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Abstract

Introduction Patients with primary operable oestrogen receptor
(ER) negative (-) breast cancer account for about 30% of all
cases and generally have a worse prognosis than ER-positive
(+) patients. Nevertheless, a significant proportion of ER- cases
have favourable outcomes and could potentially benefit from a
less aggressive course of therapy. However, identification of
such patients with a good prognosis remains difficult and at
present is only possible through examining histopathological
factors.

Methods Building on a previously identified seven-gene
prognostic immune response module for ER- breast cancer, we
developed a novel statistical tool based on Mixture Discriminant
Analysis in order to build a classifier that could accurately
identify ER- patients with a good prognosis.

Results We report the construction of a seven-gene expression
classifier that accurately predicts, across a training cohort of
183 ER- tumours and six independent test cohorts (a total of
469 ER- tumours), ER- patients of good prognosis (in test sets,
average predictive value = 94% [range 85 to 100%], average
hazard ratio = 0.15 [range 0.07 to 0.36] p < 0.000001)
independently of lymph node status and treatment.

Conclusions This seven-gene classifier could be used in a
polymerase chain reaction-based clinical assay to identify ER-
patients with a good prognosis, who may therefore benefit from
less aggressive treatment regimens.

Introduction
Oestrogen receptor (ER) negative (-) breast cancer accounts

for about 30% of all breast cancer cases and generally has a

worse prognosis compared with ER positive (+)disease [1,2].

Nevertheless, a significant proportion of ER- cases have

shown a favourable outcome and could potentially benefit

from a less aggressive course of therapy [3]. Reliable identifi-
cation of such ER- patients with a good prognosis is, however,

difficult and at present only possible through examining his-

topathological factors.

Recently, attempts have been made to explain the observed
clinical heterogeneity of ER- disease in terms of gene expres-

sion signatures [4-7]. However, most of these studies clearly

indicated the difficulty of identifying a prognostic gene expres-

sion signature for ER- disease [4,6,7], unlike ER+ breast can-

cer where a multitude of alternative prognostic signatures

have been identified [3,8-11]. Nevertheless, using an integra-
tive analysis of gene expression microarray data from three

untreated (no chemotherapy) ER- breast cancer cohorts (a

total of 186 patients) [3,8,10] and a novel feature selection

method [11], it was possible to identify a seven-gene immune

response expression module associated with good

C1QA: complement component 1, q subcomponent, A chain; CI: confidence intervals; CT: chemotherapy; ER: oestrogen receptor; HER2: human 
epidermal growth factor receptor 2; HLA-F: major histocompatibility complex, class I, F; HR: hazard ratio; IGLC2: immunoglobulin lambda constant 
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MDAhet: Heterogeneous Mixture Discriminant Analysis; NPV: negative predictive value; PPV: positive predictive value; QDA: Quadratic Discriminant 
Analysis; ROC: receiver operator curve; SPP1: secreted phosphoprotein 1 (osteopontin); TNFRSF17: tumour necrosis factor receptor superfamily 
member 17; XCL2: chemokine (C motif) ligand 2.
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prognosis,. This suggests that at least part of the observed

clinical heterogeneity in ER- disease can be explained on the

basis of mRNA expression levels [5]. Specifically, overexpres-

sion of this immune response gene module identified a sub-
class of basal ER- breast cancer, about 25% of all ER- cases,

with a reduced risk of distant metastasis (Hazard ratio [HR] =

0.49; range 0.29 to 0.83; p = 0.009) compared with ER-

cases without overexpression of this module [5], a result that

was validated in two independent untreated test cohorts (58

ER- samples) [9,12].

The important role that immune system-related gene expres-

sion signatures play in breast cancer prognosis has been fur-

ther supported by four recent reports [13-16]. Specifically,

one study reported that high expression of lymphocyte-associ-

ated genes identifies a good prognosis subgroup within lymph

node negative (LN-) human epidermal growth factor receptor
2 positive (HER2+) breast cancer [13]. A further study

focused on LN- breast cancer and identified a prognostic B-

cell metagene signature, confirming that overexpression of this

signature correlated with good prognosis in ER- breast can-

cer, while underexpression correlated with good prognosis in

ER+ breast cancer [14]. A similar contrasting result between
ER- and ER+ breast cancer was also found by deriving a gene

expression signature for lymphocytic infiltration (LI) and dem-

onstrating its positive and negative association with good

prognosis in ER- and ER+ disease, respectively [15]. All these

results are consistent with our findings and highlight the

importance of stratifying breast cancer patients into ER+ and
ER- subtypes before associations with clinical outcome can

be derived [5,16].

The discovery and construction of a molecular classifier that

can robustly identify ER- patients with a good prognosis is

important for two main reasons. First, identification of ER-

patients with a good prognosis based on histopathological
predictors like LN status or Adjuvant! is far from optimal [17].

Second, reliable identification of ER- patients of good progno-

sis could help guide the management of ER- patients further,

by providing less aggressive treatment regimens for such

patients. Building on our previous results [5] here we report on

the construction of a seven-gene prognostic classifier and fur-
ther validate this single-sample predictor across six (four

untreated and two partially treated) independent ER- breast

cancer cohorts: 'UPP' [12], 'JRH-2' [9], 'UNC248' [18], 'CAL'

[19], 'Loi' [20] and 'Kreike' [6]. This therefore confirms the

validity of this classifier in more than 469 ER- patients.

Materials and methods
Linear and quadratic discriminant analysis

Before discussing Mixture Discriminant Analysis (MDA), it is

convenient to briefly review Linear Discriminant Analysis (LDA)

and Quadratic Discriminant Analysis (QDA) [21]. We assume

that we have a training data set X of dimension p × N, where
p is the number of dimensions (ie, genes) and N is the number

of training samples (ie, tumour samples). We also assume that

we have a test set Y of dimension p × n and that we have C
phenotype classes among the training set samples.

In the training process of discriminant analysis one attempts to

learn parameters that specify the clusters associated with

each of the phenotype classes. In the maximum likelihood

framework, one learns parameters (π, θ) = (πk, θk = 1,..., C)

such that the likelihood function

is maximised. In the above, fk denotes the probability function

that specifies the probability that the observation xi is gener-

ated from cluster k, πk denotes the weight of this cluster and

θk parameterises the cluster. The optimisation of the likelihood

is performed using the EM-algorithm, subject to the constraint

that , yielding estimates .

Having estimated the parameters, we can now classify a test

sample y using Bayes' Theorem as follows. The probability that

y belongs to class k is just the posterior probability p(k|y),

which by Bayes' Theorem can be written as

Assigning y to the class which maximises this posterior prob-
ability (the maximum probability criterion) minimises the

expected misclassification error. Thus,

k = class(y) = max{p(c|y)|c = 1,..., C} (3)

To compute the posterior probabilities one needs to estimate

the functions fk or, if the functional form is prespecified, the
parameters θk. The simplest functional approximation one can

make is to assume that the clusters are multivariate Gaussians,

so that

where μk is the mean and Σk the covariance matrix of the Gaus-

sian. If, furthermore, we assume that the covariance matrices

are identical for each cluster (ie, Σk = Σ ∀ k), then the classifi-
cation function becomes a linear function of y, known as LDA.

In the more general case where the covariance matrices of

each class are allowed to differ, the classification function is a

quadratic form of the y and the analysis is known as QDA.
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Mixture Discriminant Analysis

The assumption that a phenotype class is best modelled by a

multivariate Gaussian is often violated. In the context of gene-

expression analysis, gene expression profiles often exhibit bi-
or multimodality, even when restricted to one phenotype class

[5]. Similarly, gene expression profiles typically also have

longer tails than Gaussians. In such circumstances, it seems

more appropriate to model each fk as a mixture of multivariate

Gaussians, since any general density can be approximated by

such a mixture. Therefore, one assumes that

where the number of Gaussians to use for phenotype label k
is given by Gk. This number may or may not be specified in
advance resulting in a variety of different implementations. In

ordinary MDA [22], one assumes that Gk is known in advance

for each class k and that the covariance matrices are all iden-

tical (ie, Σkj = Σ). However, these assumptions are not neces-

sary and instead one can use the training data to learn the best

mixture model fit for each phenotype class using for example
the Bayesian Information Criterion (BIC) [21] or a variational

Bayesian framework for model selection [23]. This model

selection step is a cluster-inference procedure that yields esti-

mates for(τkj,μkj,Σkj, Gk), from which classification of test sam-

ples proceeds as before using the maximum probability

criterion. Therefore, MDA is a direct generalisation of LDA and
QDA and may reduce to these if the data does not support

multiple components per phenotype class [21].

Classification in heterogeneous cancers: the MDAhet 

classifier

Using mixtures of Gaussians, the densities of each phenotype

class can be estimated more accurately. Thus, provided that
the inferred Gaussian components are biologically meaningful,

this approach should in general lead to an improved classifica-

tion performance. However, the implicit assumption in MDA is

that we are still interested in classifying samples into the C
phenotype classes, whereas in certain circumstances we may

be only interested in classifying into certain subtypes within
the phenotype classes. Therefore, while in MDA one allows for

heterogeneity of each phenotype label by estimating the den-

sity of each class as a mixture of Gaussians, classification is

subsequently performed into each phenotype class. On the

other hand, it is possible to classify samples into the Gaussian

subcomponents inferred for each phenotype class, a variation
of MDA called Heterogeneous Mixture Discriminant Analysis

(MDAhet), because this explicitly takes the heterogeneity of

each phenotype class into account by attempting to classify

the samples into these subcomponents.

As an example, consider the case of two phenotype classes
with MDA predicting two Gaussian components for each

class. Thus, training data is used to learn the parameters and

weights for four Gaussian clusters and classification of test

samples is subsequently performed via the Bayes' classifier

(equation 3) on these four subclasses. Note therefore that in
MDAhet, the cluster-inference step of MDA is used to define

the classes for which classification is then performed. Since

these inferred classes make up subtypes of the original phe-

notype labels, this classification framework explicitly takes the

heterogeneity of the phenotypes into account.

In the context of cancer gene-expression studies it has been a

problem in certain cancers to derive reliable prognostic classi-

fiers as is the case for ER- breast cancer. Typically, in the con-

text of prognosis one would expect discriminative gene-

expression profiles to exhibit bimodal distributions with the two

modes mapping roughly to the two prognostic groups (good

and poor) [11]. However, as previously shown [5], the best
candidate gene-expression prognostic markers can also

exhibit bimodal (or multimodal) profiles (ie, mixtures of Gaus-

sians) within a given prognostic class, indicating that these

phenotypes are themselves heterogeneous and that classifi-

cation analysis should attempt to take this heterogeneity

explicitly into account. Thus, in such circumstances the pro-
posed classifier MDAhet seems the more appropriate classifi-

cation scheme to use.

Time-dependent negative predictive value analysis

Following the work by Heagerty and colleagues [24], we esti-

mate time-dependent sensitivity SE(t) and specificity SP(t) val-
ues using Kaplan-Meier estimators for the predicted

subclasses. In our context, we assume that samples have been

classified into two groups, so that the predictor X = 1 predicts

poor prognosis, while X = 0 predicts good prognosis (ie, the

'good-up' group) Thus,

where (t) denotes the Kaplan-Meier estimator for the

overall survival function, while (t|X = c) denotes the Kap-

lan-Meier survival estimate for the particular subgroup X = c (c
= 1, 2) [24]. In our context, however, the most important per-

formance measure is the negative prective value (NPV), since

this is the probability of correctly identifying a patient with a

good prognosis. Adapting the same methods as used by

Heagerty and colleagues [24] we can obtain time-dependent

estimates for the NPV and positive predictive value (PPV) sim-
ply as:
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ŜKM



Breast Cancer Research    Vol 10 No 4    Teschendorff and Caldas 

Page 4 of 11
(page number not for citation purposes)

Results
The seven-gene immune response module validates in 

six external cohorts

Applying a feature selection method designed to remove false

positives [11] to an integrated expression data set of 186

untreated ER- samples across 5007 genes [3,8,10], we previ-
ously identified a total of 22 prognostic genes, seven of which

were associated with immune response functions (XCL2,
HLA-F, C1QA, TNFRSF17, SPP1, IGLC2, LY9) [5]. Further-

more, mapping the seven-genes into those available on two

external platforms we were able to separate two independent

untreated populations of ER- breast cancer patients [9,12]

into two subgroups with statistically significant differences in

survival outcome [5]. Specifically, samples overexpressing this

module had significantly better clinical outcomes, as meas-

ured by absence of a poor outcome event (disease-specific

death or the surrogate distant metastasis if the former was
unavailable) (Figures 1a, b).

These results motivated us to investigate the prognostic role

of the immune response-module further in four additional ER-

data sets for which gene expression and clinical data were

available [6,18-20]. Using the same partitioning around
medoids algorithm to separate each of these additional inde-

pendent cohorts into two subgroups we were able to confirm

the prognostic role of the immune response-module across a

total of 469 ER- tumours (Figures 1c to 1f). Given that overex-

pression of the immune response-module consistently identi-

fied a good prognosis subgroup of ER- breast cancer, we

asked if we could derive a robust single-sample prognostic

NPV t S t X

PPV t S t X

KM

KM
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Figure 1

Heatmaps of seven-gene immune response-modulesHeatmaps of seven-gene immune response-modules. Heatmaps of gene expression of the seven-gene immune response-module for the train-
ing and six test cohorts (red = high relative expression, green = low). Samples are clustered into two groups according to the partitioning around 
medoids algorithm [28] (purple = group overexpressing the immune response-module, yellow = group underexpressing the immune response-mod-
ule). Clinical outcome as defined by a disease-specific death event (or distant metastasis if the former is not available) is also shown (black = poor, 
grey = good, white = missing data). Note that in some cases not all seven genes could be mapped to the external platform. C1QA = complement 
component 1, q subcomponent, A chain; HLA-F = major histocompatibility complex, class I, F; IGLC2 = immunoglobulin lambda constant 2; LY9 = 
lymphocyte antigen 9; TNFRSF17 = tumour necrosis factor receptor superfamily member 17; SPP1 = secreted phosphoprotein 1 (osteopontin); 
XCL2 = chemokine (C motif) ligand 2.
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predictor.

Deriving the prognostic classifier

To derive a single-sample prognostic classifier we first applied
a mixture discriminant classifier to the same training set of 186

ER- patients and across the seven identified genes. The heter-

ogeneity of the good-prognosis phenotype, as shown by the

gene expression patterns of the immune response-module

(Figure 1), suggested to us that MDA [21] would be an appro-

priate classification method to use, since it is designed to work

for such heterogeneous phenotypes. Specifically, the MDA

classifier estimates, from the training data, densities for each
of the good and poor prognosis phenotypes as mixtures of two

Gaussians (Figure 2). The choice of two Gaussians to model

each phenotype was not arbitrary but followed from the appli-

Figure 2

The MDA and MDAhet classifierThe MDA and MDAhet classifier. Four two-dimensional projections of the seven-dimensional Mixture Discriminant Analysis (MDA) and Heterogene-
ous Mixture Discriminant Analysis (MDAhet) classifiers. Scatterplots show projections of the training expression data (183 oestrogen receptor neg-
ative samples) onto arbitrarily chosen two-dimensional subspaces spanned by the genes HLA-F and IGLC2, LY9 and TNFRSF17, SPP1 and XCL2, 
and IGLC2 and C1QA. Codings: black = poor outcome, grey = good outcome, triangle = training samples classified into the good prognosis sub-
group defined by overexpression of seven-gene module 'good-up', circle = training samples not classified into 'good-up' group. In addition, the 
means and covariance-curves of the two Gaussians that approximate each of the poor (black ellipses) and good outcome (grey ellipses) classes are 
shown. C1QA = complement component 1, q subcomponent, A chain; HLA-F = major histocompatibility complex, class I, F; IGLC2 = immunoglob-
ulin lambda constant 2; LY9 = lymphocyte antigen 9; TNFRSF17 = tumour necrosis factor receptor superfamily member 17; SPP1 = secreted 
phosphoprotein 1 (osteopontin); XCL2 = chemokine (C motif) ligand 2.
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cation of a variational Bayesian algorithm that infers the opti-

mal number of Gaussians to use [23] (data not shown). Thus,

using the training data, patients with a good prognosis were

divided up into two groups, one with high relative expression
of the immune response-genes (the 'good-up' group) and

another with relative low expression (the 'good-down' group).

A similar subdivision was performed for the poor prognosis

patients to yield 'poor-up' and 'poor-down' subgroups. The

training process involves learning the mean expression vec-

tors, covariance matrices and weights for each of the four sub-
groups (Table 1).

Evaluation of the prognostic classifier: MDAhet versus 

MDA

Having estimated the parameters for each of the phenotypes,

external samples can then be classified by applying the MDA

to the test sample's gene expression profile, yielding probabil-
ities of the sample belonging to each phenotype class, and

subsequently using the maximum probability criterion for class

assignment. Since each phenotype class is modelled as a mix-

ture of two Gaussians (Figure 2), class assignment can also

be made on the four subclasses, a novel variation of MDA

called MDAhet because this explicitly takes the heterogeneity
of each phenotype in the classification process into account.

This novel variation of MDA is crucial as it allows for a more

reliable identification of good prognosis samples (ie, the NPV).

In detail, MDAhet assigns a test sample with a seven-gene
expression profile y to one of the four subclasses c (c = 1, 2,

3, 4) using the maximum probability criterion

where G denotes the seven-dimensional multivariate Gaus-

sian and the parameters  are estimated from the

training set (Table 1).

The classification distribution of samples from the six external

cohorts into the four subclasses as determined by MDAhet

showed that test samples classified most often into the 'poor-
down' and 'good-up' classes (Table 2). Since samples falling

into the 'good-down' and 'poor-down' categories could not be

discriminated in terms of prognosis (a sign that these sub-

classes are not distinguishable on the basis of the expression

of these seven genes) we can pool these together in order to

compare more objectively the predicted proportions with
those estimated from the training set. This revealed that for

four cohorts, JRH-2 (8 vs. 16), CAL (13 vs. 33), UNC248 (28

vs. 56) and Loi (13 vs. 27), the 'good-up' group is about half

the size of the pooled 'down' group (Table 2), which is consist-

ent with the relative proportions estimated from the training set

(0.28 vs. 0.63). For the other two cohorts, relative proportions
still did not deviate markedly from the training set proportions,

although some deviations might be expected due to inherent

cohort differences.

Validation of MDAhet in external cohorts

To evaluate the performance of the MDAhet classifier in the

training and test cohorts we used several different measures
and models of prognostic separation, depending on the varia-

ble of clinical outcome used. As binary outcome we used

absence or presence of a disease-specific death event, or the

Table 1

The Heterogeneous Mixture Discriminant Analysis (MDAhet) 

classifier.

good-down good-up poor-down poor-up

HLA-F -0.31 0.65 -0.29 0.40

IGLC2 -0.56 0.98 -0.46 0.68

LY9 -0.29 0.58 -0.52 1.12

TNFRSF
17

-0.41 0.97 -0.58 0.59

SPP1 0.01 -0.38 0.47 -0.57

XCL2 -0.36 0.67 -0.41 0.58

C1QA -0.39 0.79 -0.40 0.57

0.74 0.74 0.58 0.58

 ∝ I
0.31 0.28 0.32 0.09

Estimated mean expression profiles , covariance matrices  and 

weights  for the four subgroups, as estimated from the training 
set. Note that the optimal covariance matrices were all proportional 

to the identity matrix  ∝ I and are thus summarised by a single 
value, the variance of expression of the corresponding cluster. 
C1QA, complement component 1, q subcomponent, A chain; HLA-
F, major histocompatibility complex, class I, F; IGLC2, 
immunoglobulin lambda constant 2; LY9, lymphocyte antigen 9; 
TNFRSF17, tumour necrosis factor receptor superfamily member 17; 
SPP1, secreted phosphoprotein 1 (osteopontin); XCL2, chemokine 
(C motif) ligand 2.
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Table 2

Classification of test samples.

Test cohort Size good-down good-up poor-down poor-up

UPP 34 4 14 16 0

JRH-2 24 5 8 11 0

CAL 46 13 13 20 0

Kreike 97 18 35 41 3

UNC248 85 28 28 28 1

Loi 40 8 13 19 0

Distribution of test samples into the four subclasses by the 
Heterogeneous Mixture Discriminant Analysis (MDAhet) classifier.
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surrogate-distant metastasis if the former was not available.

Since this does not take time dependence of events into

account, binary outcome was also used at four years after sur-

gery adapting methods for time-dependent receiver operator
curve (ROC) analysis [24]. In addition, we considered contin-

uous outcome in full stratified Cox-proportional hazard regres-

sion models, where stratification was performed on a per

cohort basis to take inter-cohort differences in the types of sur-

vival data (ie, whether disease-specific survival or distant

metastasis) into account.

Performance indicators based on the binary outcome meas-

ures are shown in Table 3. The most important performance

indicator in our context is the NPV, since this represents the

Table 3

Performance measures of seven-gene Heterogeneous Mixture Discriminant Analysis (MDAhet) classifier

Training set Test Sets

Cohort NKI2+EMC+NCH UPP JRH-2 CAL Kreike UNC248 Loi

Cohort size 186 34 24 46 97 85 40

Annotated 183 31 24 46 71 80 34

Good prognosis (%) 59 81 75 67 76 74 76

Poor prognosis (%) 41 19 25 33 24 26 24

Chemotherapy (%) 0 0 0 67 0 66 0

MDA

NPV (%) 74 92 93 69 83 74 100

PPV (%) 55 28 56 35 29 27 40

SE (%) 69 83 83 53 71 38 100

SP (%) 61 48 78 52 44 63 54

MDAhet

NPV (%) 80 100 100 100 85 92 100

PPV (%) 51 30 37 45 29 36 35

SE (%) 84 100 100 100 76 90 100

SP (%) 44 44 44 42 41 42 42

NPV at 4 years (%) 83 100 100 100 88 93 100

PPV at 4 years (%) 42 24 33 35 25 45 35

SE at 4 years (%) 83 100 100 100 79 88 100

SP at 4 years (%) 44 42 43 37 40 45 43

LN

NPV (%) 61 84 NA 85 NA 85 76

PPV (%) 50 30 NA 46 NA 37 0a

SE (%) 27 50 NA 80 NA 71 0a

SP (%) 81 70 NA 55 NA 58 100a

NPV at 4 years (%) 67 88 NA 90 NA 82 77

PPV at 4 years (%) 39 37 NA 38 NA 47 0a

SE at 4 years (%) 25 84 NA 85 NA 69 0a

SP at 4 years (%) 80 74 NA 53 NA 60 100a

aLoi's cohort consists only of LN- samples. The table summarises performance indicators of the seven-gene MDAhet classifier and lymph node status (LN) 
across oestrogen receptor negative (ER-) training and test sets. For each cohort, we also give the number of tumours (cohort size), number of clinically 
annotated tumours (annotated), the percentage of good and poor prognosis patients (as defined by disease-specific death or distant metastasis event) 
and the percentage of patients treated with chemotherapy. NPV, PPV, SE and SP are evaluated at four years and at end of study. NPV, negative 
predictive value (precision for good prognosis); PPV, positive predictive value (precision for poor prognosis); SE, sensitivity; SP, specificity.
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probability of correctly identifying a good prognosis patient. As

shown, the NPV was very high with average values of 0.8 in the

training sets and 0.96 in the test sets (range 0.85 to 1).

Indeed, a significant improvement over simple predictions
based on a priori known proportions was observed in all test

sets (Table 3). In line with these results, sensitivity values were

also very high with average values of 0.84 in training sets and

0.94 in test sets (range 0.76 to 1). Results evaluated at four

years after surgery were, as expected, not markedly different,

indicating that the prognostic classifier performs equally well
in terms of short-term survival outcomes (Table 3).

Stratified Cox-regression models further confirmed the much

better prognosis of the predicted subclass overexpressing the

immune response-module relative to samples classified as

poor prognosis (Table 4). Specifically, samples classified as

good prognosis with overexpression of the immune response-
module ('good-up' group) have less than half the risk of a poor

outcome event (death or distant metastasis) relative to sam-

ples classified as poor prognosis, a result that we found to be

independent of LN status and chemotherapy (Table 4). Note

that four of the test cohorts were untreated (no chemotherapy)

populations (Table 3), such as the training set itself, confirming
the prognostic relevance of the classifier, and that chemother-

apy itself was not prognostic in the two partially treated popu-

lations (Table 4).

Kaplan-Meier survival curves stratified according to the type of

survival data (disease-specific death or distant metastasis) fur-
ther confirmed the better prognosis of the predicted 'good-up'

group (Figure 3). These survival curves further show that the

classifier in the test sets is unable to discriminate the good

prognosis samples that do not overexpress the immune

response-module ('good-down') from the poor outcome sam-

ples. This result is expected since the seven-gene module is

hypothesised to only identify a particular subgroup of good

prognosis [5].

Since the maximum probability criterion assigns test samples

to classes without regard to how large the maximal posterior

class probabilites are, we tested the robustness of our results

by only classifying samples passing a minimum probability

threshold. For a probability threshold of 0.3 (already significant
compared with the minimum possible maximal probability of 1/

4 = 0.25), 94% of all test samples passed this threshold, indi-

cating that our results are indeed robust. For a threshold of

0.4, we found 68%of samples were classifiable and results

were still in line with those reported for the minimum threshold

of 0.25 (data not shown).

Discussion
Based on the seven genes we had identified previously as

defining an immune response-related prognostic module in

ER- breast cancer, we have now constructed a single-sample

classifier and have validated it in six external, independent ER-

cohorts, four of which were untreated populations. Remarka-
bly, we find that overexpression of this immune response-mod-

ule considerably reduces the risk of disease-specific death or

distant metastasis in both untreated and partially untreated

ER- populations (HR = 0.15; 95% confidence interval 0.07 to

0.36; p < 10-6) (Table 4). Importantly, we also found that this

association is independent of LN status (Table 4). In terms of
binary outcome measures, the classifier shows clinical prom-

ise with consistently high NPV values across all test cohorts,

even when time-dependent outcome measures are taken into

account (Table 3). For example, the NPV and sensitivity values

Table 4

Stratified Cox-regression model of seven-gene Heterogeneous Mixture Discriminant Analysis (MDAhet) classifier

Training set Combined test set

Annotated 183 286

MDAhet 0.29 (0.16–0.56) p = 0.0002 0.15 (0.07–0.36) p < 0.000001

LN 1.31 (0.73–2.33) p = 0.36 3.25 (1.61–6.58) p = 0.001

CT NA 0.68 (0.34–1.39) p = 0.29

LN+MDAhet

MDAhet 0.29 (0.15–0.55) p = 0.0002 0.06 (0.01–0.27) p = 0.0002

LN 1.59 (0.81–3.11) p = 0.18 3.68 (1.32–10.13) p = 0.012

CT+MDAhet

MDAhet NA 0.27 (0.15–0.48) p = 0.00001

CT NA 0.76 (0.27–2.13) p = 0.6

Stratified Cox-proportional hazards regression performance of the seven-gene MDAhet classifier, lymph node status (LN) and chemotherapy (CT) 
across oestrogen receptor-negative training and test sets, with strata defined by cohorts. For the univariate analysis, Hazard ratio (HR), 95% 
confidence intervals (CI) and LR-test p-value are given. In the multivariate models, p-values quoted are from the corresponding Wald test.
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at four years after surgery were 100% in four of the six cohorts

and in all cases larger than 85%. Thus, the classifier could
potentially be used for identifying high-grade ER- patients that

may benefit from a less agressive or nonexistent course of

chemotherapy.

The remarkably high NPV values in the test cohorts, however,

raise some important questions. First, we found that the per-

formance in the test sets was better than in the training set
(Tables 3 and 4). While this is true for the NPV analysis, the

Cox-regression analysis also shows that the 95% confidence

intervals (CI) are overlapping. Therefore, statistically, there is

no discrepancy. In any case, a plausible explanation for why

the performance is slightly worse in the training set could be

related to the merging step involved in building the training set
[5]. By merging different microarray expression sets together

we gain power from the considerable increase in sample size;

however, merging may also compromise the accuracy of the

expression profiles, because these need to be renormalised

before merging is performed [5]. Therefore, it is entirely plau-

sible that small errors in the merging procedure may have
affected the classifier's performance in the training set. In this

context it is important to point out that the training set is only

used to derive a classifier and that the gold-standard

evaluation of any classifier is determined by its performance in

the test cohorts [25]. As shown here, the MDAhet classifier is

strongly prognostic across six totally independent breast can-

cer cohorts profiled on different array platforms.

A second important point relates to the nature of the MDAhet

classifier. As remarked in a previous study [9], in the context of

validating gene expression signatures across different array

platforms, some renormalisation is inevitable. Thus, our

MDAhet classifier is not strictly speaking a single-sample pre-

dictor because the gene expression value of a test sample
needs to be renormalised (a simple centering and scaling)

across all the test samples in the same cohort, before classifi-

cation is performed. However, this does not preclude the clas-

sifier from being a potential single-sample predictor because

in the clinical setting such platform differences would not exist

and so no normalisation step would be necessary. Hence, in
line with other classifiers presented in the literature [9,26] our

MDAhet classifier is also a single-sample predictor because,

modulo the normalisation step, the classification is performed

solely with information taken from the training set (Table 1).

Given the association of overexpressed immune response
related genes with good prognosis in ER- breast cancer, as

supported now by several studies [5,13-16], it is natural to ask

about the biological meaning of such overexpression. One

plausible explanation for the overexpression of immune

response genes in these tumours is a higher degree of LI,

because some of the genes involved are lymphocyte markers

Figure 3

Kaplan-Meier curves for MDAhet classifierKaplan-Meier curves for MDAhet classifier. Kaplan-Meier survival curves for the three subclasses 'good-down' (light green), 'good-up' (dark 
green), 'poor-down' (blue), as predicted by the Heterogeneous Mixture Discriminant Analysis (MDAhet) classifier, in the training and combined test 
cohorts. The class 'poor-up' is not shown due to small sample size (Table 2). Hazard ratios (HR), 95% confience intervals (CI) and log-rank test p-
values are given for the predicted 'good-up' class relative to the predicted poor prognostic classes, as given by a stratified Cox-regression model 
with strata defined by cohorts. The Kaplan-Meier curves for each subclass is shown separately for disease-specific survival (solid lines) and distant 
metastasis (broken lines).
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[13-15] and LI itself is associated with good prognosis in ER-

breast cancer patients [6,14,15]. However, there is also evi-

dence for a more complex role of the mRNA expression of

these genes [5]. First, it was found that the prognostic per-
formance of the seven-gene module previously reported [5]

was independent of LI. Second, it was shown that the good

prognosis class was heterogeneous with only about half of the

cases mapping closely to medullary breast cancer, a morpho-

logically distinct subclass associated with high LI and margin-

ally better prognosis as compared with the other ER- subtypes
(ie, the basal and the HER2+ subtypes) [5,27]. Thus, the best

prognosis is attained by the other half of the samples that are

not necessarily related to high LI and medullary breast cancer

[5]. All these findings are consistent with the marginal associ-

ation of LI or LI-associated gene expression with good progno-

sis in ER- breast cancer, as reported recently [6,13-15], and

suggest that only part of the overexpression of the immune
response-module is due to LI [5]. Lending further support to

this, it was also found that one gene member (SPP1) is con-

sistently underexpressed in patients with a good prognosis. To

conclude, we can therefore hypothesise that the MDAhet clas-

sifier and associated immune response-module may be identi-

fying another good prognosis ER- subset of tumours, but with
a significantly better prognosis than medullary high-LI breast

cancer (Tables 3 and 4). In any case, even if the expression

pattern of the immune response-module is entirely due to var-

iable LI, the MDAhet classifier appears to provide a much more

reliable prognostic classifier than LI-scores derived from

immunohistochemistry [6] or lymphocyte-specific gene
expression markers [14,15]. Further larger studies with relia-

ble LI data are required to answer these questions conclu-

sively [15].

Conclusion
We have derived a single-sample classifier for good prognosis

in ER- breast cancer with a high predictive value (in test sets,
mean NPV = 94%, range 85 to 100%) in six independent test

cohorts and validity in more than 469 patients, and which per-

forms independently of LN status. We propose to develop a

reverse transcriptase-polymerase chain reaction-based clini-

cal assay based on these seven genes to identify ER- patients

of good prognosis that may benefit from a less aggressive
course of chemotherapy.
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