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Abstract 
 
Aging is associated with gradual changes in cognition, yet some individuals exhibit protection 
against aging-related cognitive decline. The topological characteristics of brain networks that 
support protection against cognitive decline in aging are unknown. Here, we investigated 
whether the robustness of brain networks, queried via the delineation of the brain’s core network 
structure, supports superior cognitive performance in healthy aging individuals (n=320, ages 60-
90). First, we decomposed each subject’s functional brain networks using k-shell decomposition, 
finding that cognitive function is associated with more robust connectivity of core nodes, 
primarily within the frontoparietal control network (FPCN). Next, we find that the resilience of 
core brain network nodes, within the FPCN in particular, relates to cognition. Finally, we show 
that the degree of segregation in functional networks mediates relationships between network 
resilience and cognition. Together, these findings suggest that brain networks balance between 
robust core connectivity and segregation to facilitate high cognitive performance in aging. 
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1. Introduction 
 
The populations of countries all across the globe are aging (Economic and Social Affairs 2020). 
As populations age, dementia and other neurological conditions associated with cognitive decline 
are expected to become more common (Sleeman, de Brito et al. 2019). However, cognitive 
decline also occurs in healthy aging with significant variance between individuals (Novotný, 
Gonzalez-Rivas et al. 2021). Namely, some individuals are able to resist the effects of age to 
maintain high cognitive function late in life (Borelli, Carmona et al. 2018). With aging 
populations that are expected to remain in the workforce longer than previous generations, it is 
important to identify mechanisms responsible for supporting high cognitive performance late in 
life.  
 
One common approach for discovering the mechanisms that support cognitive performance in 
aging is by studying brain network connectivity with tools developed in network science 
(Rubinov and Sporns 2010). Studies thus far have typically focused on measures of network 
topology, identifying age-associated changes throughout  normal  (Fair, Dosenbach et al. 2007, 
Betzel, Byrge et al. 2014, Chan, Park et al. 2014, Sala-Llonch, Bartrés-Faz et al. 2015, Cohen 
and D'Esposito 2016, Sadiq, Langella et al. 2021) and pathological aging (Chen, Necus et al. 
2021, Langella, Sadiq et al. 2021). However, understanding how measures of network topology 
relate to the resilience of brain networks in aging is difficult due to lack of suitable longitudinal 
datasets and the inability to perform lasting experimental perturbations in human subjects. To 
overcome this issue, one can simulate network perturbations and quantify the network’s 
resilience via functional or topological measures (Albert, Jeong et al. 2000). In the context of 
brain networks, this is commonly done by simulating the removal of regions with high network 
centrality and quantifying the network’s ability to remain connected despite these perturbations 
(Albert, Jeong et al. 2000, Achard, Salvador et al. 2006, Bullmore and Sporns 2009, Piraveenan, 
Thedchanamoorthy et al. 2013). Studies that utilize these so called targeted attacks can simulate 
the types of pathological lesions that commonly occur in neurodegenerative diseases (Crossley, 
Mechelli et al. 2014), and have revealed differences in network resilience between healthy and 
diseased states (He, Chen et al. 2008, Mancini, De Reus et al. 2016, Cascone, Langella et al. 
2021).  
 
In quantifying network resilience to targeted attacks, measuring if the network remains 
connected may fall short in that the requirement of “connectedness” gives no additional 
information on the robustness of the underlying network connectivity before or after attacks have 
been performed (Mohseni-Kabir, Pant et al. 2021). An alternative approach could be to study the 
resilience of network features revealed by a technique known as k-shell decomposition (Pittel, 
Spencer et al. 1996, Dorogovtsev, Goltsev et al. 2006, Dorogovtsev, Goltsev et al. 2008, Kitsak, 
Gallos et al. 2010, Min, Morone et al. 2016). In this approach, networks are decomposed into 
shells of nodes, where each successive shell requires more robust interconnectivity than the 
previous, until a core set of nodes within a network is reached (Pittel, Spencer et al. 1996, 
Dorogovtsev, Goltsev et al. 2006). Next, attacks are performed on these networks, and the 
resilience of nodal shell and core assignments are measured by reapplication of k-shell 
decomposition (Goltsev, Dorogovtsev et al. 2006, Lee, Jo et al. 2016, Yuan, Dai et al. 2016, 
Schmidt, Pfister et al. 2019, Shang 2019, Mohseni-Kabir, Pant et al. 2021, Wang, Li et al. 2021, 
Zhou, Lv et al. 2021). Performing k-shell decomposition in tandem with attack simulations has 
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yielded insights into robustness within ecological and financial networks (Burleson-Lesser, 
Morone et al. 2020), and facilitated the understanding of stability in social networks (Zhang, 
Zhang et al. 2017). Additionally, k-shell decomposition has been used to identify hierarchical 
structure, and the existence of core networks within the healthy adult brain (Hagmann, 
Cammoun et al. 2008, Lahav, Ksherim et al. 2016, Lucini, Del Ferraro et al. 2019). However, 
this approach has not yet been used to identify brain network robustness in cognitive aging, nor 
has it been applied in tandem with attack simulations to study resilience of brain networks. 
 
In this study, we aimed to uncover the relationships between network resilience and healthy 
aging. We used data from subjects between the ages of 60-90 years old within the HCP-Aging 
dataset (Harms, Somerville et al. 2018) to construct functional brain networks according to the 
Schaefer Local-Global parcellation (Schaefer, Kong et al. 2018) from measures of resting-state 
functional connectivity (RSFC) (Figure 1A). We binarized networks using a method that selects 
Orthogonal Minimum Spanning Trees (OMSTs), similar to the one proposed in (Dimitriadis, 
Antonakakis et al. 2017) and then thresholded by edge frequency (Figure 1B), see methods for 
more details. Next, we applied k-shell decomposition to the resulting brain networks and studied 
the associations between robustly connected network nodes and cognition. We focused on 
episodic memory, a cognitive measure that is widely impacted by aging (Leal and Yassa 2015). 
We examined the specificity of the results by testing associations with a non-memory cognitive 
function (processing speed). We then simulate targeted attacks, and calculate the k-shell 
decomposition after every attack (Figure 1C). We hypothesized that this method of measuring 
resilience would show high sensitivity to differences in network topology of brain networks that 
confer network resilience and relate to episodic memory in healthy aging. Finally, we use system 
segregation (Chan, Park et al. 2014, Wig 2017, Chan, Han et al. 2021), a topological feature 
known to be altered in aging, to study relationships between resilience of core network nodes, 
the global topological organization of individual brains, and episodic memory (Figure 1D).  
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2. Results 
 
2.1 k-shell decomposition of brain networks 
 
We first applied k-shell decomposition to each subject’s respective functional brain network. In 
k-shell decomposition, each node within a network is assigned to a specific k-shell (Figure 2A). 
This k value is determined by the maximum value k at which a node remains in the network 
while iteratively removing all nodes with degree less than k. (Figure 2B). A node in shell k is 
also in core k. However, a k-core contains all nodes in j-shells where j ≥ k (Figure 2C).  For 
more information on the calculation of a network’s k-shell decomposition, see methods. k-shell 
decomposition reveals hierarchical groups of nodes within functional brain networks (Lahav, 
Ksherim et al. 2016), arranged according to patterns of generally increasing connectivity. We 
began the analysis by calculating the median shell assignment for each region of interest (ROI) 
in the network across subjects (Figure 3A). We observed that lower shells were composed of 
primarily limbic ROIs (Figure 3C), mid-ranged shells consisted of mostly somatomotor ROIs 
(Figure 3D), and the maximum shell, also referred to as the maximum core (Alvarez-Hamelin, 
Dall'Asta et al. 2006), contained mostly associative ROIs involved in higher order cognitive 
function (Figure 3E). This bias towards associative ROIs subserving cognitive function within 
the maximum core occurred in ~89% subjects (Figure 3B).  
 
2.2 Episodic memory is related to the presence of robustly connected core nodes  
 
We next investigated if the presence of robustly connected core nodes related to high cognitive 
performance during aging. We used episodic memory performance derived from the Rey 
Auditory and Verbal Learning Task (Rey 1941) as our measure of cognitive performance. This 
cognitive measure showed the expected negative correlation (r=-.248, p=7.6e-6) between age 
and task performance within our subjects (Figure 4A). In all following analyses, we included 
age as a covariate to identify effects that relate to high cognitive performance over and above 
subjects’ age. We next studied if episodic memory was related to the number of nodes within 
each k-core. As described above, a k-core contains all shells with value k or higher. As the value 
of k increases, nodes must be more robustly connected within the network in order to remain a 
part of it. The average number of nodes in each k-core decreased non-linearly as a function of k 
(r2=.941, p=2.418e-17) (Figure 4B). For lower values of k, we see relatively small differences 
between subjects. However, as the value of k increased, the variance in k-core sizes among 
subjects increased until the 21-core, at which point many subjects lacked these highly connected 
cores. The sizes of these cores were negatively correlated with participant age for cores 3-20, 25, 
& 26 (all p-values < 0.05) (Figure S1B), which illustrates the sensitivity of k-shell 
decomposition to age-related changes in functional connectivity. However, we found that the 
number of nodes within the k-cores median-high, were positively related to episodic memory 
performance (all p-values < 0.05) (Figure 4C).  
 
2.3 Episodic Memory is associated to robustly connected nodes within the Frontoparietal 
Control Network 
 
Next, we investigated if the relationships between robustly connected nodes and Episodic 
Memory varied between networks. To do so, we calculated the average k-shell assignment for all 
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nodes within each functional network and associated these measures with episodic memory. We 
found that the distributions of these averages followed similar patterns to those observed in the 
median shell assignment (Figure 4D). Specifically, the average k-shell assignment was the 
lowest for limbic networks, and highest for subnetworks within the Frontoparietal Control 
Network (FPCN), Default Mode Network (DMN), and the Dorsal Attention Network (DAN). As 
in the previous analysis with core size, the average k-shell assignments of 7/17 networks were 
negatively associated with age after using the Bonferonni method to correct for multiple 
comparisons (for 14/17 networks p-values < 0.05) (Figure S1C). When age was included as a 
covariate, we found that average k-shell assignment of the FPCN subnetwork – ContC and 
Episodic Memory were significantly correlated (r=0.181, p=0.0013) (Figure 4E).  
 
On an individual ROI-level, the k-shell assignment of most ROIs within the FPCN were 
moderately related to episodic memory at best (Figure 4F). However, we found two right 
hemisphere posterior cingulate regions within ContC that were highly related to episodic 
memory (MNI coordinates: [(7, -44, 20), (6, -26, 28)] r=[0.200, 0.198], p-values =[0.0003, 
0.0004], respectively) (Figure 4F). The median shell assignment of these two regions were 15, 
and 17, for the regions at MNI coordinates (7, -44, 20), and (6, -26, 28), respectively (Figure 
S2C), which are both larger than the size of the ContC network. This suggested that these areas 
might serve an integrative role among functional networks that promotes performance in the 
episodic memory task. To investigate this possibility, we identified regions within their k-shells 
outside of the ContC network. We found that an edge connecting one of the posterior cingulate 
regions (MNI coordinates: (7, -44, 20)) and a temporal parietal region (MNI coordinates: 59, -46, 
7), was highly associated with episodic memory performance (ANCOVA, DF=15, F=5.92, 
p=8.71e-11, corrected p=7.00e-6). 
 
2.4 The resilience of robustly connected core nodes is related to episodic memory 
 
Following our analyses of the relationships between robustly connected core nodes and episodic 
memory, we sought to relate the resilience of these nodal cores to episodic memory. First, we 
measured resilience of cores within brain networks to targeted attacks. To do so, we rank nodes 
by degree, and then remove each node in descending order until no nodes remain (Figure 2D). 
After each node removal, we calculate the size of each k-core to track whether each particular 
core collapses or resists node removal (Figure 2E). Finally, we sum the size of each respective 
k-core across all time-steps to provide a single measure of resilience for each k-core (Figure 2F). 
This approach is similar to the one proposed previously (Schmidt, Pfister et al. 2019). However, 
our method enabled us to study the resilience of each core within a network, and we continued 
node removal until all cores have collapsed. As expected, k-core resilience measures varied as a 
function of k (r2=.996, p=6.35e-33), (Figure 5A). We note that these core resilience measures 
showed negative associations with age for cores 1-26 (all p-values < 0.05) (Figure S3A), as a 
result, we included age as a covariate when associating k-core resilience with episodic memory. 
We found positive relationships between resilience in cores 15-20 and episodic memory (all p-
values < 0.05) (Figure 5B). Some of these relationships resembled our previous analysis that 
found correlations between the size of k-cores 19-21 and episodic memory (Figure 4C). These 
results suggests that robust core architectures may enable a form of network resilience, invariant 
to age, that supports episodic memory. 
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2.5 Episodic Memory is associated to the resilience of robustly connected nodes within the 
Frontoparietal Control Network 
 
Next, we related the k-shell resilience of each functional network to episodic memory. As done 
in the previous analysis (Figure 4D), we calculate the average k-shell assignment of each 
functional network, and then perform targeted attacks, recalculating the average k-shell 
assignment for each functional network after each attack. We summed these values across all 
time steps to give a single measure of k-shell resilience for each functional network. These 
measures give an indication of each network’s ability to maintain robust connectivity despite 
perturbation. We found that k-shell resilience varied across the different networks (Figure 5C). 
As before, we associated these measures with age and found negative relationships between k-
shell resilience of functional networks and episodic memory (all p-values < 0.05, 14/17 corrected 
p-values < 0.05) (Figure S3B). When we included age as a covariate, we found a significant 
positive relationship with a FPCN – ContA resilience and episodic memory (r=0.182, corrected 
p=0.0187) (Figure 5D). 
 
We next moved from the network level down to investigating individual ROIs within the FPCN. 
For a single ROI, we measured the k-shell resilience by summing the k-shell assignment of the 
ROI across all time-steps of the attack simulations. Similarly to our measure of k-shell resilience 
for networks, these resilience measures provide an indication of an individual ROI’s ability to 
maintain robust connectivity to the larger network despite perturbation. Within the FPCN we 
associated the k-shell resilience of each ROI to episodic memory (Figure 5E). We found that the 
k-shell resilience of one of the same right hemisphere posterior cingulate regions within ContC 
found in the previous analysis (MNI=(7, -44, 20)) (Figure 4F) was significantly related to 
episodic memory (r=0.217, corrected p=0.0056) (Figure 5E). Despite observing a significant 
positive relationship between average k-shell resilience of the ContA subnetwork and episodic 
memory, the resilience of all individual ROI within ContA were not significantly correlated with 
episodic memory (all corrected p-values > 0.05). 
 
2.6 The presence and resilience of robustly connected nodes is not associated with Processing 
Speed 
 
We tested if the relationships we discovered thus far were specific to episodic memory or rather 
extended to other cognitive functions. To do so, we related topological features and resilience 
measures with processing speed rather than episodic memory (Figure S4). We did not observe 
similar relationships between processing speed and k-core size (Figure S4B), k-core resilience 
(Figure S4C), average k-shell of each network (Figure S4D), or average k-shell resilience of 
each network (Figure S4E). As before, age was included as a covariate in all analyses.  
 
2.7 Segregation of FPCN – ContC mediates relationships between network resilience and 
Episodic Memory 
 
The results reported above suggest that robust connectivity and resilience of nodal cores 
involving the FPCN are both related to episodic memory. Network segregation (Figure 6A), a 
widely-used quantification of segregation in the brain, measuring differences in connectivity 
within, relative to between networks (Chan, Park et al. 2014, Wig 2017, Chan, Han et al. 2021),  
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has been widely linked to cognitive performance in aging (Chan, Park et al. 2014, Wig 2017, 
Chan, Han et al. 2021) and to cognitive resilience in AD (Ewers, Luan et al. 2021). In particular, 
segregation of the FPCN has been associated with greater episodic memory in aging (Geerligs, 
Renken et al. 2015). Our results, combined with these previous findings, motivated us to 
investigate if the associations between resilience of nodal cores and episodic memory were 
mediated by functional network segregation. We quantified the correlation between segregation 
in each functional network and k-core resilience and found widespread relationships with many 
of the individual networks (Figure 6B). We also evaluated the extent to which the association 
between segregation of each functional network and episodic memory persisted, over and above 
age (Table S1). In our sample, only the correlation between segregation of the FPCN - ContC 
was significantly correlated with episodic memory, irrespective of age (Figure 6C). Lastly, we 
performed a parallel mediation analysis to test if segregation of any of the functional networks in 
our parcellation mediated relationships between resilience of nodal cores and episodic memory 
(Figure 6D). We found that FPNC - ContC segregation mediated relationships between k-core 
resilience and episodic memory for cores 1-15 (corrected p-values < 0.05) (Figure 6E).    
 
2.8 Relationships between robustly connected nodes and redundant functional short paths 
 
We next examined whether robustly connected nodes tended to exhibit a relatively increased 
number of shortest paths, a topological property that may increase nodal redundancy (De Vico 
Fallani, Rodrigues et al. 2011), in-itself a protective mechanisms in cognitive aging (Langella, 
Sadiq et al. 2021). We found that the measures of robust connectivity generated from k-shell 
decomposition are generally related to the number of 1, 2, and 3-step paths between nodes within 
the same shell (Figure S5). Specifically, as k-shell assignment of a node increases in the value of 
k, there was generally an increase in the number short paths between nodes within the same shell.  
 
2.9 Sensitivity to parameter selection and additional controls 
 
The process for generating binarized networks from measures of RSFC in this study required two 
parameter choices, the number of OMSTs, and the frequency threshold that we used to determine 
what edges we kept (methods). We repeated the analyses in the main results of our study across 
several different parameter choices. These choices impacted the density of our networks (Figure 
S6). However, the previously identified patterns were generally consistent between parameter 
selections. In particular, robust connectivity and resilience of robustly connected nodes were 
both associated with episodic memory (Figure S7). The similarities of the significant results 
between these two analyses prompted us to perform an additional experiment that included the 
core size as a covariate when correlating resilience with episodic memory, which did not yield 
any significantly different results (Figure S8). Finally, FPCN segregation consistently mediated 
relationships between core resilience and episodic memory (Figure S9). We refer readers to our 
supplemental results for more information. 
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3. Discussion 
 
In the current study we examined the relationships between the robust core architecture of the 
human brain, network resilience, and episodic memory in healthy aging. We found that episodic 
memory performance was positively related with robust core connectivity structure, particularly 
involving the FPCN. Many of these same nodal cores exhibited resilience to targeted attack 
simulations that was also related with episodic memory. We found that segregation of a 
subnetwork within the FPCN (ContC) mediated relationships between resilience of nodal cores 
and episodic memory. We additionally demonstrated that the observed findings are specific to 
memory performance, and do not extend to other cognitive functions, such as processing speed.  
 
3.1 Robust connectivity and resilience of nodal cores both promote episodic memory in aging 
 
Nodes within the higher k-cores and k-shells of networks have been found to play an important 
role in their stability (Kitsak, Gallos et al. 2010, Berry and Widder 2014, Zhang, Zhang et al. 
2017, Morone, Del Ferraro et al. 2019, Burleson-Lesser, Morone et al. 2020). While we do not 
make a direct comparison between sizes of k-cores and k-shells to network resilience, we did find 
that having more nodes in higher k-cores is associated with greater cognitive function. We also 
found relationships between network resilience and episodic memory in similar subsets of cores 
to those that possessed the aforementioned relationships. In particular, we found that nodes 
within the FPCN displayed more robust connectivity and greater resilience in individuals who 
performed well on the episodic memory task. These findings indicate that, as in other types of 
complex systems  (Kitsak, Gallos et al. 2010, Berry and Widder 2014, Zhang, Zhang et al. 2017, 
Morone, Del Ferraro et al. 2019, Burleson-Lesser, Morone et al. 2020), core network structure is 
an important component in promoting network resilience, promoting intact cognitive function in 
healthy aging. 
 
3.2 The FPCN in health and disease 
 
Our results demonstrate a specialized role for the FCPN in robust network connectivity and 
resilience. These findings are in strong agreement with earlier reports. The FPCN has been 
shown to play an important role in cognitive function in healthy aging and in disease. In the 
context of healthy aging, greater functional segregation between the FPCN and DMN has been 
associated with greater verbal episodic memory (Geerligs, Renken et al. 2015). Additionally, 
decreased FPCN segregation has been shown to relate to poorer executive function (Sims, 
Faulkner et al. 2021) and global cognitive performance (Chong, Ng et al. 2019). Longitudinally, 
declines in FPCN segregation have been associated with reduction in processing speed 
(Malagurski, Liem et al. 2020). Other studies have implicated FCPN connectivity in age-
associated disease states. For example, an increased coupling of the FPCN and DMN has been 
shown in Alzheimer’s disease (Contreras, Avena-Koenigsberger et al. 2019).  
 
Our results point to an association between FPCN segregation and verbal episodic memory in 
healthy aging, consistent with previous findings (Geerligs, Renken et al. 2015). However, using 
attack simulations, we find that FPCN segregation mediates relationships between network 
resilience and episodic memory. These results support the notion that segregation in brain 
networks might provide a form of cognitive ‘reserve’ that slows cognitive decline (Wig 2017, 
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Chan, Na et al. 2018), as has recently been demonstrated in Alzheimer’s disease (Ewers, Luan et 
al. 2021). In addition, we found that resilience of the FPCN was positively related to episodic 
memory, which aligns well with the recently discovered association between FPCN resilience in 
Parkinson’s disease and protection against cognitive decline (Cascone, Langella et al. 2021). 
 
3.3 Robust connectivity and redundancy in functional networks 
  
We found that robust connectivity within nodal cores and the FPCN were both positively related 
to episodic memory. One possible reason for this association is that more robust connectivity 
could provide a greater number of redundant functional pathways leading to the activation and/or 
maintenance of activity in brain regions responsible for task performance. Previous studies have 
indicated a role for redundancy within the hippocampus in mediating relationships between 
hippocampal volume and memory (Langella, Mucha et al. 2021), demonstrated that redundancy 
within the hippocampus is lower in individuals with mild cognitive impairment (MCI) (Langella, 
Sadiq et al. 2021), and found that redundancy was related to greater executive function in aging 
individuals (Sadiq, Langella et al. 2021). The positive relationship between robust connectivity, 
as determined by k-shell decomposition, and number of short paths between nodes along with 
robust connectivity correlating with episodic suggests that redundancy in core network structure 
and within the FPCN may play a role in facilitating episodic memory in healthy aging. 
 
3.4 Comparisons to other methods for evaluating network resilience in brain networks  
  
The most commonly employed method for studying network resilience in brain networks is to 
perform node removals and evaluate the ability of the network to remain connected. This is done 
by calculating the fraction of nodes within the largest connected component (LCC), before and 
after each simulated attack have been performed and then calculating the area under the curve 
(AUC) for the fractional LCC values at each timestep (Albert, Jeong et al. 2000, Piraveenan, 
Thedchanamoorthy et al. 2013). Attack simulations utilizing LCC resilience have been used to 
study changes in network resilience associated with neurodegenerative (Mancini, De Reus et al. 
2016, Cascone, Langella et al. 2021) and neuropsychiatric (Palaniyappan, Hodgson et al. 2019) 
diseases.  In our analyses, the 1-core, all connected nodes with at minimum degree 1, is 
equivalent to the LCC. Therefore, values we obtained for the resilience of the 1-core are 
mathematically equivalent to those that would be obtained by measuring the AUC for fractional 
LCC values during simulated attacks if we normalize by the starting size of the 1-core. Since this 
normalization results in a linear transformation of the data, the association and mediation 
analyses we performed will be unaltered. Additionally, since the starting size of a k-core is an 
import feature that relates to the resilience of the k-core (Burleson-Lesser, Morone et al. 2020), 
we maximize the opportunity to observe those relationships in our data by avoiding 
normalization for all k-cores. However, we repeated the partial correlations between core size 
and episodic memory with starting core size for each k-core as a covariate when studying k-core 
resilience, and found that the results were largely consistent between the two methods. 
 
We found that resilience of the LCC for functional brain networks is mostly unrelated to episodic 
memory for healthy aging subjects across a wide variety of parameter settings (Figure S6D). 
The methods we used for studying core resilience and changes in shell assignment at nodal and 
functional network levels provided more sensitivity to differences in robust connectivity profiles, 
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which enabled us to find relationships between measures of resilience and episodic memory. 
While studying core resilience has been done before in financial markets (Burleson-Lesser, 
Morone et al. 2020) and ecological networks (Morone, Del Ferraro et al. 2019), this method has 
not been applied towards understanding network resilience in the brain.  
 
3.5 Between-subject variability during network construction   
 
Construction of functional brain networks using OMST-based methods tends to increase the 
amount of between-subject variability when applied to functional brain networks (Jiang, Betzel 
et al. 2021). However, our analyses comparing different parameter selections showed that for the 
network features we studied, the strongest relationships with episodic memory occurred when we 
reduced the variability in initial network construction (via thresholding edges by their 
frequencies) (Figure S7). These relationships tended to peak when we kept edges only if they 
occurred at the 75th quantile of edge frequencies among all subjects. One possible implication of 
this result is that only ~25% of topological variability associated with OMST-based network 
construction is needed to find topological features relating to differences in episodic memory 
performance during aging. However, a related explanation could be that the increased between-
subject variability in network structure decreases the signal-to-noise ratio when associating 
topological features to behavioral traits such as episodic memory. Future studies will be needed 
to untangle the behavioral relevance of the additional variability associated with OMST-based 
network construction. 
 
3.6 Limitations 
 
For network construction, we used an OMST-based method. We tested a large set of parameters 
and observed consistent results across parameter settings. However this process requires more 
choices from the user than a data driven OMST-based network construction process like the one 
proposed previously (Dimitriadis, Antonakakis et al. 2017). As a result, it’s possible that the 
parameters we sampled led to us to missing other potential relationships within our dataset. 
However, the consistency we observed across parameter settings indicated the robustness of our 
results, and aligned well with the existing literature. 
 
4. Conclusion 
 
Using graph analysis methods we decomposed brain networks into hierarchically layered shells, 
finding that robust connectivity in nodal cores, particularly in the FPCN, support superior 
cognitive performance in healthy aging. Additionally, we use attack simulations to study the 
resilience of these nodal cores and find that resilience, particularly in the FCPN, is strongly 
related to episodic memory in healthy aging. Finally, we build on existing literature studying the 
role of brain segregation in cognitive function by demonstrating that segregation within the 
FPCN mediates relationships between network resilience and episodic memory. Altogether, the 
results highlight the importance of robust and resilient functional networks in healthy cognitive 
aging.  
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5. Methods 
 
5.1 Dataset and participants 
 
Data were obtained from the Human Connectome Project – Aging database (HCP-Aging) 
(Harms, Somerville et al. 2018), part of the 2.0 Release of the data. Subjects ranged from the 
ages of 60 – 90 (Female/males= 171/149) and demonstrated normal cognitive function as 
assessed by the Montreal Cognitive Assessment. For subjects 60-69 years of age, normal 
cognitive function was a score greater than or equal to 26, whereas for subjects older than 70, 
their scores needed to be within one standard deviation of their age and education adjusted norm 
(Malek-Ahmadi, Powell et al. 2015). In total, 320 subjects with available resting-state functional 
magnetic resonance imaging (fMRI), structural MRI, and cognitive measures were used. All 
subjects provided written informed consent and all procedures were approved by the local 
Institutional Review Boards 
 
5.2 Image processing 
  
A 3 Tesla Siemens Prisma scanner was used to collect functional and structural images (Harms, 
Somerville et al. 2018). A multi-echo magnetization prepared rapid gradient echo (MPRAGE) 
sequence (voxel size: 0.8x0.8x0.8mm, T =1.8/3.6/5.4/7.2ms, TR=2500ms, flip angle=8 degrees) 
was used to collect structural images. Functional imaging was collected using a 2D multiband 
gradient-recalled echo echo-planar imaging sequence (voxel size: 2x2x2mm, TE=37ms, 
TR=800ms, flip angle=52 degrees). Two functional scans were taken for each session with 
opposite phase encoding directions (poster-anterior, anterior-posterior). Subjects were instructed 
to keep their eyes open on a fixation cross during functional scans. Structural and functional 
images underwent minimal preprocessing according to the HCP-pipeline, which included spatial 
artifact/distortion removal, cross-modal registration, and alignment to standard space (Glasser, 
Sotiropoulos et al. 2013). Additional image processing was done in the Matlab package CONN 
(Whitfield-Gabrieli and Nieto-Castanon 2012), which included outlier identification (movement 
of more than 0.9mm, or global blood-oxygenation dependent signal changes greater than 5 
standard deviation of the mean), nuisance regression (white matter, cerebrospinal fluid, and 12 
motion parameters), and band-pass filtering at 0.033 – 0.083 Hz (Buzsáki and Draguhn 2004). 
Functional timeseries were obtained for the Schaefer Local-Global 400 regions of interest (ROI) 
– 17 network parcellation (Schaefer, Kong et al. 2018), which is a cortical parcellation that 
encompasses cognitive, sensorimotor, and visual regions. 400 x 400 Fisher Z transformed 
correlation matrices were calculated from these timeseries for each participant.  
 
5.3 Network construction  
 
We used a two-step process for constructing networks from each subjects resting state functional 
connectivity matrix (Figure 1B). The first step involves selecting N orthogonal minimum 
spanning trees (OMSTs), similar to the strategy proposed before (Dimitriadis, Antonakakis et al. 
2017). For each minimum spanning tree (MST) (Meier, Tewarie et al. 2015), this is done by 
constructing a tree that connects every node within the graph with fewest possible edges and the 
largest possible sum of edge weights. Each tree constructed will be used for the final network, 
but all subsequent trees must be built without using any edges from previous trees. After 
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constructing N trees, they are fused together for the final network. In the second step, we filter 
edges to reduce the variability of the networks generated. The filter was determined by 
calculating the frequency of each edge pair among all subjects, and then keeping edges only if 
they occurred at the Xth quantile of edge frequencies. This is formally defined bellow.  
 
1. Let 𝐴!×!×#	be the group binary adjacency matrix constructed from, where 𝑟 is the size of the 
parcellation, and 𝑛 is the number of subjects.  
 
2. Then, for each 𝑘, 𝐴:,:,& refers to the binary adjacency matrix constructed from N OMSTs for 
the 𝑘'( subject. 
 
3. Now, 𝐹!×! 	is the frequency matrix where each 𝐹),* denotes the frequency of occurrence of an 
edge between nodes 𝑖 and 𝑗 in the group matrix 𝐴!×!×#. For binary matrices, this can be 
calculated by taking the mean across subjects. 
 
4. Calculate the frequency threshold 𝜃 by taking the Xth quantile of the frequency matrix 𝐹!×!: 
 

𝜃 = 𝑋'(	𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐹!×!) 
 
5. Finally, step through all subjects 𝑘, and node pairs (𝑖, 𝑗), in each subject’s binary adjacency 
matrix 𝐴:,:,&, and only keep an edge if 𝐹),* > 	𝜃 and 𝐴),*,&: 
  

𝐴),*,& = 6
1, 𝑖𝑓	𝐴),*,& = 1	𝑎𝑛𝑑	𝐹),* > 	𝜃
0, 𝑒𝑙𝑠𝑒

 

 
 
We sampled several parameter combinations for N, the number of trees, and X, the quantile of 
the frequency at which we thresholded. The analysis that follows is focused on a representative 
parameter selection of 20 trees with edges thresholded at the 50th quantile of edge frequencies. 
This approximately corresponds to an average network density of ~8%. We note that our method 
for network construction has the drawback of parameter selection as opposed data driven 
methods (Dimitriadis, Antonakakis et al. 2017). However, we found that the networks generated 
by the data-driven OMST algorithm produced networks with uniform degree distributions, which 
prevented us from studying how variations in robustly connected nodal cores relate to episodic 
memory. To ensure that our results were consistent across a wide range of possible parameter 
combinations, we replicated the main analyses for several other selections of trees and 
frequency-based edge thresholds (Supplemental Information). 
 
5.4 Cognitive measures 
 
We use two cognitive measures in our study, episodic memory, and processing speed. Episodic 
memory scores were derived from subject performance on the Rey Auditory and Verbal 
Learning Task (RAVLT) (Rey 1941), which has been shown to decline with age (Leal and Yassa 
2015). Participants were tasked with learning and recalling list A, which consisted of 15 
semantically independent words. Subjects did this over the course of 5 trials. On the 6th trial, a 
distractor list was presented and subjects were tasked with recalling it once. Afterwards, subjects 
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were tasked with immediately recalling list A (immediate recall), and recalling list A again 20-30 
minutes layer (delayed recall). Subject performance on the delayed recall was used as the 
episodic memory score for our study. For processing speed, were subjects asked to judge 
whether images shown next to each other were identical as quickly as possible. They were given 
85 seconds to respond to as many image pairings as possible. 
 
5.5 k-shell decomposition and k-core size calculations  
 
k-shell decomposition partitions a network into hierarchically organized shells of increasing 
connectivity (Figure 2A). To calculate a network’s k-shell decomposition, the procedure starts at 
the value 1, for which all nodes with degree less than or equal to 1 and their connections are 
removed from the network. After the initial removal, there might be new nodes with degree less 
than or equal to 1. This removal process is repeated until only nodes with degree greater than 1 
remain within the graph. These removed nodes make up the 1-shell. This procedure is then 
repeated for each value of k until all nodes within the network have been assigned to a value for 
k, which refers to the shell they belong to. When we refer to the kth-core of a network, this is a 
reference to all nodes assigned a value for their respective k’s that is greater than or equal to k.  
 
5.6 Attack simulations and resilience calculations 
 
Attack simulations were performed using modified scripts from the python package tiger 
(Freitas, Yang et al. 2021). Briefly, each network was passed to tiger, where nodes were ranked 
by degree, the number of other nodes a node is connected to directly by an edge, and then 
removed in descending order. At each step in the attack simulation, each network’s k-shell 
decomposition (Figure 2A & 2D) was re-calculated using the python package NetworkX 
(Hagberg, Swart et al. 2008). The first resilience metric we calculated, k-core resilience, denotes 
the ability of nodes to stay within a particular core during the attack simulations. This is done by 
measuring the size of each core at each time-step (Figure 2E) and summing across time-steps to 
give a single value for resilience for each respective core (Figure 2F).  For instance, in Figure 
2A we see that the size of the 2-core is 11 at step 0, 8 at step 1, and 0 at step 3. This gives a 
resilience score of 11+8+0 = 19 for the 2-core. k-core resilience calculated in this way is a 
monotonically decreasing value for all cores. We also measure the resilience of k-shell 
assignment associated with each ROI during the attack simulations. This is done by calculating 
each ROI’s shell assignment at each time-step in the attack simulation and then summing across 
all time-steps. Finally, we measure the k-shell resilience of each network by averaging the ROI 
resilience measures for each ROI within a network.  
  
5.7 Brain system segregation  
 
Brain system segregation is a method for measuring how segregated the correlated activity 
within a functional network is in comparison to its correlated activity between itself and other 
networks (Chan, Park et al. 2014, Wig 2017, Chan, Han et al. 2021). The formal definition is as 
follows: 
 

𝐵𝑟𝑎𝑖𝑛	𝑠𝑦𝑠𝑡𝑒𝑚	𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 = 	
�̅�+ −	�̅�, 	

�̅�+
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Where �̅�+ represents the mean within-systems correlation and �̅�, represents the mean between-
systems correlation. We used brain system segregation to study relationships between network 
resilience and episodic memory (Figure 1D). 
 
5.8 Statistical analysis 
 
We performed correlations between network features studied here and age, and partial 
correlations between network features studied and episodic memory, while including age as a 
covariate. We also performed parallel mediation analyses between network resilience and 
episodic memory with the measures of segregation for each functional network as the potential 
mediators. The significance threshold set for these analyses was 𝛼 = 0.05, and the Bonferonni 
method to correct for multiple comparisons was applied when appropriate. For test that 
considered each network separately this required dividing the significance threshold by 17. For 
tests considering the individual ROIs within the FPCN 𝛼 was divided by the number of ROIS 
(61). We used a linear regression to plot the age-regressed relationship between episodic memory 
and segregation of FPCN-ContC. All statistical analyses were done using custom scripts in 
python. Mediations and partial correlations were performed with the python package Pingouin 
(Vallat 2018). Linear regressions were performed using SciPy (Virtanen, Gommers et al. 2020). 
Non-linear fits for the size and resilience of k-cores were calculated with Statsmodels (Seabold 
and Perktold 2010). 
 
5.9 Plotting 
 
Plotting and data visualization were done using custom scripts in python that made of use of the 
Matplotlib (Hunter 2007), Pandas (McKinney 2010), Seaborn (Waskom 2021), and Brainspace 
(de Wael, Benkarim et al. 2020) packages. 
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Figure 1. Study outline. A) functional MRI data from 320 subjects from the HCP aging dataset, 
ages of 60-90, were used for our study. Resting state functional connectivity data was registered 
to the Schaefer Local-Global parcellation with 17 networks and 400 ROIs. B) Fisher z-
transformed functional connectivity matrices were thresholded using a 2-step procedure. First 20 
orthogonal minimum spanning trees (OMSTs) were generated on each subject’s brain network. 
Second, edges were kept if they occurred greater than 50th quantile of frequencies among all 
subjects (see methods for more details). C) We decomposed the brain networks using k-shell 
decomposition, and then quantified the resilience of each subject’s brain network using attack 
simulations. D) Finally, we investigated how robustly connected nodal cores support high 
cognitive performance, and the relationships between resilience of nodal cores, network 
segregation, and cognition. 
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Figure 2. k-shell decomposition, and evaluation of network resilience. k-shell decomposition 
algorithmically decomposes networks into hierarchically organized shells of increasing 
connectivity. For a node to be placed in the kth shell it must have degree k after removing all 
nodes with degree less than k. This process is iteratively repeated until only nodes with degree 
greater than or equal to k remain within the network. A node within the kth shell is also within the 
kth core. However, the kth core also includes nodes in higher shells with degree greater than k. 
The maximum shell of a network is called the max core of the network and is denoted by kmax, in 
the example above, kmax = 3. A) k-shell decomposition of a simple network before any attacks 
have been performed. The shell each node belongs to is denoted by their color, while the core is 
denoted by which concentric gray circle the node is contained within. B) Size of each k-shell in 
the example network. C) Size of each k-core, with colors denoting the shell memberships for 
each node. D) Simulating targeted node removal on the network for three time-steps (i, ii, iii). 
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Nodes retain their original shell color during the simulation, however the k-shell (and k-core) 
they belong to decreases as nodes are removed. This is visually represented by the removal of the 
gray circles for 3-core in step 1 (i), and the 2-core in step 2 (ii). E) Size of each k-core as the 
simulation progresses. F) Quantification of resilience as the sum of core sizes at each time-step 
in the simulation. Resilience calculated for nodes and networks via shell assignment is similar, 
but instead we sum the k values that nodes are assigned at each time-step to get nodal resilience, 
to get k-shell resilience for networks, we averaged the nodal resilience for all nodes within a 
network.  
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Figure 3. k-shell decomposition of brain networks. A) Median k-shell assignment for each 
region across subjects, with colors denoting which network nodes belong to. The cognitive core 
observed within the median k-shell assignment was mostly filled with associative ROIs (part of 
the FPCN, DMN, DAN, SVA, TP networks). B)  Subjects tended to have more associative 
regions than sensory regions within their respective max core. C) Surface plots of lower k-shells 
primarily filled with nodes in the Limbic network D) Surface plots of mid-ranged Shells 
primarily filled with nodes in the Motor networks. E) Surface plot of the Cognitive Core 
observed in the median node assignment. (FPCN = Frontoparietal Control Network, DMN = 
Default Mode Network, DAN = Dorsal Attention Network, SVA = Salient Ventral Attention 
Network, TP = Temporal Parietal)  
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Figure 4. Robustly connected nodal cores in brain networks revealed by k-shell decomposition 
are associated with Episodic Memory. A) Episodic memory was negatively associated with age 
of participants, which was subsequently included as a covariate in all analyses involving episodic 
memory. B) Distributions of the size of each k-core among all subjects. C) Episodic Memory 
was significantly associated with the number of nodes within deep k-cores 19-21. D) 
Distributions for the average k-shell assignment per network after k-shell decomposition. E) 
Episodic Memory performance was positively associated with the average k-shell assignment of 
the Frontoparietal Control subnetwork – ContC (corrected p-value < 0.05). F) The k-shell 
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assignment of two right hemisphere posterior cingulate regions within the Frontoparietal Control 
Network was related to Episodic Memory (corrected p-value < 0.05). 
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Figure 5. The resilience of robustly connected nodal cores is positively associated with Episodic 
Memory. A) Distributions of k-core resilience among all subjects. B) Resilience was positively 
associated with Episodic Memory for cores 15-20. C) Distributions for the average k-shell 
resilience per network. D) The k-shell resilience of the ContA network was positively associated 
with Episodic Memory. E) The k-shell resilience in a right hemisphere, posterior cingulate 
region within ContC showed a strong positive relationship with Episodic Memory (corrected p < 
0.05). In all correlations performed above, age is included as a covariate. 
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Figure 6. Network-level segregation mediates relationships between k-core resilience and 
Episodic memory in aging. A) A toy network illustrating the differences between networks with 
low (green) and high (purple) segregation. B) Segregation of each subnetwork associated with k-
core resilience. Areas on the heatmap with corrected p-values < 0.05, 1e-5, and 1e-10, are 
bounded by the green, cyan, and magenta borders, respectively. C) Segregation of ContC 
network was significantly associated with Episodic Memory after controlling for the effects of 
age and education, in addition to performing correction for multiple comparisons (corrected p-
value < 0.05).  D) We performed a serial mediation to examine if network segregation of any of 
our 17 networks mediate relationship(s) between k-core resilience and Episodic Memory. E) The 
indirect effect of ContC segregation was significant for cores 1-20, however, after correcting for 
multiple comparisons (corrected p-value < 0.05), this relationship only remained for k-cores 1-15 
(denoted in black). Subject age is included as a covariate in the correlations and mediation 
analyses performed above. 
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