
ANZIAM J. 54 (CTAC2012) pp.C394–C411, 2013 C394

A robust combination technique

B. Harding1 M. Hegland2

(Received 31 October 2012; revised 5 June 2013)

Abstract

One of the challenges for efficiently and effectively using petascale
and exascale computers is the handling of run-time errors. Without
such robustness, applications developed for these machines will have
little chance of completing successfully. The sparse grid combination
technique approximates the solution to a given problem by taking the
linear combination of its solution on multiple grids. It is successful
in many high performance computing applications due to its ability
to tackle the curse of dimensionality. We present several approaches
to fault tolerance using the combination technique. The first of these
is implemented within the MapReduce model in order to utilise the
existing fault tolerance of this framework. In addition, we present a
method which utilises the redundancy shared by solutions on different
grids. Finally, we describe a novel approach in which the solution is
computed on additional grids which are used for alternative combina-

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/6321
gives this article, c© Austral. Mathematical Soc. 2013. Published August 16, 2013, as
part of the Proceedings of the 16th Biennial Computational Techniques and Applications
Conference. issn 1446-8735. (Print two pages per sheet of paper.) Copies of this article
must not be made otherwise available on the internet; instead link directly to this url for
this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/6321

Contents C395

tions if other grids experience failure. We include some results based
on the solution of the 2D scalar advection pde.

Contents
1 Introduction C395

2 The combination technique C397

3 Robust algorithms C399

4 Numerical results C405

5 Conclusion C408

References C410

1 Introduction

Modern high performance computing architectures are extremely complex,
having hundreds of thousands of components all working together to complete
cumbersome tasks. As the computing power of machines in the Top5001

increases, so too does the number of components. Given the limited lifetime
of each component, the probability that any one of these will fail within a
given period of time also increases. Numerous studies of faults indicated that
software errors are as, if not more, significant [4]. This is a challenge that
must be addressed if we are to achieve exascale computing.

Many traditional approaches to fault tolerance, like checkpoint restart based
methods, are unfeasible at exascale because they are too memory intensive,

1http://www.top500.org

http://www.top500.org

1 Introduction C396

leading to an inefficient use of resources and high energy costs. Algorithm
based fault tolerance (abft) was studied for a variety of problems and often
provides a robust low cost solution [2, 9].

The sparse grid combination technique was introduced by Griebel et al. [7].
By solving a given problem on many regular anisotropic grids and taking a
linear combination of the results one obtains the approximate sparse grid
solution [3, 10]. In Section 2 we describe how this method is implemented
within the MapReduce model which was recently popularised by Google [5].
In MapReduce a list of (key,value) pairs is distributed to a map function
which, after some processing, returns new (key,value) pairs. This second list
of pairs is then processed/sorted according to the key by a reduce function.
For the combination technique one defines a map function to solve a problem
on each grid and return (grid,solution) pairs which are later combined by the
reduce function. Fault tolerance is achieved by recomputing pairs that are
affected by faults as per the MapReduce model.

In many cases recomputation may be neither possible nor desirable. One issue
is that unexpected recomputations may result in poor load balancing. This
leads to inefficient use of resources and may even prevent computations from
being completed in the allocated time. With this in mind, in Section 3 we
present some approaches to abft in which (grid,solution) pairs experiencing
a fault are not recomputed. The first of these approaches utilises redundancy
within the computed grids to approximate lost (grid,solution) pairs from
other computed pairs. The second approach involves solving the problem on
additional grids which can be used to derive new combinations that avoid
pairs which have experienced a fault.

Finally, in Section 4 we present numerical results in the context of the
scalar advection pde which demonstrate the extra errors produced using our
methods. In particular, our latter approach appears to have a nice bound on
the error even when multiple (grid,solution) pairs are affected by faults.

2 The combination technique C397

2 The combination technique

Let i ∈ Nd be a multi-index and Ik = {0, 2−k, 2 × 2−k, 3 × 2−k, . . . , 1} be a
discretisation of the unit interval. We define a grid on the unit d cube Ω by

Ωi := Ii1 × Ii2 × · · · × Iid .

Given a grid Ωi we define an associated space of piecewise d linear functions

Vi := span{φi,j : jk ∈ 2ikIik ,k = 1, . . . ,d} ,

where φi,j are the usual d linear hat functions [6].

The sparse grid combination technique [6, 7] allows one to approximate the
sparse grid solution [3] by taking linear combinations of the solution on
multiple regular anisotropic grids. Suppose fi ∈ Vi denotes the solution to a
given problem on the grid Ωi , then the combination solution is

fcn(x) :=

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|i|1=n−q

fi(x) . (1)

For f ∈ H20,mix(Ω) , where f satisfies ‖f‖2
H2

mix
:=

∑2
i1,...,id=0

‖Dif‖22 < ∞ and
has zero boundary values, it is known that the combination interpolant is
equal to the sparse grid interpolant [6] and has interpolation error

‖f− fcn‖2 = O
[
h2n · log(h−1

n)d−1
]
,

where hn = 2−n . The combination technique is generalizable in a way that
makes it extremely flexible [8]. In this general setting

fcn(x) =
∑
i∈I

cifi(x) . (2)

The classical combination of (1) is written in this form by setting I = Idn
where

Idn := {i ∈ Nd : n− d < |i|1 6 n} , (3)

2 The combination technique C398

and deriving the coefficients from the index,

ci = (−1)n−|i|1

(
d− 1

n− |i|1

)
.

The combination technique is an ideal candidate for implementing within the
MapReduce model. Consider the solution to a pde problem. Starting with
(key,value) pairs given by (grid index i, initial/boundary conditions), these
are processed independently by the map function which returns (i, fi) pairs.
The reduce function then combines the solutions by adding them together
according to (2).

MapReduce was originally designed to process large data sets over dis-
tributed networks and therefore necessarily includes fault tolerant mechanisms.
Google [5] uses MapReduce to process data relating to their web search service
and implements the following approach to fault tolerance.

Worker failure: Workers are periodically pinged by the master. If no
response is received, then it is assumed the worker has failed and
the (key,value) pairs that were assigned to it are rescheduled to other
workers.

Master failure: The master is periodically checkpointed. When a fail-
ure occurs the master is restarted from a previous checkpoint and all
(key,value) pairs that were incomplete at the time of the checkpoint
must be rescheduled.

Checkpointing the master process is straightforward and does not have the
problems associated with global checkpoints since only a small amount of
data relating to the job control needs to be duplicated.

Whilst this approach can be applied with the combination technique, reschedul-
ing and recomputing can result in poor load balancing. Load balancing is
generally not an issue with MapReduce because the number of map operations
greatly exceeds the number of threads. With the combination technique this
may not always be the case. For example, consider a 6D problem with level

3 Robust algorithms C399

n = 16 which consists of 66 605 grids. If one grid is distributed to each socket
then, given the O(100 000) sockets in current petascale machines, one sees
that we cannot efficiently use the entire machine. Even when allocated only a
portion of the machine, achieving good load balancing is tedious and having
to recompute a grid may cause significant delays. This challenge motivates
the next section.

3 Robust algorithms

We present two approaches to fault tolerance which trade-off some error in
the solution for the need to recompute. The first of these utilises redundancy
between the combination grids. Suppose that i ∈ Idn , as defined in (3), and
|i|1 < n , then there are at least d elements j ∈ Idn such that i 6 j , that is
ik 6 jk for all k = 1, . . . ,d . In particular, one may take j = i+ek where ek is 1
for the kth element and 0 elsewhere. For each of these we have that Ωi ⊂ Ωj

and Vi ⊂ Vj so it is therefore reasonable to expect that the interpolation
of fj(x) onto the grid Ωi will produce an acceptable approximation to fi(x) ,
that is,

fi ≈ Pifj ,

where Pi is the interpolation into the space Vi . For example, if fi and fj were
simply interpolations of f, then the interpolation of fj onto Vi is exactly fi .
Similarly, if fi are Galerkin projections of f and Pi is the Galerkin projection
onto a coarser space, then fi = Pifj . This observation forms the basis of
our first fault tolerant approach; faults affecting an (i, fi) pair with |i| = n
are recomputed whilst for all other pairs (with |i| < n) the solution fi is
approximated by taking the interpolation of the solution from a finer grid fj .

Care must be taken with respect to the choice of grid from which to project
the solution as the solution error is sensitive to this choice. This is seen if

3 Robust algorithms C400

one assumes the error model

εi =

d∑
k=1

γikh
2
ik
+ O(h4) ,

and then examines the resulting extrapolation error after the combination
technique is applied.

Our second approach is motivated by the work of Hegland [8] where an
algorithm for adaptive sparse grids was introduced. This algorithm involved
finding new combination coefficients when the solution from new grids is
added to the combination. In contrast, the occurrence of faults effectively
takes grids away. Despite this we demonstrate that the coefficients can be
updated in a similar way. We start with the linear projection operator

PI = 1−
∏
i∈I

(1− Pi) , (4)

where I is an ordered downset containing the indices of nested function space
lattices Vi = Vi1 × · · · × Vid , with Pi : V → Vi and PI : V → VI =

∑
i∈I Vi .

Given that PiPj = Pi when i 6 j (that is ik 6 jk for k = 1, . . . ,d) the operator
reduces to

PI = 1−
∏

i∈max I

(1− Pi) , (5)

where max I := {i ∈ I : for all j ∈ I , there exists k such that j
k
< ik} are the

maximal elements of I. Further, using the property PiPj = Pi∧j , this expands
to

PI =
∑
i∈I

ciPi , (6)

where the ci are the resulting combination coefficients for each of the indices
in I (note the similarity with (2)).

In order to apply this approach we compute the solutions on all of the grids
with indicies in the smallest downset containing Idn given by

Jdn := {i ∈ Nd : |i|1 6 n} . (7)

3 Robust algorithms C401

If no faults occur during the course of the computation, then we combine
solutions as in (1). The same also applies if faults only affect the grids with
indicies |i|1 6 n− d . On the other hand, if a fault affects a grid with index
i ∈ Jdn ∩ Idn , then our goal is to derive new coefficients such that ci = 0 and
we utilise as many of the remaining grids as possible in a suitable way.

Consider a fault occuring on an (i, fi) pair with grid index j ∈ max Jdn , that
is |j|1 = n . Observing that J ′ = Jdn\{j} is still a downset, we define the
projection PJ ′ as in (5) and expanded to

PJ ′ =
∑
i∈J ′

ciPi ,

giving us new combination coefficients which exclude the index j.

Remark 1. For only one failure occurring on elements in max Jdn we do not
need all of the computed grids. Numerical experiments indicate that only the
grids with n− d 6 |i|1 6 n are required.

For a fault occurring on a grid with index n− d < |j|1 < n we can estimate
the solution by taking the projection from a finer solution, as previously
discussed. Alternatively, we could remove this element and all larger elements
from Jdn , then find the maximal elements and expand the projection operator
as before to obtain new coefficients. However, this latter approach can give
poor results, particularly in higher dimensions where it may mean removing
tens or even hundreds of indices. Instead it is possible to remove just a
few elements from max Jdn such that the expanded projection operator has a
coefficient of zero for the j which experienced a fault.

This zero coefficient method is most easily demonstrated in the 2D case.
Suppose a fault occurs on a grid with index (k,n− k− 1) ∈ J2n for some k ∈
{0, . . . ,n−1} . If one defines J ′ = J2n\{(k+1,n−k−1)} or J ′ = J2n\{(k,n−k)}
then upon expanding PJ ′ one finds that c(k,n−k−1) = 0 . A similar condition
arises in high dimensions where removing one or more appropriate maximal
elements yields coefficients of zero for the desired grid indices.

3 Robust algorithms C402

Remark 2. Often it is possible to set ci = 0 for all |i|1 < n− d which means
we need only compute the grids with indices in Jdn\Jdn−d−1 . This seems to
hold where faults affect only one grid.

We now give a result which provides an asymptotic estimate of the proportion
of extra grid points in the computations of all the grids with indicies in Jdn
compared to those in the grids with indicies in Idn .

Proposition 3. Let |Ωi| denote the total number of grid points in Ωi , Idn :=
{i ∈ Nd : n − d < |i|1 6 n} and Jdn := {i ∈ Nd : |i|1 6 n} . The sum of grid
points in the collections of grids with indices in Idn , Jdn and Jdn\Jdn−d−1 is

Ln =
∑
i∈Idn

|Ωi| , Mn =
∑
i∈Jdn

|Ωi| , Nn =
∑

i∈Jdn\Jdn−d−1

|Ωi| ,

respectively. In the limit of large levels n, the proportions

lim
n→∞

Mn − Ln
Ln

=
1

2d − 1
and lim

n→∞
Nn − Ln
Ln

=
1

2(2d − 1)
. (8)

Proof: We define ak,d to be the sum of grid points in the collection of grids
of level k, that is

ak,d =
∑

i∈Jdk\Jdk−1

|Ωi| .

By simple combinatorical arguments one can show that the number of elements
of Jdk\Jdk−1 is

(
k+d−1
d−1

)
= kd−1/(d − 1)! + O(kd−2) [3]. If one has periodic

boundaries then each grid of level k has 2k grid points and it follows that∑
i∈Jdk\Jdk−1

|Ωi| =
kd−12k

(d− 1)!
+ O(kd−22k) .

For non-periodic boundaries the situation is more challenging. For d = 1 one
has ak,1 = 2k + 1 = k02k/0! + O(k−12k) . Then, by induction on d > 2 with

3 Robust algorithms C403

the assumption ak,d−1 = kd−22k/(d− 2)! + O(kd−32k) ,

ak,d =

k∑
i=0

(2i + 1)ak−i,d−1

=

k∑
i=0

(2i + 1)

(
(k− i)d−2

(d− 2)!
2k−i + O

[
(k− i)d−32k−i

])

=

k∑
i=0

(
(k− i)d−2

(d− 2)!
(2k + 2k−i) + O

[
(k− i)d−3(2k + 2k−i)

])
(9)

=
2k

(d− 2)!

k∑
i=0

(k− i)d−2 +
1

(d− 2)!

k∑
i=0

2k−i(k− i)d−2

+ O

[
2k

k∑
i=0

(k− i)d−3 +

k∑
i=0

2k−i(k− i)d−3

]
.

Estimates for the two sums are

k∑
i=0

(k− i)p =

k∑
i=0

ip =
kp+1

p+ 1
+ O(kp)

and

k∑
i=0

2k−i(k− i)p = 2k
k∑
i=0

2−i
[
kp + O(kp−1)

]
= 2k

[
kp + O(kp−1)

] k∑
i=0

2−i

= 2k
[
kp + O(kp−1)

]
(2− 2−k) (10)

= (2k+1 − 1)
[
kp + O(kp−1)

]
= 2k+1kp + O(2kkp−1) .

3 Robust algorithms C404

Substituting these sums into (9) yields

ak,d =
2k

(d− 2)!

[
kd−1

d− 1
+ O(kd−2)

]
+

1

(d− 2)!
O(2kkd−2) + O(2kkd−2 + 2kkd−3)

=
kd−1

(d− 1)!
2k + O(kd−22k) .

Hence the assumption holds for all d > 1 . Now it remains to sum over all
of the levels in the sets Idn , Jdn and Jdn\Jdn−d−1 . For Idn one again applies the
estimate of (10) to obtain

Ln =

n∑
k=n−d+1

ak,d =

n∑
k=n−d+1

[
kd−12k

(d− 1)!
+ O(kd−22k)

]

=
1

(d− 1)!

n∑
k=0

[
kd−12k + O(kd−22k)

]
−

1

(d− 1)!

n−d∑
k=0

[
kd−12k + O(kd−22k)

]
=

nd−1

(d− 1)!
(2n+1 − 2n−d+1) + O(nd−22n)

=
nd−12n−d+1(2d − 1)

(d− 1)!
+ O(nd−22n) .

Similarly, for Jdn and Jdn\Jdn−d−1 it can be shown that

Mn =

n∑
k=0

[
kd−12k

(d− 1)!
+ O(kd−22k)

]
=
nd−12n+1

(d− 1)!
+ O(nd−22n) ,

Nn =

n∑
k=n−d

[
kd−12k

(d− 1)!
+ O(kd−22k)

]
=
nd−12n−d(2d+1 − 1)

(d− 1)!
+ O(nd−22n) .

It is then straightforward to show that

Mn − Ln
Ln

=
nd−12n−d+1 + O(nd−22n)

nd−12n−d+1(2d − 1) + O(nd−22n)
−−−→
n→∞

1

2d − 1
,

4 Numerical results C405

and similarly,

Nn − Ln
Ln

=
nd−12n−d + O(nd−22n)

nd−12n−d+1(2d − 1) + O(nd−22n)
−−−→
n→∞

1

2(2d − 1)
.

♠

Given that the computational complexity grows at least linearly with the
number of grid points, Proposition 3 also gives us an estimate of the redun-
dancy when computing the extra grids. For time dependant problems where
the time stepping is bounded by the spatial resolution, one may expect the
complexity to be superlinear leading to even smaller redundancies.

The second limit of (8) gives the proportion of extra grid points if the grids
with indices in Jdn\Jdn−d−1 are computed. Given the previous remarks, if we
only expect at most one fault to occur, then computing these grids rather than
those in the entire downset is sufficient to obtain a solution and significantly
reduces the redundancy.

4 Numerical results

We present some numerical results for the solution of the scalar advection
equation in 2D which, for u := u(t, x), is

∂u

∂t
+∇ · (au) = 0 . (11)

For our results we chose a = (1, 1) and considered the solution for x =
(x1, x2) ∈ [0, 1)2 with periodic boundaries and initial condition u(0, x) =
sin(2πx1) sin(2πx2) . We solved up to t = 0.5 for which the exact solution is
u(0.5, x) = u(0, x) . Our implementation uses petsc [1] with centred finite
difference discretisation of the advection term and Runge–Kutta for the time

4 Numerical results C406

5 6 7 8 9 10

10−5

10−4

10−3

10−2

10−1

level

l 1
n
or
m

of
er
ro
r

2D advection, projection recovery, one fault

fullgrid
combination

comb. after fault
fault average

Figure 1: Comparison of errors after recovery when faults affect one of the
coarser (grid,solution) pairs. Here we recover by approximating a faulty
solution by projecting the solution from a finer grid.

stepping. The map and reduce functions of Python were used to compute the
solution from multiple grids in serial.

In Figures 1 and 2 we demonstrate the additional error when a fault affects
one of the coarser grids and is then recovered by projecting the solution
from a finer grid. On the horizontal axis is the level n which defines the set
of indices I2n computed. On the vertical axis is the l1 average error of the
solution when interpolated to the full grid Ω(n,n) . We compare the full grid
solution (on grid Ω(n,n) with n = level for each level) and the combination
solution without faults to the combination solution when faults affect random
grids. We also plot the average of the errors after recovery from faults. In
Figure 1 we simulate recovery after a fault affects one of the (grid,solution)
pairs whilst In Figure 2 we simulate the recovery of two pairs. In some cases
the error after fault recovery is very close to the solution when no faults occur.

4 Numerical results C407

5 6 7 8 9 10

10−5

10−4

10−3

10−2

10−1

level

l 1
n
or
m

of
er
ro
r

2D advection, projection recovery, two faults

fullgrid
combination

comb. after fault
fault average

Figure 2: Comparison of errors after recovery when faults affect two of
the coarser (grid,solution) pairs. Here we recover by approximating faulty
solutions by projecting solutions on finer grids.

Also, the maximal error in the event of faults decreases as the level increases.
Whilst the maximal error when faults affect two grids appears close to the
case of a single grid failure the average error is much worse.

In Figures 3 and 4 we demonstrate the errors obtained when recovering from
failures by obtaining new coefficients from the expansion of the projection
operator. The grids with indices in Jdn\Jdn−d−1 were computed and we again
compare the full grid solution, combination solution, recovery solutions and
average of the recovery solutions. We simulate one and two faults in Figures 3
and 4, respectively. For Figure 4 we assumed that only the grids in Idn are
affected by faults since the smaller grids are quicker to compute and are hence
much less likely to fail. The errors are much better than those of the previous
method, shown in Figures 1 and 2, and the maximal error appears to decrease
uniformly with increasing level. Again there are cases where the error after

5 Conclusion C408

5 6 7 8 9 10

10−5

10−4

10−3

10−2

10−1

level

l 1
n
or

m
of

er
ro

r

2D advection, coefficient recovery, one fault

fullgrid
combination

comb. after fault
fault average

Figure 3: Comparison of errors after recovery when a fault affects one
(grid,solution) pair. Here we recover by deriving new combination coeffi-
cients which avoid the faulty solution.

a fault occurs is very close to the error when no faults occur. Where faults
affect two grids the average error is no more than 25% larger than the average
for a single grid failure for levels more than five and the error still appears to
decrease uniformly with increasing level.

5 Conclusion

It is clear that the first approach, approximating a faulty solution by project-
ing the solution from a finer grid, is not a suitable solution on its own since
only coarser grids can be recovered. Additionally, it gives poor results when
considering the error alone for our advection problem. The second approach
of deriving new combination coefficients to avoid a faulty solution demon-

5 Conclusion C409

5 6 7 8 9 10

10−5

10−4

10−3

10−2

10−1

level

l 1
n
or

m
of

er
ro

r

2D advection, coefficient recovery, two faults

fullgrid
combination

comb. after fault
fault average

Figure 4: Comparison of errors after recovery when a fault affects two
(grid,solution) pairs. Here we recover by deriving new combination coefficients
which avoid faulty solutions.

strates much more potential. Despite requiring some additional redundancy
the errors after recovery are much better, appearing to have comparable
convergence rates to when no faults occur. Future work will include testing
these approaches with more problems in up to six spatial dimensions and a
detailed analysis of the convergence rates observed in Figures 3 and 4.

Acknowledgements This research was supported under the Australian Re-
search Council’s Linkage Projects funding scheme (project number LP110200410).
We are grateful to Fujitsu Laboratories of Europe for providing funding as
the collaborative partner in this project.

References C410

References

[1] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc Web page
(2012). http://www.mcs.anl.gov/petsc. C405

[2] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based
fault tolerance applied to high performance computing. Journal of
Parallel and Distributed Computing, 69(4):410–416 (2009).
doi:10.1016/j.jpdc.2008.12.002. C396

[3] H. J. Bungartz and M. Griebel. Sparse grids. Acta Numerica,
13:147–269 (2004). doi:10.1017/S0962492904000182. C396, C397, C402

[4] F. Cappello. Fault Tolerance in Petascale/Exascale Systems: Current
Knowledge, Challenges and Research Opportunities. International
Journal of High Performance Computing Applications, 23(3):212–226,
(2009). doi:10.1177/1094342009106189. C395

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113 (2008).
doi:10.1145/1327452.1327492. C396, C398

[6] J. Garcke. Sparse grids in a nutshell. In J. Garcke and M. Griebel,
editors, Sparse grids and applications, volume 88 of Lecture Notes in
Computational Science and Engineering, pages 57–80. Springer (2013).
doi:10.1007/978-3-642-31703-3_3. C397

[7] M. Griebel, M. Schneider, and C. Zenger. A combination technique for
the solution of sparse grid problems. In P. de Groen and R. Beauwens,
editors, Iterative Methods in Linear Algebra, pages 263–281. IMACS,
Elsevier, North Holland (1992). Zbl 0785.65101. C396, C397

[8] M. Hegland. Adaptive sparse grids. ANZIAM Journal, 44:C335–C353
(2003). http://journal.austms.org.au/ojs/index.php/ANZIAMJ/
article/view/685. C397, C400

http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1016/j.jpdc.2008.12.002
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1177/1094342009106189
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1007/978-3-642-31703-3_3
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/685
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/685

References C411

[9] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for
matrix operations. Computers, IEEE Transactions on, C-33(6):518–528
(1984). doi:10.1109/TC.1984.1676475. C396

[10] C. Zenger. Sparse Grids. In W.Hackbusch, editor, Parrallel Algorithms
for Partial Differential Equations, Proceedings of the Sixth
GAMM-Seminar, Kiel, 1990, volume 31 of Notes on Num. Fluid Mech.,
Vieweg–Verlag, 31:241–251 (1991). Zbl 0763.65091. C396

Author addresses

1. B. Harding, Mathematical Sciences Institute, Australian National
University, ACT 0200, Australia.
mailto:brendan.harding@anu.edu.au

2. M. Hegland, Mathematical Sciences Institute, Australian National
University, ACT 0200, Australia.
mailto:markus.hegland@anu.edu.au

http://dx.doi.org/10.1109/TC.1984.1676475
mailto:brendan.harding@anu.edu.au
mailto:markus.hegland@anu.edu.au

	Introduction
	The combination technique
	Robust algorithms
	Numerical results
	Conclusion
	References

