL-MAC and C-CORL-MAC is not significant in

application A.

• Application B (256-byte packets), Fig. 16(b): The dif-

ference in average PDR between the D-CORL-MAC

and the Q-MAC is wider compared to the case of appli-

cationA.Although the three algorithms indicate the high

performance of over 85% at low congestion levels below

60-VANET, the average PDR of the Q-MAC is highly

deteriorated from the 80-VANET. In the case of 100-

VANET, the D-CORL-MAC outperforms the Q-MAC

by 18%, each algorithm satisfies the average PDR of

86% and 68%, respectively. Furthermore, we observe

that the D-CORL-MAC clearly performs better than the

C-CORL-MAC when the network load is increased by

the larger packet size.

• Application C (384-byte packets), Fig. 16(c): In the

case of the largest safety packet size, the decreasing rate

of average PDRs becomes larger as the network con-

gestion increases compared to that of application A and

B. Even though the network congestion becomes severe

from the larger data exchange, the proposed D-CORL-

MAC shows the higher robustness than the other meth-

ods. In particular, our D-CORL-MAC outperforms the

Q-MAC by around 20% since the intermediate network

congestion level, 80-VANET. These results establish

that the cooperation-based action-policy among vehicles

to adapt CW values significantly contributes to improv-

ing packet delivery performance in congested VANETs.

Moreover, the D-CORL-MAC has the highest average

PDRs achieving the 5% performance gain over the

C-CORL-MAC. The performance differences between

the two reward prediction approaches are dominant

especially in the largest packet size configuration. Thus,

the distributional reward prediction is more suitable

for congested VANETs inherently characterized by the

stochastic backoff selections of neighboring vehicles.
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FIGURE 17. Average end-to-end delay evaluation. (a) Evaluation result for 128-byte packet, (b) Evaluation result for 256-byte packet,
(c) Evaluation result for 384-byte Packet, (d) Evaluation summary for the proposed D-CORL-MAC.

• Performance summary of the D-CORL-MAC,

Fig. 16(d): We observe that the packet size configu-

ration highly affects the performance variation of the

proposed D-CORL-MAC. Especially, the performance

gap grows wider when network congestion is increased.

The algorithm satisfies over 80% PDR in all cases up

to 100-VANET. On the other hand, application C shows

around 70% PDR in 120-VANET due to the tremendous

network traffic load. This bottleneck may be compen-

sated with accommodating the higher transmission data

rate. In this study we configure the transmission data

rate as 6Mbps since our primary purpose to evaluate the

proposed algorithm in congested VANETs depending

on the number of vehicles in the one-hop communi-

cation range [47]. Since the higher data rate limits the

communication range, the data rate should be adjusted

according to communication requirements of various

safety applications.

2) AVERAGE END-TO-END DELAY

Fig. 17 indicates the average end-to-end delay measurements

regarding the three packet size configurations. As shown in

the figure, the end-to-end delay grows worse with increas-

ing congestion levels because the more vehicles attempt to

access the channel for the safety broadcast. During the entire

evaluation case, the Q-MAC has the lowest delay since its

delay values are measured by fewer successful broadcasted

packets due to frequent packet collisions than those of the

D-CORL-MAC and the C-CORL-MAC. From the results,

the clear trade-off [16] between PDR and latency is clarified

since the higher PDR simultaneously leads to a higher end-

to-end delay in congested VANETs. Although CW values

should be large enough to accommodate the channel access

without packet collisions for congested networks, larger CW

increases the latency. Thus, an adaptive choice of a proper

algorithm according to applications that have different pur-

poses and inherent latency requirements is needed. We also

provide numerical result analysis for each application case as

follows.

• Application A (128-byte packets), Fig. 17(a): With

the smallest packet configuration, the three algorithms

satisfy the extremely low delay requirement (≤ 20ms)

[37] for the entire congestion level. Additionally,

the difference in delay values between the proposed
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FIGURE 18. Transmission fairness evaluation. (a) Evaluation result for 128-byte packet, (b) Evaluation result for 256-byte packet,
(c) Evaluation result for 384-byte packet, (d) Evaluation summary for the proposed D-CORL-MAC.

D-CORL-MAC and the Q-MAC is around 1.5 − 2ms.

Hence, we conclude that our D-CORL-MAC shows the

best performance for the application A configuration

satisfying with the highest PDR and the acceptable

latency.

• Application B (256-byte packets), Fig. 17(b): The

D-CORL-MAC achieves the delay of below 20ms when

the number of vehicles is less than 100. However, during

300 testing episodes, we observe some cases that the

delay exceeds 20ms in the highest traffic environment

(120-VANET). On the other hand, the C-CORL-MAC

satisfies the extreme latency requirement. There-

fore, the D-CORL-MAC should be carefully adopted

for delay-sensitive applications with 256-byte packet

configuration.

• Application C (384-byte packets), Fig. 17(c): The

delay gap between the D-CORL-MAC and the Q-MAC

according to the vehicle populations grows larger than

those of application A and B. In addition, we observe

the similar performance degradation with the result of

application B: our D-CORL-MAC shows over 20ms

average latency in the 120-VANET.

• Performance summary of the D-CORL-MAC,

Fig. 17(d): It is clarified that the proposed D-CORL-

MAC shows the highest PDR and delay values simul-

taneously. In spite of the delay growth, the D-CORL-

MAC which shows the highest PDR is more suitable

scheme in practice since the delay requirement of typical

VANET safety applications is under 100ms. Thus, we

conclude that our D-CORL-MAC is the general optimal

solution.

3) TRANSMISSION FAIRNESS

We evaluate communication fairness based on the achieved

PDR values as shown in Fig. 18. The fairness of the proposed

D-CORL-MAC and the Q-MAC are compared by adopting

the fairness criterion Jc = 0.95 for both the short-term

(2 second) and long-term (10 second). The fairness is

assessed based on two congestion levels: 40-VANET (the

lowest congestion level) and 120-VANET (the highest con-

gestion level) for the three applications.

• Application A (128-byte packets), Fig. 18(a):

In 40-VANET, our D-CORL-MAC and Q-MAC satisfy

the fairness criterion at similar rates for the application
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A. The D-CORL-MAC and Q-MAC quickly meet the

criterion Jc within 1 and 1.5 seconds, respectively, so

that both the short-term and long-term fairness can be

achieved in the sparser network. Even in the denser

network, 120-VANET, the two algorithms satisfy the cri-

terion within 2 second. Moreover, our algorithm shows

the highest fair packet delivery among vehicles with

around 99% index in respect of the long-term fairness.

• Application B (256-byte packets), Fig. 18(b): In the

case of application B, the performance gap between the

two algorithms grows. The proposed algorithm achieves

the fairness criterion at 1 second and 1.5 seconds at

120-VANET and 40-VANET, respectively. On the other

hand, the Q-MAC is unfair during the short-term against

the criterion, it only obtains the long-term fairness for

the highly congested network.

• Application C (384-byte packets), Fig. 18(c): Even

with the highest packet configuration, our D-CORL-

MAC shows robust short-term fairness. The algorithm

yields the transmission fairness within a shorter time

(2 second) compared to that of the Q-MAC (5.5 second)

in 120-VANET. From the perspective of long-term fair-

ness, the D-CORL-MAC provides a highly fair packet

exchange among vehicles with around 98% fair index.

• Performance summary of the D-CORL-MAC,

Fig. 18(d): The proposed algorithm has a fair index

of over 96% overall. From the result, it is confirmed

that the proposed fairness-aware strategy of CW selec-

tion enhances the transmission fairness as well as the

transmission success rate for the congested vehicular

networks. Alternation of the upper and lower CW selec-

tion shows a significant improvement in communica-

tion performance. The proposed action function can

efficiently prevent a severe unfair problem that certain

vehicles converge to a high or low CW selection policy.

Consequently, the proposed D-CORL-MAC achieves

prompt fairness enhancement even in 120-VANET with

the largest packet configuration (Application C).

VI. CONCLUSION

In this paper, the CORL-MAC algorithm has been proposed

to improve the performance of the V2V-based safety packet

broadcast in infra-less congested VANETs. We provide the

proper cooperation scheme for the CW -adaptation with the

distributional reward prediction approach as considering the

constraint of dense vehicular networks. Accordingly, we have

verified the advanced performance of the proposed algo-

rithm with numerous simulations in the highway traffic sce-

nario. In congested VANETs, the simulation result shows

that the algorithm has 13% to 20% improvement on the

packet delivery compared to the previous work, Q-MAC [20],

which uses the simple Q-Learning method. Our algorithm

satisfies the acceptable latency requirement in the congested

VANETs with less than 120 vehicles in the one-hop range.

Furthermore, the algorithm achieves the short-term and long-

term fairness in both the sparser and the denser networks.

For future work, we expect that a state estimation method

such as the Kalman Filter for a VANET status prediction will

induce further performance improvement. Also, the develop-

ment of a robust channel access protocol under Non-Line of

Sight (NLOS) environments such as intersections or urban

areas remains an interesting challenge.
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