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Motivated by an application in a public utility, the credit screening problem is re-examined 
from a decision theoretic viewpoint. The relationships between several alternative problem 
formulations are explored, and compared to the classical linear discriminant analysis (LDA) 
approach. Several mathematical programming based solution methods are proposed when the 
data are binary, and an efficient algorithm is developed for the case when the screening 
function must also have binary weights. Actual results of both the mathematical programming 
and LDA methods are presented and compared. The resulting mathematical programming 
rules are effective, robust, and flexible to administer. Practical advantages of the resulting "n 
out of N" type rules are discussed. These screening rules have been widely implemented by a 
major public utility and have resulted in substantial benefits to the utility and to the public. 
(FINANCE; INDUSTRIES, COMMUNICATIONS; STATISTICS; DECISION ANALY- 
SIS; INTEGER PROGRAMMING-APPLICATIONS) 

1. Introduction 

Many institutions that provide mass credit use statistical screening procedures that 
translate a background profile sketching the applicant's credit history into a numerical 
credit score. Applicants with a high enough.score pass the screen and are granted 
credit. In the early 1940's, David Durand (1941) proposed the linear discriminant 
analysis (LDA) functions that had been developed earlier by R. A. Fisher (1936) for 
such credit screening. In an important paper Myers and Forgy (1963) reported an 
application to the financing of mobile homes. There followed a large literature on 
applications of credit scoring-usually using LDA. Orgler (1975) summarizes much of 
the work. The basic statistical theory is contained in 'the standard references by 
Morrison (1976) and Anderson (1958). 

Despite the advantages of a well-developed theory and relative computational 
simplicity the LDA approach has several potential practical disadvantages that led us 
to consider the problem afresh. First, to facilitate implementation we sought even 
simpler rules than the linear continuous functions LDA creates. Second, the structure 
of LDA rules sometimes defies common sense, and can lead to decisions that might be 
particularly difficult to defend in a public forum. (See Capon 1982 for an extensive 
discussion of such problems.) Third, LDA produces solutions that are optimal for a 
particular decision problem when the variables are continuous and have a special 
multivariate normal distribution. Unfortunately, these conditions don't always hold in 
practice and the problem optimized by linear discriminant functions is not itself of 
direct interest in credit screening. 

In contrast, this paper takes a simple decision theoretic view of the credit screening 
problem that focuses on those situations where the data are (binary) categorical 
variables. We use mathematical programming to solve the problem and our method 
produces flexible credit screens that are robust and very easy to implement. In most of 
our work we restrict ourselves to scoring rules that simply count the number of 
"positive" responses on the credit questionnaire. These "n out of N" rules make 
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implementation particularly easy. Remarkably, we find that our procedure loses little 
in performance vis a vis other more complex methods. Our results also show the LDA 
rules perform surprisingly well even when the assumptions that underlie them do not 
hold. 

Although our approach applies to general credit scoring situations-and to other 
screening and classification problems-it is particularly applicable to public utilities. 
(This work was part of a large study of credit granting to new telephone applicants by 
former AT&T operating telephone companies. The paper of Showers and Chakrin 
(1981) gives details of the entire project and its widespread implementation.) For 
concreteness consider a typical residential telephone applicant who calls the phone 
company business office to request telephone service. A service representative asks the 
customer a series of credit related background questions and based on the responses 
decides whether to request a security deposit from the customer. There are many 
thousands of such transactions each year. The customer's responses are recorded as a 
(vector) of numerical codes such as yes = 1, no = 0, or of actual values reported such 
as annual income = $12,500, number of years at current residence = 6, etc. This 
response vector is then multiplied by a vector of weights to yield a credit score, and if 
the score is high enough the applicant '"passes." In our application all response codes, 
as well as all weights were restricted to be zero or one to enable service representatives 
to compute a score by simply counting positive responses. Fortunately, this restriction 
turned out to have little effect on the power of the rules to discriminate between bad 
and good risks, and had other unanticipated benefits: The rules were very easy to 
explain and justify before public utility commissions, and it was relatively easy to 
include or delete a factor because of political or legal reasons. 

A unique aspect of this study was that a very large sample of 87,000 customers was 
used for whom no prior screening was done. Thus we had a sample of all potential 
customers, not just those who had already been judged as good by some other method. 

2. Decision Theory Framework 

Credit screening can be viewed as a classical decision theory problem. In our 
application it suffices to hypothesize two states of nature representing the future 
payment behavior of a new customer: 9 = (good, risk), and two actions that can be 
taken with each candidate customer: a = (pass, fail). The loss function L(9, a) repre- 
sents the consequence of taking action A when the true state of nature is 9 and has the 
form 

L(good, pass) = 0, L(good, fail) = y > 0, 

L(risk, pass) = 8 > 0, L(risk, fail) = 0. (1) 

A loss function with either L(good, pass) or L(risk, fail) nonzero can be reduced to an 
equivalent in the form of (1). 

Information on the true state of nature is gained from observations on the random 
variables constituting the customer's credit profile, denoted by the vector x = (XI, 
X2, ... , XJ). Each Xj is the customer's response to a credit or background related 
question such as "Do you own a home?", "How long have you been employed?", "Do 
you have a credit card?", and so forth. The distribution x follows a probability 
function f(x I 9) which depends on the true state of nature 9. If this distribution is 
substantially different for the good and the risk customers, profile data will provide 
useful information about the true state of nature 9. This is the key to the credit 
classification problem.' 

1 From this point on we treat the x vector as being specified and treat the problem of how best to use it. 
Clearly, the broader problem of what elements should belong in the x vector is also crucial. In practice, a 
variety of statistical methods are used heuristically to prune the dimension of the x to reasonable size. 
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A decision rule d(x) determines the action to take when profile x is observed. 
Sometimes, as in our application, practical considerations restrict the form of the credit 
rule and we denote decision rules meeting these restrictions by the set A and consider 
only d E/ A. The performance of a rule d can be quantified by the risk function R (9, d), 
the expected cost of using decision rule d(x) when the true state of nature is 9. If we 
denote by MG(d) and MR(d) the probabilities of misclassifying a good and risk 
customer under rule d, respectively, then under the loss function (1), the risk function 
can be written as R(good, d) = yMG(d) and R(risk, d) = 8MR(d). Thus, with only two 
states of nature, the performance of a credit classification rule d can be represented as 
a point in the two-dimensional space MR (d) vs. MG(d) for which both axes range from 
0 to 1. This change of scale finesses to some extent the fact that neither y nor 8 is likely 
to be known with great accuracy. 

As discussed at length by Ferguson (1967) there is seldom a unique "best rule" in a 
statistical decision problem. Indeed we propose several formulations that suggest 
different ways of viewing the tradeoffs inherent in the credit granting situation. 

Our first version postulates the additional knowledge of the "prior" probabilities '1g 

and R = 0( - VG) that a random customer is good or risk, respectively, and finds a 
Bayes rule minimizing expected losses: 

P1: minimizedr eY7yGMG(d) + 8RMR(d). 
Unfortunately, knowledge of both the loss function (y and 8) and the priors (,rG and 
rR) is typically difficult, if not impossible, to obtain. In public sector applications, the 
economic, political, or social consequences of the two different types of misclassifi- 
cation are quite different, even incommensurate. In private sector applications while it 
is at least in principle possible to represent both risks as dollar present values it is very 
difficult to accurately estimate the priors. 

Our second formulation minimizes the probability of misclassifying a risk customer 
subject to a constraint on the probability of misclassifying a good customer: 

P2: minimizede-AMR(d) subject to MG(d) < a. 
Here a E [0, 1] is fixed, and we require knowledge of neither the priors nor the costs. 
Instead one must specify a, which may be imposed externally by, for example, the 
public utility commission. (Problem P2 is similar to the Neyman-Pearson approach to 
hypothesis testing, and it is the formulation we concentrate on later.) 

A third formulation minimizes the probability of misclassifying a risk customer 
subject to a constraint on the overall probability of failing any customer: 

P3: mininmizedXAMR(d) subject to 77GMG(d) + 7tR[l - MR(d)] < /. 
Here ,B E [0, 1] is fixed. 

A rule d that solves problem Pi is called efficient for Pi. Assuming rg and VR are 
fixed, we define the following three sets of efficient rules: 

E1(A) = {d E A: d solves P1 for some y/l r [0, oo]), 
E2(A) {d E/ A: d solves P2 for some a E [0, 1]), 
E3(A) = {d e A: d solves P3 for some /3 E [0, 1]}. 

It is tempting to think that if a rule d solves P1 for some y and 8, there is also an a for 
which it solves P2, and in addition a ,8 for which it solves P3, and vice versa. However, 
such complete equivalence is not always true; the following theorems detail the valid 
relationships. (Proofs may be found in Kolesar and Showers 1983.) 

THEOREM 1. E1(A) C E2(A) C E3(A) 

That is, every rule that is P1 efficient is also P2 efficient but the reverse inclusions do 
not always hold. To show when they do, we define the risk set (D(A) = {y: y = [MG(d), 
MR(d)] for some rule d E1 A). 

THEOREM 2. (a) If '(/A) is convex, then E2(A) C E,(A). 
(b) If ??(A) is convex and (0,1) (pass everyone) is in A, then E3(ZS) C E2(A\). 
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M R (d) 

MG(d) 

*1 P3 EFFICIEN T o P, AND P3 EFFICIENT 
O Pi, P2 AND P3 EFFICIENT 

FIGURE 1. An Example of the Sets El, E2 and E3. 

When, as in our case, the data are binary A is discrete, and ?(A) is a nonconvex set. 
Thus, there are rules that are optimal for P2, but which are not optimal for P1 and 
rules which are optimal for P3 but not for P2. (See Kolesar and Showers 1983 for an 
example.) 

Figure 1 gives examples in MR(d), MG(d) space of all three types of efficient rules. 
The practical significance of the differences of course depends on "how far apart" 
these rules are and on how rich each family of rules is. We found that there were very 
few rules in E1, that E2 and E3 were similar and that E2 was easy to generate. Our 
desire to present decision makers with a rich set of rules to choose from reinforced our 
choice to solve P2 which was originally motivated by the ease of explaining the 
trade-off of failed "goods" versus passed "bads". If one allows randomized rules, the 
risk set D is convex, but unfortunately, particularly in "public" applications, random- 
ized rules are inappropriate in credit screening since the same action is not always 
taken for customers with the same profile. 

3. Review of the Standard LDA Approaches 

Some advantages and disadvantages of the standard credit classification approaches 
led us to consider the problem afresh. (For additional background see Anderson 1958, 
Eisenbeis and Avery 1972, Goldstein and Dillon 1978, and Lachenbruch 1975. Cohen 
and Hammer 1966, Durand 1941 and Gentry 1974 give application of LDA to credit 
scoring.) The formulation usually solved is P1, and it is well known (Hoel and Peterson 
1949) that P1 optimal rules are of the likelihood ratio type: 

F ~~~f(x I good) ~ 
d(x) = pass" if f(x I risk) >YTG 

'."fail" otherwise. 

Although this looks simple (pass customer profiles that have high ratios of good to 
risk customers), the actual structure of likelihood ratio rules is very complicated except 
for special densities f(x I 9). Moreover, it can lead to the practical anomalies cited by 
Capon (1982). However, when f(x good) and f(x I risk) are both multivariate normal 
densities, and have the same covariance matrix, the likelihood ratio reduces to the 
simple linear discriminant function. This is the basis for the optimality of the linear 
discriminant analysis (LDA) procedure since under these conditions and if the 
parameters are known, LDA is optimal for P1 (Wald 1944). But even when the data are 
multivariate normal with different covariance matrices, the optimal decision rule has a 
quadratic form. Moreover, in practice, the parameters are unknown, and it is never 
certain to which family of distributions f(x I 9) belongs-indeed normality is rather 
doubtful. At best, one may have a sample of G known good customers and R known 
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risk customers, together with their profiles, x1, / = 1, . . ., G + R. (At worst one only 
has data on customers that have earlier been screened by other procedures!) Neverthe- 
less, most applications in the literature compute maximum likelihood estimates of the 
parameters which are then substituted for the true parameters in the linear discrimi- 
nant function. 

LDA is used even when the conditions for its optimality do not hold for several 
reasons: First, its theory is well developed and there exist readily available and very 
efficient LDA computer routines (BMDP 1977). Second, the resulting decision rule is 
relatively simple to implement. Third, the weights of the discriminant function depend 
only on the means and covariances, and thus, to take into account changes in cost 
estimates or priors, or simply to change the fraction of customers passing the rule, one 
need only adjust the cutoff. Fourth, LDA has produced rules that are better than 
purely subjective judgement and they have met a variety of legal challenges (Hsia 
1978). And finally, since no one has reported an investigation of the sensitivity of the 
performance of LDA rules to aberrations in the underlying conditions, many practi- 
tioners proceed in the bliss of ignorance. 

Since LDA is so often used when the normality and constant covariance conditions 
do not hold, we note that in these cases it actually maximizes the ratio of between to 
within group differences-assuming the within group differences are the same for both 
groups. This approach, which is Fisher's (1936) distribution-free approach to finding a 
linear discriminant function, is only obliquely related to P1, P2, or P3. It is, in short, a 
convenient and plausible surrogate problem. 

Other standard classification techniques such as logit analysis, loglinear models, 
categorical partition analysis, and multinomial models which we found useful for 
heuristic selection of variables to include in x also exhibit similar disadvantages for 
actual rule construction: restrictive assumptions of distributional form, indirect objec- 
tive function, or too complicated rule structure. 

4. Mathematical Programming Approach 

In the telephone company application, the conditions under which LDA solves P1 
were clearly not satisfied. Most particularly, nearly all of the original data Xi, 
j = 1, . . ., J were binary. Another potential disadvantage of LDA was that the 
resulting weights w could have been any real number and anomalies such as those 
reported by Capon (1982) are not tolerable in a public forum. Finally, as mentioned 
earlier very simple rules were desired for operational reasons and we therefore 
restricted the weights to be 0 or 1. 

To overcome the potential disadvantages of LDA cited above, we propose a 
mathematical programming approach. Since describing the background data (x) with 
an explicit probabilistic model is difficult, if not impossible, we chose to work with the 
empirical sample distribution of the data, and treat it, in effect, as the true population 
distribution. This amounts to the (erroneous) assumption that one has sampled all 
customers to whom the rules will apply. However, with our very large sample of 87,000 
customers this tactic seemed reasonable; indeed, such an empirical procedure is 
asymptotically optimal (Glick 1973). 

Thus, we assume the availability of a large sample of K customers, each with known 
binary credit profile x of dimension J (there are J items on the questionnaire) and 
known actual credit behavior. There are I = 2J possible profiles. (In our application, 
ten yes-no questions were used so I = 1024.) Ideally, as was true for our sample, all 
prior screening rules or policies should be relaxed so that the sampled population 
includes a complete spectrum of potential customers. (An earlier stage in the analysis 
reduced the number of variables down from some 72 variables (Showers and Chakrin 
1981).) 
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The data on the K customers can be summarized by the following quantities 
(i= 1, .. . I): 

Gi = number of good customers with profile xi, 
Bi = number of risk customers with profile xi. 

We define the decision variables, pi (i = 1, . . . , I) as: 

{ 1 if profile xi passes, 
Pi 0 if profile xi fails. 

Mathematical programming models corresponding to problems P1, P2, and P3 can be 
formulated directly. We call these formulations MPI, MP2 and MP3. We state only 
MP2, the model we worked with most: 

I I I 

MP2: minimize 2 Bipi subject to Gi(l - pi) < a Gia 
i=l i=l i=l 

wherepi =0 or 1, i=1, .. . , I. 
The values of pi, i = 1, . . . , I that solve MP2 define the decision rule d*: 

d*(x ) = {|"pass" if pi*= 1, 
( ( 
"fail" if pi* = 0. 

Such formulations do not restrict the form of the rules; they simply partition the 
profile space into two subsets: those profiles that pass (pi = 1) and those that fail 
(pi = 0). No other partitioning can perform better on this sample of customers and 
therefore these models bound performance attainable on this sample of customers. 

MP2 is a 0-1 knapsack problem which can be difficult to solve for large I. However, 
optimal solutions can be obtained very easily for many values of a by simply ordering 
the response vectors according to decreasing values of the ratio Bi/Gi. Imagine that 
this has been done and the profiles renumbered so that 

BilGi > Bi+IlGi+l for i= 1,2, . . ., M -1, 

where M is the number of profiles for which Bi + Gi > 0. A rule that requests deposits 
of persons with profiles with the (say) N highest values of this ratio will be exactly 
optimal for that a for which a= 1 Gi equals EN 1G. The "greedy" knapsack 
solutions obtained at these "exact points" also bound performance at intermediate 
points. Thus, if a N and aN+ are values at which the first N and N + 1 profiles are 
optimal, the performance for any a = XaN + (1 - X)aN+ with 0 < X < 1 is less than 
XN B + (1 -_ X)i1NBi. 

Note that ordering Bi/Gi and Bi/(Bi + Gi) are the same and thus, for each value of 
a for which a "greedy" solution is exact, we have both P2 and P3 efficiency: For each 
N = 1, . . . , M, there is a value of a and /3 for which the first N profiles are P2 and P3 
optimal, respectively. Since the number of profiles with distinct Bi/Gi ratios in our 
sample was large, the greedy method produced a reasonably large set of optimal 
solutions over the many values of a and /3, obviating the need for more refined 
algorithms to solve P2 and P3 at other a and /3 values. 

The optimal knapsack solutions cannot however be implemented because even with 
large samples there will be many profiles with Bi + Gi zero (i.e., no customers with that 
profile) or very small and one could not be statistically confident of the behavior of 
future customers with these profiles. Moreover, "knapsack" decision rules would be 
difficult to implement manually as they are essentially large tables indicating an action 
for each profile. 

A modified mathematical programming approach that limits consideration to rules 
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with linear form overcomes the limitations of knapsack rules since such rules have a 
very simple structure and assume in effect that customers whose profiles are "close" to 
each other are likely to have similar credit behaviors. The following constraints force 
the rule to have a linear structure: 

J 
-Q(1 - Pi) < E WjXiy- c < Qpi -E>, i=1 ,I 

J = I 

Here Q and e are constants and {fw1 } and c are variables. Q is a very large positive 
number. This approach has also been taken by Agin (1978). It can easily be checked 
that if 

w,ixij <c, pi =0, and if 1wjxqj >c, Pi=. 
J J 

Here the explicit decision variables are w;,]j = 1, . .. , J and c, from which the { Pi} are 
determined implicitly. 

Linear rules with continuous weights can be obtained with mixed integer program- 
ming codes such as MPSX (1979), but if the number of profiles with data is large 
(more than a few hundred), such an approach is very expensive. An algorithm tailored 
to take advantage of the problem's structure might be more efficient, but a reported 
attempt was not very successful (Agin 1978). When the weights must be zero or one 
the rules become a selection of a subset of N of the J profile elements and at least 
n < N must appear in the profile of a passing customer. For reasonable J the number 
of possible such different rules is not very large, and the enumeration scheme given in 
the Appendix will solve the problem efficiently. 

5. Nested Sets of Rules 

We propose a consistency property for rules that has been important in public utility 
commission considerations; indeed its lack has been appropriately criticized by Capon 
(1982). Suppose a particular rule has been in use, and that a higher failure (deposit) 
level is now desired. It makes sense that persons failed under the old rule should also 
fail with a higher deposit level. Likewise, if the deposit level were reduced, customers 
who passed previously should still pass. We call this property nesting. Formally, let 
f(d) be the fraction of customers failed under rule d, and let F(d) and FC(d) be the set 
of profiles failed and passed under rule d, respectively. Let D be a set of rules. The set 
D is nested if for any d and d' in D, F(d) c F(d') whenever f(d) < f(d'). We can show 
that LDA rules and the subset of knapsack rules generated by the greedy heuristic are 
nested. (In the following discussion we assume that all profiles are nonnegative vectors, 
that is, x > 0 for all x E X. The following are stated without proof (see Kolesar and 
Showers 1983).) 

LEMMA 1. Let d and d' be linear rules with weights and cutoff (w,c) and (w',c') 
respectively. Suppose that f(d) < f(d'). Then d and d' are nested if w > w' and c < c'. 

THEOREM 4. The set of LDA rules is nested. 

THEOREM 5. The subset of knapsack rules, generated by the greedy heuristic, is 
nested. 

Unfortunately, nesting is not a property that automatically holds for rules generated 
by mathematical programming methods. In particular, the set of all knapsack rules is 
not nested since, as the cutoff changes, individual profiles may be kicked out of the set 
of passing profiles and added back later. One might add constraints to the mathemati- 
cal program to force the set of binary linear rules to be nested. We can show (Kolesar 
and Showers 1983) that: 



130 PETER KOLESAR AND JANET L. SHOWERS 

THEOREM 6. There can be no more than 2J distinct rules in a nested set of binary 
weighted linear rules. (J is the d.mension of x.) 

Even without considering the computational burden of forcing mathematical pro- 
gramming rules to be nested, imposing this nesting constraint on a set of binary 
weighted linear rules is quite restrictive. With J = 10 factors, as was the case in the 
telephone company application, a nested set contains at ma'st 20 rules whereas a 
nonnested set may contain hundreds. A rJtaxed concept of nesting may be appropriate 
in applications, and we suggest the following. It is common that customers fall into a 
small number of profiles. For these frequently occurring profiles (call this set L) we 
would like nesting to hold. In other words, if D is the set of rules and d and d' are in D 
and such that f(d) < f(d'), then we would like to have F(d) c F(d') ci L. The fact 
that nesting does not hold for the "sparse" profiles not in L, for which there is little 
data upon which to base the action anyway, reflects our uncertainty about the correct 
action. In the telephone company study, binary weighted linear rules automatically 
satisfied this relaxed concept of nesting. 

6. Evaluation Screening Methods 

We compare several screening techniques using subsamples of the AT&T data and 
then make some general observations on implementation. In Sample A, profiles 
consisted of J = 6 binary questions and the sample contained 202 good and 154 risk 
customers. In Sample B, profiles consisted of J = 7 binary questions, and the sample 
contained 799 good and 527 risk customers. We compared (a) the Knapsack rules 
produced via the greedy heuristic, (b) the binary weighted linear rules produced via 
mathematical programming for problem P2 (the algorithm of ?4 was used), and (c) 
rules produced via LDA. We computed the entire set of rules for all levels of failures 
for each technique and used performance plots of 1 - MR vs. MG to make our 
comparisons. The results for Sample A are shown in Figure 2a and those for Sample B 
are shown in Figure 3a. For clarity we have connected the points to produce the 
efficient curve for the particular method. (The line segments connecting efficient rules 
would represent the performance of rules which randomize between the extremes of 
the segments.) The steeper the curve, the better the rules. The dotted line running from 
(0,0) to (1,1) is for reference and represents the performance of "completely random" 
rules, which treat risk and good customers the same. Better rules lie above the dotted 
line. 

In these figures, the "o" signs mark the performance of rules for values of a for 
which the greedy knapsack solution is exact and whose performance is a bound on the 
best that any type of rule can do on this data. Efficient curves for all other techniques 
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must lie between the knapsack curve and the dotted line. As mentioned before, a 
major problem in using these knapsack rules for screening procedures is insufficient 
data. This can be seen from viewing these figures. In Sample A only 43 out of a 
possible 26 = 64 profiles were observed and in Sample B only 89 out of a possible 
27= 128 profiles were observed. 

To construct the linear discriminant analysis rules on these data the weights need be 
calculated only once. The entire set of rules is then constructed by varying the cutoff, 
c. The triangles in the figure represent cutoffs that caused a change in the perfor- 
mance. 

The "on" marks the efficient curve for linear rules with binary (0, 1) weights 
constructed by the mathematical programming approach and the algorithm of ?5. 
These rules perform comparably to the LDA rules; statistical tests would indicate no 
significant difference. It is important to note that by restricting the rules to be very 
simple (O or 1 weights), the power of the rules to discriminate between the good and 
the risk customers has not been reduced. Comparing Figures 2a and 3a, we observe 
that the difference between LDA and binary weighted mathematical programming 
rules gets smaller and the difference between both of these techniques and the 
knapsack bound diminishes when the sample size is increased. 

7. Comparison of Performance on a New Sample 

No matter how well a rule performs on its "development sample," it is of little value 
unless it also performs well on new samples from the same population-actually on the 
future real world sample to which it would actually be applied. A "hold-out" sample 
can be used as a simulation of future performance in the nonstationary real world. To 
do this we used two additional samples drawn in an identical manner as the originals. 
The development samples (A and B) were used to construct the rules; the hold out 
samples (A' and B) were used to determine if these results extrapolate reasonably. 
(Sample A' contained 217 good and 154 risk, and Sample B' contained 765 good and 
533 risk.) 

Figures 2b and 3b display the results. In these graphs "X "s mark the performance 
of the greedy knapsack rules constructed from the test sample data gives a bound on 
the best performance any technique can have on this sample. The performance of the 
techniques we are comparing must always be below this " X " curve. The other symbols 
refer to the rules constructed on the development samples "o" knapsack rules; "A" 
linear discriminant analysis rules; "oi" binary weighted mathematical programming 
(BWMP) linear rules. 

We first observe that although the knapsack rules are optimal for the sample used to 
construct them, they do poorly when extrapolated to new samples. This is because they 
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request deposits of customers with profiles having monotonically decreasing values of 
Ri/Gi. The ordering of these ratios from the development sample is crucial, and in 
small samples this ordering will not be statistically stable. Thus, in Figure 2b, where 
the sample is small the knapsack rules do poorly in extrapolation, while with larger 
samples (Figures 3b) they do better in extrapolation. We also observe that linear 
discriminant analysis rules and binary weighted mathematical programming rules 
perform well on a new sample when the development sample is large (Figure 3b). 
However, when the development sample is small (Figure 2b), the performance of the 
binary weighted rules is erratic, since an unlikely random observation in a small 
development sample can significantly affect the rule developed, When the same 
observation does not occur in a new sample, the performance can be very different 
than predicted. 

We conclude that "raw" knapsack rules are unsuitable for use on a new population 
because even with large samples there are problems of sparse data for many profiles. 
Of course if all profiles occurred sufficiently often, knapsack rules would perform well 
on a new sample and, since they are least restrictive of any procedure, would be 
optimal. The performance of LDA rules seems to be robust with respect to sample size 
and to the assumptions that assure their optimality. Knapsack and BWMP rules are 
more sensitive to random fluctuations in sample data than LDA rules. Note that 
because only estimates of means and covariances are needed to construct LDA rules, 
these rules are quite robust when extrapolated. 

8. Summary and Conclusions 

Unlike most of the literature on credit screening, this paper views the credit decision 
as a problem in multicriterion optimization. We have therefore proposed a multiplicity 
of appropriate problem formulations and solution methods. Our results show, at least 
in one particular large-scale implementation, that a variety of methods using different 
problem formulations and algorithms performs similarly. Our findings (1) support the 
use of linear discriminant analysis even when its assumptions appear to be violated, 
and (2) show that simpler binary methods are also quite justified and can have distinct 
advantages. The latter finding is of practical importance because rules with simple 
structure are very easy to implement on a mass scale and have enough appeal to 
survive the sometimes arduous public approval processes, Our "n out of N" rules have 
proven to be both effective screens and robust to "external" social or political value 
judgments. For example, in one jurisdiction although "car ownership" did not fall in 
the class of optimal rules, a public interest group lobbied for it. It was easy to include 
and doing so did not measurably diminish the quality of the screening. In another 
jurisdiction the externally imposed requirement that senior citizens get a positive 
weight was accommodated-also without appreciable negative impact. 

The sorting algorithm proposed here generates nearly optimal linear screening 
functions with binary weights. As a result, only a simple count of the number of 
positive responses to the credit questionnaire is needed to reach a credit decision. 
Moreover, rather than producing a single "optimal"' solution the algorithm easily 
produces an efficient family of "n out of N" credit screens. In the actual implementa- 
tion the differences between the utilities', consumer groups" and public service com- 
mission's objectives have been reasonably adjudicated by selection from among this 
family of efficient solutions-sometimes with minor adjustments. 

Appendix 

The restriction to binary weights greatly simplifies implementation. Simply count the number of positive 
responses. With binary weights { w.}, j = 1...,J, there are 2J possible rules and, if the number of 
questions, J, is not too large, the following enumeration scheme will efficiently identify all P2 optimal rules. 
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A slight modification will produce P3 optimal rules. P1 rules are difficult to generate directly, but since P1 
rules are P2 optimal they could be identified subsequently. 

We define the several counts of customers in the sample: rp(d) is the number of risk customers that pass 
rule d and gf(d) is the number of good customers that fail rule d; R, and G are the total number of risk 
customers and good customers, respectively. Decision theoretic and relationships that underlie the algorithm 
are developed in Kolesar and Showers (1983). 

The algorithm is: 
Step 1. Initialize A = (do, d,). do is the rule that passes all customers. It has all 0 weights and cutoff 0. 

(rp(do) = total number of risk customers, gf(do) = 0.) d, is the rule that fails all customers. It has all unit 
weights and cutoff oo. (rp(d,) = 0, gf(d,) = total number of good customers.) 

Step 2. Let d be a new rule. (If all rules have been considered, then stop.) If there exists an i such that 
gf(d> 1) < gf(d) < gf(d,), then go to Step 3. Otherwise, there exists an i such that gf(d,) = gf(d). Go to 
Step 4. 

Step 3. Let i be such that gf(d>_ 1) < gf(d) < gf(d,). If rp(d, 1) < rp(d), throw out d and go to Step 2. If 
rp(d) < rp(d,), find the largestj for which rp(d) 6 rp(dj) and throw out di through dj and their equivalent 
sets. Insert d in the set A just after di_ 1, call it rule di, and re-index rules j + 1, j + 2, etc., as rules i + 1, 
i + 2, .... Go to Step 2. 

Step 4. Let i be such that gf(d,) = gf(d). If rp(d,) < rp(d), throw out d and go to Step 2. If rp(d,) 
= rp(d), add d to di's equivalent set E(dj) and go to Step 2. If rp(d) < rp(d,), find the largest j for which 
rp(d) < rp(dj), throw out d, through dj and their equivalent sets, replace d, in the set A with d, re-index rules 

dj Id+2, etc., as rules di+I, di+2, etc. 
Note that implementation of the algorithm is quite straightforward with a list processing routine which 

automatically takes care of the bookkeeping involved in insertion and deletion of rules from the "list" A. 
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