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Abstract

Background: Machine learning models have been adapted in biomedical research and practice for knowledge
discovery and decision support. While mainstream biomedical informatics research focuses on developing more
accurate models, the importance of data preprocessing draws less attention. We propose the Generalized Logistic
(GL) algorithm that scales data uniformly to an appropriate interval by learning a generalized logistic function to fit the
empirical cumulative distribution function of the data. The GL algorithm is simple yet effective; it is intrinsically robust
to outliers, so it is particularly suitable for diagnostic/classification models in clinical/medical applications where the
number of samples is usually small; it scales the data in a nonlinear fashion, which leads to potential improvement in
accuracy.

Results: To evaluate the effectiveness of the proposed algorithm, we conducted experiments on 16 binary
classification tasks with different variable types and cover a wide range of applications. The resultant performance in
terms of area under the receiver operation characteristic curve (AUROC) and percentage of correct classification
showed that models learned using data scaled by the GL algorithm outperform the ones using data scaled by the
Min-max and the Z-score algorithm, which are the most commonly used data scaling algorithms.

Conclusion: The proposed GL algorithm is simple and effective. It is robust to outliers, so no additional denoising or
outlier detection step is needed in data preprocessing. Empirical results also showmodels learned from data scaled by
the GL algorithm have higher accuracy compared to the commonly used data scaling algorithms.

Keywords: Data scaling, Data normalization, Outlier, Classification model, Generalized logistic function, Empirical
cumulative distribution function

Abbreviations: AUROC, Area under the receiver operating characteristic curve; CDF, Cumulative density function;
ECDF, Empirical cumulative density function; GL, Generalized logistic; LR, Logistic regression; ROC, Receiver operating
characteristic; SVM, Support vector machine

Background
There is an increasing interest in research and develop-
ment of machine learning and data mining techniques
for aid in biomedical studies as well as in clinical deci-
sion making [1–4]. Typically, statistical learning methods
are performed on the data of observed cases to yield
diagnostic or prognostic models that can be applied in
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future cases in order to infer the diagnosis or predict the
outcome. Such learned models might be used to assist
physicians in guiding their decisions, and are sometimes
shown to outperform the experts’ prediction accuracy [5].
Furthermore, such models can discover previously unrec-
ognized relations between the variables and outcome
improving knowledge and understanding of the condition.
Such discoveries may result in improved treatments or
preventive strategies. Given that predictive models com-
pute predictions based on information of a particular
patient, they are also promising tools for achieving the
goal of personalized medicine.
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Predictive models have huge potential because of their
ability to generalize from data. Even though predictive
models lack the skills of a human expert, they can handle
much larger amounts of data and can potentially find sub-
tle patterns in the data that a human could not. Predictive
models rely heavily on training data, and are dependent
on data quality. Ideally, a model should extract the existing
signal from the data and disregard any spurious patterns
(noise). Unfortunately, this is not an easy task, since data
are often far from perfect; some of the imperfections
include irrelevant variables, small numbers of samples,
missing values, and outliers.
Therefore, data preprocessing is common and necessary

in order to increase the ability of the predictive models to
extract useful information. There are various approaches
targeting different aspects of data imperfection; such as
imputations for missing values, smoothing for removing
the superimposed noise, or excluding the outlier exam-
ples. Then there are various transformations of variables,
from common scaling and centering of the data values,
to more advanced feature engineering techniques. Each
of those techniques can make a significant improvement
in predictive model performance when learned on the
transformed data.

Data scaling in classification modeling
In the machine learning and data mining community, data
scaling and data normalization refer to the same data pre-
processing procedure, and these two terminologies are
used interchangeably; their aim is to consolidate or trans-
fer the data into ranges and forms that are appropriate for
modeling and mining [6]. Models trained on scaled data
usually have significantly higher performance compared
to the models trained on unscaled data, so data scaling is
regarded as an essential step in data preprocessing. Data
scaling is particularly important for methods that utilize
distance measures, such as nearest neighbor classifica-
tion and clustering. In addition, artificial Neural Network
models require the input data to be normalized, so that
the learning process can be more stable and faster [7].

Confusions of gene expression normalization In
medicine, gene expression data obtained from microarray
technology are widely used for disease/cancer diagno-
sises. Usually, a normalization step is conducted for
the purpose of identifying and removing sources of
systematic variation in the measured fluorescence [8],
before the data are ready for analysis. However, the gene
expression normalization step is not equivalent to the
data scaling step that we study in this context. In most
cases, a normalized gene expression dataset needs to be
processed/scaled by a data scaling step before learning a
classification model. The models that are learned from
gene expression data with scaling usually outperform

the models that are learned from gene expression data
without scaling, with considerable margins.

Commonly used data scaling algorithms
Two data scaling algorithms are widely used: Min-max
algorithm and Z-score algorithm.

Min-max algorithm In theMin-max algorithm, the orig-
inal data are linearly transformed. We denote xmin and
xmax as the minimum and the maximum of a variable in
the samples. The Min-max algorithm maps a value, v, of
this variable to a value, v′, using the following formula:

v′ = v − xmin
xmax − xmin

+ xmin. (1)

The Min-max algorithm scales a variable in the train-
ing samples in the interval of [xmin, xmax] to [-1, 1] (or
[0, 1]) by using a linear mapping. However, when the
unseen/testing samples fall outside of the training data
range of the variable, the scaled values will be out of the
bounds of the interval [-1, 1] (or [0, 1]), and that may
pose problems in some applications; in addition, it is very
sensitive to outliers, as shown in latter sections.

Z-score algorithm In the Z-score algorithm, the new
value, v′, of a variable, is scaled from the original value, v,
using the formula:

v′ = v − x̄
σx

, (2)

where x̄ and σx are the mean and standard deviation of the
variable values in the training samples, respectively. After
the scaling, the new values will have value 0 as the mean,
and value 1 as the standard deviation. This algorithm does
not map the original data into an interval, and it is also
sensitive to outliers. When the number of examples is
small, especially in scenarios in biomedical research, the
mean and standard deviation calculated from the data
may not be able to approximate the true mean and stan-
dard deviation well, so future input values will be scaled
poorly.

Methods
The idea of the GL algorithm for data scaling is adapted
from the histogram equalization technique, and it can
map both the original and future data into a desired
interval. The algorithm has no assumption on the sample
distribution and utilizes generalized logistic functions to
approximate cumulative density functions. Since it maps
data into a uniformly distributed range of values, the
points that were previously densely concentrated on some
interval become more discernible, which allows more
room for representation of the subtle differences between
them. In addition, the GL algorithm reduces the distance
of outliers from other samples, whichmakes the algorithm
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robust to the outliers. This advantage is particularly sig-
nificant in diagnostic/classification modeling in medicine
and healthcare, where the number of samples is usu-
ally small, and outliers have a huge impact on the model
training, leading to poor accuracy.
In a preliminary study [9], the GL algorithm was effec-

tive in classifying tasks with microarray gene expression
data. In this manuscript we have significantly extended
our preliminary work in the following ways:
1. providing a thorough description of the proposed GL

algorithm as well as intuitive and qualitative
explanations of scenarios where the new algorithm is
superior to the Min-max and Z-score algorithms;

2. extending the GL algorithm to include a much better
and more general parameter initialization for the
non-convex optimization, which is a critical part of
the algorithm for fitting the generalized logistic
function to the empirical cumulative distribution
function;

3. empirically demonstrating that the GL algorithm is
not only effective in gene expression classification
tasks, but also in a broad variety of different
diagnostic/classification tasks with different types of
variables.

Data scaling formula
We model the values of a variable in the samples as a ran-
dom variable (r.v.) X. In the GL algorithm, the scaled value
v′ of a value, v, is obtained by

v′ = PX(v), (3)

where PX(·) is the cumulative density function (CDF) of
the r.v. X.
Using a CDF as a mapping can be also seen in the

Histogram Equalization technique [10] in the field of Dig-
ital Image Processing for image contrast enhancement.
The difference of the GL algorithm versus the Histogram
Equalization technique is that we do not only use the CDF
to scale the data, but also learn/approximate the func-
tional expression of the CDF, so that it can be used to scale
unseen values.

Approximation of the cumulative density function
From the data, we do not know the exact functional form
of the cumulative density function (CDF) of an variable
whose value is represented by the r.v. X; therefore, we
need to approximate the CDF. We can find the empirical
cumulative density function (ECDF) using the formula

P̂X(v) = 1
n

n∑

i=1
1xi≤v, (4)

where P̂X(v) is the ECDF at a value v, n is the number of
samples, and xi is the value of the variable in the ith sample.

Unfortunately, in most cases, the ECDF has no func-
tional form expression. Moreover, the original data tend
to be noisy, so the ECDF is usually very bumpy. Therefore,
we use a generalized logistic (GL) function to approximate
the ECDF. It has been proven that a logistic function can
be used to accuractely approximate the CDF of a normal
distribution [11]. In this algorithm, we do not make any
assumption on the distribution of the data; therefore, we
use a more general form of the logistic function, called the
generalized logistic (GL) function

L(x) = 1
(
1 + Qe−B(x−M)

)1/ν . (5)

Compared to the logistic function used in [11], this GL
function provides the flexibility to approximate a more
variety of distributions. One of the notable properties of
(5) is that it maps the values in the interval (∞,−∞) to
the interval (0,1). This property makes our GL algorithm
robust to outliers, and guarantees that the scaled data will
be in (0,1).
In order to approximate the ECDF, we need to learn

the parameters Q, B, M, and ν from the data, so that
the GL function could best fit the ECDF. The sum of
squared differences of the GL function and the ECDF can
be represented by

η =
n∑

i=1

∥∥∥L(xi) − P̂X(xi)
∥∥∥
2
. (6)

The best set of parameters is the minimizer of η, so the
key to find the most appropriate GL function to approxi-
mate the ECDF is to solve an optimization problem

minimize
B,M,Q,ν

η(B,M,Q, ν). (7)

Because (5) and (6) are differentiable, the derivatives of
η with respect to the parameters can be easily obtained, as
shown in the following:

dη

dB
=

n∑

i=1
−T1

Qe−B(xi−M)(xi − M)

T2
,

dη

dM
=

n∑

i=1
T1

BQe−B(xi−M)

T2
,

dη

dQ
=

n∑

i=1
T1

e−B(xi−M)

T2
,

dη

dν
=

n∑

i=1
−T1

ln(Qe−B(xi−M) + 1)
ν2(Qe−B(xi−M) + 1)1/ν

,

where

T1 = 2(P̂X(xi) − L(xi))

T2 = ν(Qe−B(xi−M) + 1)1/ν+1.
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Therefore, a local minimum of (7) can be solved effi-
ciently by any gradient descent optimization algorithms.

Parameter initialization
The optimization problem described in (7) is non-convex,
so in order to achieve a good local minimum (or even
global minimum) of the objective function, the values of
the parameters should be carefully initialized; i.e. deter-
mine B0,M0,Q0, ν0, which are the initialization of the
parameters for the gradient descent iterations. By looking
at the structure of the GL function, we can see that param-
eterM determines the “center” of the GL curve; therefore,
parameterM, should be close to the median of the sample
values. We first arrive at:

M0 = P̂−1
X (0.5) = xmed, (8)

where xmed denotes the median value of the variable in
the samples. From L(xmed) ≈ P̂X(xmed) ≈ 0.5, we have
L(xmed) = 1

(1+Q0e−B0(xmed−xmed))1/ν0
≈ 0.5, noting that we

replaceM0 by xmed because of (8). We obtain:

ν0 = log2(1 + Q0). (9)

It is reasonable to assume that the minimum value
in the samples will be scaled to a value close to 0.1,
that is L(xmin) ≈ P̂X(xmin) ≈ 0.1, we have L(xmin) =

1
(1+Q0e−B0(xmin−xmed))1/ν0

≈ 0.1, where xmin denotes the
minimum value of the variable in the samples. We obtain:

B0 = ln
(
(1 + Q0)log2(10) − 1

) − ln(Q0)

xmed − xmin
. (10)

Now, ν0 andB0 are dependent onQ0.We further assume
that the maximum value in the sample will be scaled to
a value close to 0.9, that is L(xmax) ≈ P̂X(xmax) ≈ 0.9,
thus L(xmax) = 1

(1+Q0e−B0(xmax−xmed))1/ν0
≈ 0.9, where xmax

denotes themaximum value of the variable in the samples.
Combining (9) and (10), we obtain the following equation
in terms of Q0:

1

1 + Q0e
(ln((1+Q0)log2(10)−1)−ln(Q0))

xmax−xmed
xmin−xmed

= 0.9log2(1+Q0),

(11)

and the most suitable value for Q0 is the root of Eq. (11).
The root can be resolved numerically and quickly by using
the Newton’s method. With this initialization, we could
find a set of parameters which make the GL function fit
the ECDF well, as shown in Fig. 1.

Qualitative comparisons of data scaling algorithms
In this section, we will intuitively and qualitatively discuss
the scenarios where the GL algorithm is superior to the
commonly used data scaling algorithms.
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Fig. 1 Fitting of the ECDF using the GL algorithm An example
showing the approximation of an ECDF using a generalized logistic
(GL) function

The GL algorithm is robust to outliers During the data
collection period, the data might be corrupted for various
reasons; e.g., system error, human error, sample contami-
nation, etc. Therefore, a data de-noising or outlier detec-
tion proceduremay be necessary in the data preprocessing
step. The GL algorithm is intrinsically capable of handling
situations where there are noisy samples and outliers in
the samples. As Fig. 2a–c show, in the situation that there
are no outliers in samples, all data scaling algorithms per-
form similarly. However, when an outlier exists in the data,
as shown in Fig. 2d–e, the Min-max algorithm and the Z-
score algorithm are affected by the outlier - the original
values in the normal range are squeezed after the scal-
ing. In contrast, the outlier’s impact to the GL algorithm is
neglectable, as shown in Fig. 2f. Outliers are samples devi-
ate strongly from the majority of (normal) samples, so the
number of outliers will be always much smaller than the
number of normal samples, and therefore, the contribu-
tion of outliers to the CDF of the samples is neglectable.
However, outliers do not necessarily need to be the result
of measurement errors, but may also occur due to vari-
ability, and represent completely valid instances. There
are applications that are particularly concerned with such
anomalies in the observations as they may carry valuable
information about some rare modality of the processes
responsible for its generation. For such applications, algo-
rithms for outlier detection are utilized to interrogate the
data and bring the focus to the rare signal in the data,
and our data preprocessing algorithm is inappropriate to
use for such purposes. Nevertheless, regardless of the out-
liers’ origin (error or variability), for the supervised task
of classification, outliers are typically detrimental for clas-
sification accuracy, and their removal/correction is very
welcome, if not necessary [12].
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Fig. 2 Behavior of data scaling algorithms with/without outliers. Top panels a–c: when there is no outlier in the data, the behavior of the Min-max
algorithm, Z-score algorithm and the GL algorithm is very similar. Bottom panel d–f: when there is an outlier in the data, the behaviors of the
Min-max algorithm and Z-score algorithm are significantly affected, but the impact of the outlier on the GL algorithm is neglectable

The GL algorithm can improve classification accuracy
One of the complications which leads to poor classifi-
cation accuracy is that the samples in different classes
are dense and “crowded” near the decision boundary
(otherwise, the accuracy would be expected to be high).
Therefore, although in the training stage, the model can
perfectly distinguish samples in different classes, in the
testing stage, the model may make mistakes. Figure 3a
shows an artificially generated data of two groups (red v.s.
blue), and we can imagine those samples are used to test
the classifier. Although the two groups of data are separa-
ble, a trained classifier may make mistakes because these
data are not seen in the training. One way to improve the
classification in the test is to enlarge the separation the
data from two groups near the decision boundary. The
intuition is that if the separation of two groups is by a
large margin, it allows a wider variety of decision bound-
aries to separate the data. Because theMin-max algorithm
and the Z-score algorithm are linear mappings, after the
data are scaled, their relative distance will not change
(Fig. 3b and c). In contrast, the GL algorithm is a non-
linear mapping; it will enlarge the distance of the dense
samples that are located near the decision boundary,
and squeeze the samples that are located away from the
decision boundary (Fig. 3d). This effect reduces the clas-
sifier’s potential of making mistakes, thus improving the
accuracy.

Descriptions of datasets We have included 16 datasets
in our experiments. The tasks associated with the datasets
cover a broad variety of diagnostic/classification problems
in biomedical research. The information of the datasets,
including the number of samples, variable types, and
tasks, are summarized in Table 1. Among them, LSVT,
Pima Indian diabetes, Parkinsons, Wdbc, Breast tissue,
and Indian liver were downloaded from the UCI dataset
repository (https://archive.ics.uci.edu/ml/datasets.html).
These 6 datasets were selected because the majority of
their variables are continuous, so that the data scal-
ing algorithms could be applied (non-continuous vari-
ables were deleted). If a dataset was originally associ-
ated with a multiclass classification task, we will formu-
late a binary classification task as one-class-vs-others.
The datasets, Breast cancer, Colon cancer, Lung can-
cer, Prostate cancer, and Myeloma were made avail-
able by Stantnikov et al. [13], and we downloaded
the datasets from the supplementary material website
(http://www.gems-system.org/). The datasetsDLBCL and
Leukemia were downloaded from the Kent Ridge Bio-
medical Dataset Repository (http://datam.i2r.a-star.edu.
sg/datasets/krbd); we removed the variables with missing
values in theDLBCL dataset, so 715 variables were used in
our experiments. The datasets GSE 25869, GSE 27899IL,
and GSE 29490, were downloaded from the Gene Expres-
sion Omnibus Repository [14]. We converted the datasets

https://archive.ics.uci.edu/ml/datasets.html
http://www.gems-system.org/
http://datam.i2r.a-star.edu.sg/datasets/krbd
http://datam.i2r.a-star.edu.sg/datasets/krbd
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Fig. 3 An 2D illustration on how the GL algorithm can affect the classification accuracy. a raw data without scaling; b data scaled by the Min-max
algorithm; c data scaled by the Z-score algorithm; d data scaled by the GL algorithm

to .mat format, and made them available to the public;
please refer to Section “Availability of data and material”
for details.

Evaluation methods To assess how different data scal-
ing algorithms affect classification performances, we used

Logistic Regression (LR) and Support Vector Machine
(SVM) as the classification models. These two classifica-
tion models have been used extensively in biological and
medical research due to their simplicity and accessibility.
The program code of the experiments was implemented
in MATLAB 8.4. The results were obtained using 5-fold

Table 1 Summary of datasets used in experiments (sorted by the no. of subjects in ascending order)

Dataset No. of subjects (pos/neg) Var. type No. of var. Task

GSE 27899IL [15] 10/10 DNA methylation 27578 diagnose ulcerative colitis

Prostate cancer [16] 14/9 microarray gene expression 15009 diagnose prostate cancer

Colon cancer [16] 15/11 microarray gene expression 15009 diagnose colon cancer

Lung cancer [16] 20/7 microarray gene expression 15009 diagnose lung cancer

Breast cancer [16] 17/15 microarray gene expression 15009 diagnose breast cancer

Leukemia [17] 11/27 microarray gene expression 7129 diagnose leukemia

GSE 29490 [18] 20/7 DNA methylation 26916 diagnose colorectal
carchinoma

GSE 25869 [19] 14/9 DNA methylation 27570 diagnose gastric cancer

Breast tissue [20] 21/85 impedance measurements 9 diagnose breast tumor

LSVT [21] 42/84 wavelet and frequency based
measurements

310 assessment of treatments in
Parkinson

DLBCL [22] 88/72 microarray gene expression 715 diagnose DLBCL

Myeloma [23] 137/36 microarray gene expression 12625 diagnose bone lesions

Parkinsons [24] 147/48 vocal based measurements 22 diagnose Parkinson disease

Wdbc [25] 212/357 nuclear feature from image 30 diagnose breast tumor

Indian liver [26] 414/165 biochemistry based measurements 9 diagnose liver disease

Pima Indians diabetes [27] 268/500 clinical measurements 8 diagnose diabetes
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cross-validations. One of the performance metrics we
used was the area under the receiver operation charac-
teristic curve (AUROC), which has been commonly used
for binary classification performance evaluations; one of
the advantages of AUROC is that its value does not
depend on a classification score threshold. To have a more
complete comparison of different data scaling methods
and classification models, we also used accuracy (pro-
portion of correct classifications). The threshold we used
to determine the class labels (and thus, the accuracy) of
the testing set samples was obtained by selecting a score

which could maximize the accuracy in the training set;
if multiple, or a range of scores could achieve the maxi-
mum accuracy, we would select the minimum. The mean
value and 95 % confidence interval of the AUROC of each
binary classification task can be found in Table 2, and
the mean value and 95 % confidence interval of the pro-
portion of correct classifications can be found in Table 3.
Due to the large number of variables, the AUROC’s
and accuracies of datasets GSE 25869, GSE 27899IL,
and GSE 29490 on Logistic Regression model were
not available.

Table 2 Results of 16 datasets (16 binary classification tasks) using different data scaling algorithms and classification models

dataset Method None Minmax Zscore GL

GSE27899IL LR NA ± NA NA ± NA NA ± NA NA ± NA

SVM 0.768 ± 0.104 0.814 ± 0.084 0.814 ± 0.074 0.824± 0.058

Prostate Cancer LR 0.464 ± 0.000 0.749 ± 0.130 0.689 ± 0.156 0.761± 0.108

SVM 0.573 ± 0.198 0.725 ± 0.232 0.713 ± 0.244 0.822± 0.194

Colon Cancer LR 0.500 ± 0.000 0.895 ± 0.092 0.892 ± 0.082 0.962± 0.046

SVM 0.670 ± 0.184 0.940 ± 0.058 0.937 ± 0.050 0.981± 0.020

Lung Cancer LR 0.450 ± 0.000 0.839 ± 0.096 0.834 ± 0.108 0.890± 0.050

SVM 0.397 ± 0.274 0.716 ± 0.136 0.710 ± 0.152 0.774± 0.182

Breast Cancer LR 0.324 ± 0.000 0.809 ± 0.038 0.821± 0.020 0.819 ± 0.022

SVM 0.708 ± 0.158 0.793 ± 0.052 0.795 ± 0.042 0.812± 0.038

Leukemia LR 0.500 ± 0.000 0.988 ± 0.014 0.990 ± 0.006 1.000± 0.000

SVM 0.935 ± 0.034 0.992 ± 0.010 0.991 ± 0.008 1.000± 0.000

GSE29490 LR NA ± NA NA ± NA NA ± NA NA ± NA

SVM 0.983 ± 0.012 0.984 ± 0.034 0.985 ± 0.034 0.994± 0.004

GSE25869 LR NA ± NA NA ± NA NA ± NA NA ± NA

SVM 0.935 ± 0.024 0.937 ± 0.020 0.938 ± 0.016 0.943± 0.014

Breast tissue LR 0.520 ± 0.006 0.961 ± 0.032 0.961± 0.044 0.940 ± 0.054

SVM 0.713 ± 0.108 0.968 ± 0.006 0.970 ± 0.014 0.972± 0.010

LSVT LR 0.500 ± 0.000 0.875 ± 0.008 0.846 ± 0.022 0.921± 0.012

SVM 0.500 ± 0.000 0.879 ± 0.012 0.863 ± 0.014 0.919± 0.020

DLBCL LR 0.601 ± 0.038 0.608 ± 0.038 0.610 ± 0.048 0.660± 0.062

SVM 0.616 ± 0.050 0.622 ± 0.052 0.619 ± 0.052 0.654± 0.054

Myeloma LR 0.500 ± 0.000 0.729 ± 0.044 0.739 ± 0.072 0.746± 0.038

SVM 0.573 ± 0.098 0.748 ± 0.052 0.747 ± 0.054 0.750± 0.054

Parkinsons LR 0.875 ± 0.012 0.896 ± 0.054 0.893 ± 0.058 0.906± 0.048

SVM 0.882 ± 0.010 0.875 ± 0.010 0.885 ± 0.024 0.891± 0.018

Wdbc LR 0.942 ± 0.002 0.982 ± 0.004 0.978 ± 0.006 0.993± 0.004

SVM 0.990 ± 0.002 0.994 ± 0.002 0.993 ± 0.004 0.995± 0.000

Indian Liver LR 0.680 ± 0.002 0.743 ± 0.008 0.742 ± 0.008 0.746± 0.010

SVM 0.636 ± 0.068 0.696 ± 0.008 0.692 ± 0.034 0.695± 0.008

Pima Indians Diabetes
LR 0.604 ± 0.004 0.827 ± 0.004 0.827 ± 0.004 0.834± 0.006

SVM 0.826 ± 0.004 0.828 ± 0.006 0.828 ± 0.006 0.834± 0.006

The performances are measured by the average Area Under the ROC in 5-fold cross-validations. The means and 95 % confidence intervals are included. Column names: None
- no data scaling; Minmax - Min-max algorithm; Z-score - Z-score algorithm; GL - GL algorithm. Best performances are emphasized in bold
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Table 3 Results of 16 datasets (16 binary classification tasks) using different data scaling algorithms and classification models

dataset Method None Minmax Zscore GL

GSE27899IL LR NA ± NA NA ± NA NA ± NA NA ± NA

SVM 0.770 ± 0.054 0.780± 0.134 0.780± 0.134 0.780± 0.134

Prostate Cancer LR 0.609 ± 0.000 0.757 ± 0.132 0.722 ± 0.078 0.765± 0.100

SVM 0.635 ± 0.078 0.748 ± 0.156 0.748 ± 0.156 0.835± 0.114

Colon Cancer LR 0.577 ± 0.000 0.877 ± 0.064 0.877 ± 0.064 0.923± 0.054

SVM 0.677 ± 0.178 0.900 ± 0.042 0.915 ± 0.034 0.946± 0.042

Lung Cancer LR 0.741 ± 0.000 0.859 ± 0.062 0.852 ± 0.052 0.896± 0.062

SVM 0.778 ± 0.052 0.859 ± 0.034 0.859 ± 0.034 0.867± 0.040

Breast Cancer LR 0.773 ± 0.000 0.918 ± 0.040 0.955± 0.000 0.955± 0.000

SVM 0.827 ± 0.040 0.909 ± 0.000 0.909 ± 0.000 0.936± 0.050

Leukemia LR 0.710 ± 0.000 0.956 ± 0.030 0.965 ± 0.030 1.000± 0.000

SVM 0.939 ± 0.030 0.965 ± 0.030 0.965 ± 0.030 1.000± 0.000

GSE29490 LR NA ± NA NA ± NA NA ± NA NA ± NA

SVM 0.942 ± 0.034 0.954 ± 0.034 0.958 ± 0.034 0.979± 0.000

GSE25869 LR NA ± NA NA ± NA NA ± NA NA ± NA

SVM 0.891 ± 0.038 0.891 ± 0.044 0.894 ± 0.034 0.897± 0.034

Breast tissue LR 0.778 ± 0.016 0.930 ± 0.010 0.930± 0.016 0.927 ± 0.016

SVM 0.681 ± 0.220 0.932 ± 0.024 0.926 ± 0.020 0.942± 0.008

LSVT LR 0.500 ± 0.000 0.870 ± 0.012 0.824 ± 0.038 0.915± 0.002

SVM 0.500 ± 0.000 0.873 ± 0.036 0.858 ± 0.036 0.908± 0.006

DLBCL LR 0.567 ± 0.014 0.571 ± 0.014 0.579 ± 0.032 0.602± 0.074

SVM 0.594 ± 0.082 0.592 ± 0.064 0.585 ± 0.044 0.600± 0.100

Myeloma LR 0.792 ± 0.000 0.805 ± 0.020 0.804 ± 0.018 0.805± 0.026

SVM 0.794 ± 0.006 0.809 ± 0.014 0.807 ± 0.026 0.813± 0.020

Parkinsons LR 0.865 ± 0.006 0.894± 0.022 0.891 ± 0.016 0.868 ± 0.006

SVM 0.880 ± 0.016 0.884± 0.006 0.877 ± 0.020 0.868 ± 0.016

Wdbc LR 0.878 ± 0.002 0.965 ± 0.010 0.963 ± 0.012 0.971± 0.012

SVM 0.960 ± 0.010 0.979 ± 0.004 0.976 ± 0.002 0.980± 0.008

Indian Liver LR 0.716 ± 0.002 0.727 ± 0.014 0.733 ± 0.008 0.736± 0.006

SVM 0.719 ± 0.006 0.720 ± 0.014 0.718 ± 0.010 0.720± 0.008

Pima Indians Diabetes
LR 0.490 ± 0.070 0.738 ± 0.010 0.738 ± 0.010 0.740± 0.012

SVM 0.734 ± 0.052 0.765± 0.008 0.753 ± 0.040 0.748 ± 0.034

The performances are measured by the average proportion of correct classification in 5-fold cross-validations. The means and 95 % confidence intervals are included. Column
names: None - no data scaling; Minmax - Min-max algorithm; Zscore - Z-score algorithm; GL - GL algorithm. Best performances are emphasized in bold

Results and discussions
In most of the classification tasks, models learned with
unscaled data have the worst performances. This is con-
sistent with our expectations. In general, an appropriate
data processing step (i.e., data scaling) is able to improve
the accuracy of a model. Comparing the GL algorithm
to the Z-score algorithm and the Min-max algorithm, in
most tasks, models learned with the data scaled by the
GL algorithm achieved the best average AUROC’s and the
best average accuracies. Specifically, in the experiments,
out of the 29 task-model cases (16 tasks; 2 models per

task, but LR was not available in 3 tasks), the GL algo-
rithm achieve the best AUROC’s in 27 cases and the best
accuracies in 25 cases. The advantage of the GL algo-
rithm was more notable in datasets with a small number
of samples, such as colon, lung, and prostate, in which the
existence of outliers may significantly affects the model
performance. For example, in the colon cancer diagnos-
tic task, while using the SVM classifier, the model learned
using GL scaled data achieved a 0.822 AUROC, while
the best AUROC achieved by the SVM classifier from
other data scaling methods was 0.725; it was a 13.4 % of
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improvement. The improvements of AUROC using the
data scaled by the GL algorithm were less notable in the
tasks Parkinsons, Wdbc, Indian liver, and Pima Indians
Diabetes. One of the reasons was that the number of sam-
ples in those data sets was relatively large, so the negative
effects of outliers became less significant; another possi-
ble reason was that before the contributors uploaded the
data set, they might have performed a preprocessing step
to correct/remove abnormal samples. It is worthwhile to
point out that, in three task-model cases (i.e., RL and SVM
in the Parkinsons task, and SVM in the Pima Indians Dia-
betes task), although the GL algorithm achieved the best
AUROC’s, it did not achieve the best accuracies. That
might be due to the the threshold selection rule in our
experiments; while the AUROC’s of different task-model
cases were close, the ranking of the accuracies would be
very sensitive to the selected threshold.

Conclusion
In this article, we present a simple yet effective data scaling
algorithm, the GL algorithm, to scale data to an appro-
priate interval for diagnostic and classification modeling.
In the GL algorithm, the values of a variable are scaled in
the (0,1) interval using the cumulative density function of
the variable. Since obtaining the functional expression of
the CDF is difficult, a generalized logistic GL function is
used to fit the empirical cumulative distribution function,
and the optimized GL function is used for data scaling.
The GL algorithm is intrinsically robust to outliers, so it
is particularly suitable for diagnostic/classification mod-
els in clinical/medical applications, where the number
of samples is usually small; it scales the data in a non-
linear fashion, which leads to improvement of accuracy.
Experimental results show that models learned using data
scaled by the GL algorithm generally outperform the ones
using the Min-max algorithm and the Z-score algorithm,
which are currently the most commonly used data scaling
algorithms.
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