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Abstract—The emergence of personal mobile device with
low cost sensors, such as accelerometer and digital compass,
has made dead-reckoning (DR) an attractive choice for indoor
pedestrian tracking. In this paper, we propose a robust DR
pedestrian tracking system on top of such commercially accessi-
ble sensor sets capable of DR. The proposed method exploits the
fact that, multiple DR systems, carried by the same pedestrian,
have stable relative displacements with respect to the center
of motion, and therefore to each other. We first formulate the
robust tracking task as a generalized maximum a posteriori
sensor fusion problem, and then we narrow it to a simple
computation procedure with certain assumptions. A prototype
is implemented and evaluated with a benchmark system that
collects ground truth efficiently and accurately. In a practical
indoor testbed, the proposed scheme has exhibited robust
tracking performance, with reduction in average tracking error
up to 73.7%, compared to traditional DR tracking methods.

Keywords-Robust pedestrian tracking, dead-reckoning, loca-
tion estimation, maximum a posteriori.

I. INTRODUCTION

The ability to accurately track a user’s location in urban

and indoor areas has many applications in the healthcare, lo-

gistic, and entertainment industries. The Global Positioning

System (GPS) service is either blocked or severely affected

by multipath propagation in such environments. On the other

hand, cellular-network-based localization schemes typically

deliver an accuracy of hundreds of meters [1], which is

unacceptable for many real-world applications.

In order to provide practical pedestrian tracking services

with accuracy below room level, many approaches have been

proposed, utilizing various technologies. Received signal

strength (RSS)-based fingerprinting systems [2], [3] require

an off-line training phase in order to build a “radio-map”

of RSS. This approach is not only labor-intensive but

also vulnerable to real-time environmental changes. On the

other hand, practical range-based trilateration systems in

the indoor environment estimate target location by distance

measurements between the target device and each of the

infrastructure nodes, through technologies such as ultra-

sound [4] and Wi-Fi [5], [6]. This approach requires dense

deployment of infrastructure sensors in order to provide

line-of-sight (LoS) coverage everywhere in the service area,

which incurs high hardware cost. A similar problem is

present in real-time adaptive systems such as [7], in which

active “landmark” nodes are installed in the service area to

provide real-time mappings from RSS to location.

In contrast to the afore-mentioned approaches, in which

both the target device and the infrastructure deployment

are indispensable, the dead-reckoning (DR) tracking scheme

is almost self-contained in the target device alone (except

for the initialization phase). A typical DR system consists

of motion sensors, such as accelerometers, whose readings

are used to estimate displacements by double integration.

A major draw-back of such a system is that, the errors in

the estimated displacement accumulate quickly over time

because of the double integration of noisy sensor readings.

In order to reduce the cumulative tracking error in

pedestrian DR systems, the “zero velocity update” (ZUPT)

algorithm has been proposed [8]. This algorithm exploits

an intrinsic property of pedestrian walking: the bottom of

the sole has static contact with the floor which results in

zero acceleration and velocity during a certain phase of each

step taken. Therefore, any non-zero acceleration or velocity

computed from the noisy sensor measurements during this

particular phase should be eliminated because they must be

the results of the accumulated error. This algorithm effec-

tively reduces errors for pedestrian DR systems. However,

the extra hardware cost of such a sensor module and the

cumbersomeness of wearing such a module on the foot limits

this algorithm only to special types of pedestrians, such as

battle combatants and emergency responders.

Recent years have witnessed the emergence of personal

mobile devices that come with DR-capable sensors, includ-

ing both motion sensors, such as accelerometers, and ori-

entation sensors, such as digital compass. Therefore, rather

than purchasing and installing dedicated hardware modules,

obtaining a personal DR tracking system can be made

as simple as downloading a software application on such

mobile devices for the end user. Although this approach is

convenient and commercially accessible, it suffers from three

disadvantages. First, these low cost sensors in mass-market

devices are normally more noisy and the resulting DR

estimation is subject to faster error accumulation. Second,

such low cost sensors have lower rate in updating/refreshing

their readings. Moreover, such mobile devices are usually

placed in the user’s pockets or mounted on belts, which

usually do not experience any zero-velocity phase during a

step. As a result of the arbitrary device placement, the ZUPT

error reduction algorithm is rendered infeasible in this case.

Step-based DR tracking methods have been proposed for

pedestrian tracking without ZUPT. Instead of performing
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double integration, this approach exploits the patterns in

variations of the accelerometer readings caused by steps. The

heading orientation is obtained from the orientation sensor’s

reading if the sensor is properly aligned. Although excessive

tracking error caused by double integration can be reduced,

there can still be tracking errors caused by errors in step

detection (mis-detection/false-detection), stride estimation,

and orientation errors caused by distortion of magnetic fields

by metal and magnetic objects.

In this paper, we propose a robust DR-based pedestrian

tracking scheme implemented using low cost DR-capable

sensors, embedded in commercially accessible mobile de-

vices. The proposed scheme is based on the fact that, when

two or more sets of such sensors are carried by the same

walking pedestrian, they all have stable relative displace-

ments with respect to the center of pedestrian motion, as

well as small and limited local random motions. Therefore,

relative displacements between these devices are also rea-

sonably stable, which can be exploited to reduce the overall

DR tracking error. We first formulate the robust tracking

algorithm as a maximum a posteriori (MAP) sensor fusion

problem in general. We then demonstrate that this algorithm

can be specialized to a simple computation procedure by

making certain assumptions. In order to verify the perfor-

mance of this scheme, we implement a prototype of our

proposed robust tracking system in commercially accessible

devices, as well as a performance evaluation system from

which the ground truth can be efficiently and accurately

obtained indoors. The proposed scheme has exhibited robust

tracking performance with significant reduction in average

tracking error (up to 73.7%) compared to the traditional DR

tracking method, in a practical indoor experimental testbed.

The rest of the paper is organized as follows. Section II

summarizes the related works in the literature of DR-based

pedestrian tracking. Section III describes the principle and

implementation of state-of-the-art step-based DR scheme

with an emphasis on arbitrary device orientation. Section

IV discusses the proposed MAP algorithm for DR tracking

error correction, together with its simplification, in detail.

Section V presents the prototype implementation, experi-

mental setup, results, and discussions. Finally, we conclude

our work and point out future directions in Section VI.

II. RELATED WORK

Both the fingerprinting-based approach and the

trilateration-based approach for localization have been

briefly introduced, with their challenges and limitations, in

Section I. In this section, we focus on the relevant works

in the literature of DR-based pedestrian tracking.

It has been shown experimentally in [9] that, double

integration of accelerometer measurements introduces fast

error accumulation over time. In order to overcome this

cumulative error, ZUPT-based algorithms have been widely

used in foot-mounted DR systems. For example, both [8]

and [10] propose to reset the velocity error during the zero-

velocity phase of each detected step, while [11] applies

ZUPT as pseudo-measurements (observations), fed to an

extended Kalman filter (EKF) for tracking error correction.

For the case of non-foot-mounted pedestrian DR systems,

the step-based DR tracking approach is a preferable choice

because it avoids double-integration. In the literature, most

of the works which adopt this approach mount DR sensors

on fixed parts of the user body with orientation which is

convenient for DR. For example, [12] mounts the sensor

module on the back of the pedestrian’s waist. [13] mounts

the sensor module on a helmet. However, there are also

several works which implement DR tracking with arbitrary

sensor placement and orientation in practical scenarios. For

example, [14] proposes a simple algorithm to find the

horizontal plane when the 3-axis accelerometer is oriented

arbitrarily. In [15], the principal component analysis (PCA)

technique is applied to find heading orientation, whose

effectiveness is also verified experimentally by [16].

Note that, some works in the literature propose to facilitate

DR initialization and DR error correction based on partial

[17] or complete [18] location information provided by

external infrastructure such as ultrasound or Wi-Fi systems.

Although this paper focuses on a robust tracking scheme

which involves only on-body sensors, external information

can also be easily fused with our system to further improve

the tracking performance.

III. STEP-BASED PEDESTRIAN DEAD-RECKONING

The basic idea of the step-based DR tracking is to add the

estimated current step displacement vector to the previously

estimated location. In other words,

lk = lk−1 + sk, (1)

where lk−1 and lk are the location estimates before and after

the kth step, respectively. sk is the estimated displacement

vector for the kth step which is computed as,

sk = [ρk cos θk, ρk sin θk]T , (2)

where ρk and θk are the stride length and heading orientation

for the kth step, respectively.

Despite the simple principle, implementing a practical

step-based pedestrian DR system involves several important

operations, namely, orientation projection, noise filtering,

step detection, stride estimation, and heading determination.

Next, we will describe how to realize these operations.

We have chosen two commercial smartphones, namely,

the Google NexusOne and HTC Magic, for experimental

data collection. Both phones have 3-axis accelerometer and

3-axis digital compass, whose data can be retrieved through

the Android application programming interface (API).

Note that, our proposed method does not require the user

to always carry two smartphones in practice. Instead, mobile

devices such as a mobile phone, a tablet PC, or even a sensor
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set embedded in a customized key chain, can be grouped

flexibly to form multiple sensor sets.

A. Orientation Projection for Arbitrary Device Posture

Practically, the pedestrian may not fix the mobile device

in such a way that the sensor axis is aligned to a convenient

orientation for DR. Instead, devices such as mobile phones

or PDAs are most likely to be placed with arbitrary ori-

entation. Before further processing, the phone’s acceleration

measurements in its x-y-z local coordinate system need to be

projected into the East-North-Up (E-N-U) world coordinate

system using the digital compass’ orientation measurements.

The three orientation measurements (pitch, roll, azimuth)

reported by the Android API represent a sequence of ro-

tations of the phone, starting from the initial orientation

in which its x-y-z local coordinate system is aligned with

the E-N-U world coordinate system. The three rotations are

done in an extrinsic manner. Rotations about the Up axis

(azimuth), the North axis (roll), and the East axis (pitch)

are applied in sequence. In order to obtain the acceleration

values in the world coordinate system, we multiply the

inverse of the corresponding rotation matrices in the reversed

order (inverse pitch, inverse roll, and inverse azimuth) to the

acceleration vector reported in the local coordinate system.

B. Noise Filtering

Both the accelerometer and the digital compass in the

smartphones give noisy measurements. In this paper, we

adopt low-pass filters (LPF) for noise reduction. However,

the fluctuating orientation measurements often experience

sudden changes between two edge values such as 0 and

360 degrees, or −180 and 180 degrees. Applying LPF in

these cases would cause the filtered measurements to be

opposite or perpendicular to the true orientations. Therefore,

we perform the filtering as follows. The raw acceleration

measurements are passed into a pre-LPF with 200 ms win-

dow width. Next, the pre-filtered acceleration measurements

are projected into the E-N-U world coordinate system,

using the latest raw orientation measurements. Effects of

the orientation noise are reduced by passing the projected

accelerations to a post-LPF with 200 ms window width.

C. Step Detection

We utilize the acceleration measurements which have been

projected into the vertical direction to detect steps, similar to

[16]. Figure 1 shows the variations in projected and filtered

vertical acceleration, for 12 steps taken at normal walking

speed. The original data is collected by the HTC Magic

phone, which is placed in one of the trousers side pocket.

Note that larger variations are observed for every other local

minimum, because the steps taken by the leg that is farther

away from the pocket have smaller impact on the sensors.

The small peaks observed in the acceleration measure-

ments are caused by residual sensor noise, random move-

ments of sensor in pocket, and irregular human movements.
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Figure 1. The acceleration variations in the vertical direction after
projection.

In order to eliminate the effects of these peaks, we employ a

relative threshold detection scheme. A new step is detected

when a valid local maximum and a valid local minimum are

detected in sequence. A local maximum is valid if it occurs

at least 150 ms after the most recent valid local minimum,

and the value of the local maximum exceeds that of the

most recent local minimum by at least a threshold value,

∆threshold. Similarly, a local minimum is valid if it occurs

at least 150 ms after the most recent valid local maximum,

and the value of the local minimum is lower than that of the

most recent local maximum by at least ∆threshold.

The choice of the 150 ms time difference threshold is

due to the fact that, at normal walking speed, humans

approximately take two steps per second, which leads to

four or five peaks correspondingly. Therefore, it would

be reasonable to pick 150 ms as the minimum inter-peak

time difference. On the other hand, the detection threshold,

∆threshold, can be determined through calibrations.

D. Stride Length Estimation

Practically, stride length varies from step to step even for

the same pedestrian. We use the model which was proposed

in [19] and verified in [20] to estimate the stride length, ρk,

from acceleration measurements for the kth step as,

ρk = K · 4

√

av-max
k − av-min

k , (3)

where av-max
k and av-min

k are the maximum and minimum

values of the projected vertical acceleration during the kth

step, respectively. The constant K is dependent on each

pedestrian, which can be determined through calibrations.

E. Heading Orientation

In [15], PCA is applied to the horizontal E-N plane to

find the heading orientation, after the original accelerations

are projected into the E-N-U world coordinate system. The

same approach is verified in [16] experimentally. However,

[16] uses a dedicated inertial measurement unit (IMU), with

a data refreshing rate of 50 Hz. On the other hand, the low
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cost sensors in our smartphones have a data updating rate of

less than 25 Hz on average. Therefore, we only have fewer

than half of the data samples compared to [16] for PCA-

based heading detection, which delivers poor performance.

Limited by the low cost device’s hardware data rate, we

choose a different heading detection scheme. The adopted

scheme performs trapezoidal-rule-based numerical integra-

tion over the acceleration readings that are projected into

the E-N 2D plane, over the latest 1.4 seconds (for about two

steps), in order to approximate the current heading direction.

IV. PROPOSED METHOD

After describing the principles and implementation of a

practical step-based DR tracking system on a single mobile

device, we proceed to discuss the proposed robust tracking

algorithm in this section. We first formulate the robust

tracking task as a MAP sensor fusion problem, whose

solution can be sought for by constrained optimization.

Taking into consideration the condition at which fusion

is necessary, we prove that the constrained optimization

problem can be converted to an unconstrained one. Finally,

by making assumptions about the individual DR system’s

estimated variance, we refine the proposed scheme to a

simple computation procedure.

A. System Architecture and Assumptions

Assume that the pedestrian is carrying two sets of sensors,

labelled by set a and set b. Each set of sensors is able to

perform DR location tracking on its own, with independent

tracking error. Note that, the proposed robust tracking

algorithm can easily be generalized to the case of more than

two sets of sensors, under the independence assumption.

Assume that, the two sets of sensors are placed on

the pedestrian’s body with arbitrary but fixed orientations.

More importantly, assume that the two sets of sensors have

reasonably stable relative displacement with respect to each

other. Mathematically speaking, if we let lak and lbk denote

the coordinates of locations for the two sets of sensors at

the kth step, we have,

lak = ma
k + ua

k, and lbk = mb
k + ub

k, (4)

where both ma
k and mb

k have deterministic and fixed dis-

placements with respect to the center of pedestrian motion,

while ua
k and ub

k are random vectors which account for the

limited local random movements of the sensors. ua
k and ub

k

are uniformly distributed within a spherical region centered

at 0 with radii Ra and Rb, respectively. In order to simplify

notations, assume Ra = Rb = R.

Based on this model, we can normalize ma
k = mb

k =
mk, where mk is the center of motion. Therefore the prior

probability density function (pdf) for lak and lbk is,

f(lak, lbk) =

{

α if ‖lak − lbk‖ ≤ 2R,

0 otherwise,
(5)

where α is a constant whose value is dependent on the

dimension of the tracking problem and the radius of un-

certainty region, R.

B. The Robust Tracking Algorithm

1) Initialization: The DR system alone is only able to

estimate the displacement vector but not the initial location.

In order to initialize the DR pedestrian tracking, knowledge

of the initial location, m0, must be provided to the DR

system through either user indication or some other localiza-

tion system. Discussions on utilizing extra information and

other technology for initial location knowledge is beyond

the scope of this paper. Interested readers may refer to [17]

and [18] for more information.

Recall that, ma
k = mk + ua

k and mb
k = mk + ub

k are

the locations of the two sets of sensors after the fixed

displacements with respect to the center of motion are

normalized. In order to initialize, we conveniently assume

that, ua
0

= ub
0

= 0. Therefore, la
0

= lb
0

= m0.

2) Maximum A Posteriori Sensor Fusion: Let l̂ak and l̂bk
denote the DR estimates reported by the two sets of sensors

independently at the kth step. The DR task is to find lak and

lbk which maximize the a posteriori pdf, f(lak, lbk | l̂ak, l̂bk).
From this point onwards, we can drop the index term k for

simplicity of representation without causing any confusion,

because the following discussions are all about the kth step.

According to the Bayes’ Theorem, we have,

f(la, lb | l̂a, l̂b) =
f (̂la, l̂b | la, lb) · f(la, lb)

f (̂la, l̂b)
. (6)

Because the two sets of sensors provide independent DR

estimates, we have,

f(la, lb | l̂a, l̂b) =
f (̂la| la) · f( l̂b| lb) · f(la, lb)

f (̂la, l̂b)
. (7)

On the right hand side of (7), the evidence pdf in the

denominator, f (̂la, l̂b), is not affected by the choice of

either la or lb. Therefore, maximizing f(la, lb | l̂a, l̂b)
is equivalent to maximizing f (̂la| la) · f( l̂b| lb) · f(la, lb).

The terms f (̂la| la) and f (̂lb| lb) are the likelihood pdfs,

which are the pdfs of observing l̂a and l̂b, conditioned on the

actual locations, la and lb, respectively. Due to the residual

noise in filtered sensor measurements and irregularity in

pedestrian body movements, each step’s displacement is

estimated with independent error. The likelihood pdf for the

DR estimation over a few steps can therefore be modelled

as Gaussian, according to the Central Limit Theorem (CLT).

Therefore, both f (̂la| la) and f (̂lb| lb) are Gaussian. The

prior pdf f(la, lb) in (5) is a positive constant within a

spherical region and 0 elsewhere. The robust tracking task

thus becomes a constrained optimization problem as,

maximize
la,lb

f (̂la| la) · f( l̂b| lb)

subject to ‖la − lb‖ ≤ 2R.
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We further observe that there can only be two cases in

which the maximal value is obtained.

In the first case, ‖̂la−l̂b‖ ≤ 2R. As a result, both Gaussian

pdfs can obtain their maximal values (hence their product

is maximized) at l̃a = l̂a and l̃b = l̂b, while satisfying

f (̃la, l̃b) 6= 0. However, in this case, because the optimal

l̃a and l̃b are close to each other, it is not necessary for the

fusion to take place.

In the second case, ‖̂la − l̂b‖ > 2R. The estimates of the

two sets of sensors deviate from each to such an extent that

error correction needs to be done. In order to satisfy that

f(la, lb) 6= 0, the distance between the optimal l̃a and l̃b

must be 2R in this case. This can be proven, almost trivially,

by contradiction as follows. For simplicity, we only consider

the 2-D case here.

Proof: Given that, ‖̂la − l̂b‖ > 2R, and f (̂la| la) ·
f (̂lb| lb) is maximized at la = l̃a and lb = l̃b, respectively,

which satisfy ‖̃la − l̃b‖ = d < 2R. Draw two circles Ca

and Cb centered at l̃a and l̃b with arbitrarily small radii ǫa

and ǫb, respectively, such that ǫa + ǫb + d < 2R. If any

point on Ca or Cb results in a larger f (̂la| la) · f (̂lb| lb),
it would contradict with the condition that l̃a and l̃a are

the optimal feasible points. Therefore, both l̃a and l̃b must

be the local maximum of the likelihood pdfs f (̂la| la) and

f (̂lb| lb), respectively. However, each Gaussian pdf has only

one local maximum which is also the global maximum in

nature. Therefore, l̃a = l̂a and l̃b = l̂b, which contradicts

with the fact that ‖̂la − l̂b‖ > 2R. Therefore, we must have,

‖̃la − l̃b‖ = 2R.

Therefore, the constrained optimization problem becomes,

maximize
la,lb

f (̂la| la) · f( l̂b| lb)

subject to ‖la − lb‖ = 2R.

In order to solve it, let,

lb = la + q

= [xa + 2R cos φ, ya + 2R sinφ]T , (8)

which eliminates the constraint and adds one more free

variable, φ, to the maximization problem.

The objective function to be maximized can thus be

written as,

F = f (̂la| la) · f( l̂b| lb)

= f (̂la| la) · f( l̂b| la + q)

= Q · exp [G], (9)

where,

Q =
1

4π2 · |Σa|
1

2 · |Σb|
1

2

, (10)

and Σa and Σb are the covariance matrices for the Gaussian

pdfs f (̂la| la) and f (̂lb| lb), respectively. We also have,

G = −
1

2
(la − l̂a)T Σ−1

a (la − l̂a) −

1

2
(la + q − l̂b)T Σ−1

b (la + q − l̂b). (11)

At the optimal point, we have the equalities,

∂F

∂xa

= 0,
∂F

∂ya

= 0,
∂F

∂φ
= 0. (12)

Correspondingly, we have,

∂F

∂G
· [

∂G

∂la
]T ·

∂la

∂xa

= 0, (13)

∂F

∂G
· [

∂G

∂la
]T ·

∂la

∂ya

= 0, (14)

∂F

∂G
· [

∂G

∂q
]T ·

∂q

∂φ
= 0. (15)

The term, ∂F
∂G

= Q·exp [G], is always nonzero. Therefore,

we can ignore it in further discussions.

The term ∂G
∂la

is evaluated as,

∂G

∂la
= −Σ−1

a (la − l̂a) − Σ−1

b (la + q − l̂b). (16)

Let,

la = [xa, ya]T , l̂a = [x̂a, ŷa]T , l̂b = [x̂b, ŷb]
T . (17)

We have,

∂la

∂xa

= [1, 0]T , and
∂la

∂ya

= [0, 1]T . (18)

The term ∂G
∂q

is evaluated as,

∂G

∂q
= −Σ−1

b (la + q − l̂b). (19)

The term ∂q

∂φ
is evaluated as,

∂q

∂φ
= [−2R sin φ, 2R cos φ]T . (20)

For specific l̂a, l̂b, Σa, and Σb, (13) to (15) give us three

linear equations, which can be solved for xa, ya, and φ.

However, the covariance matrices, Σa and Σb, for DR

estimates, are difficult to evaluate. Therefore, we further

assume that,

Σa = σ2I, and Σb = σ2I. (21)

Following this assumption, we can simplify (13) to (15) as,

xa − x̂a + xa − x̂b + 2R cos φ = 0, (22)

ya − ŷa + ya − ŷb + 2R sin φ = 0, (23)

xa sin φ − x̂b sinφ − ya cos φ + ŷb cos φ = 0. (24)

Combining (22) and (23) gives us,

tan φ =
ya − ŷb + ya − ŷa

xa − x̂b + xa − x̂a

. (25)

Divide (24) by cos φ gives us,
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Figure 2. Map of the indoor testbed. The arrowed lines sketch the walking
path, and the shaded circles indicate the locations of the waypoints.

tan φ =
ya − ŷb

xa − x̂b

. (26)

Combining (25) and (26) we have,

tan φ =
ya − ŷb

xa − x̂b

=
ya − ŷa

xa − x̂a

. (27)

The result in (27) implies that la = [xa, ya]T lies on the line

that connects l̂a and l̂b.

Moreover, rewriting (22) and (23), we have,

xa =
x̂a + x̂b

2
− R cos φ, ya =

ŷa + ŷb

2
− R sin φ, (28)

which means the optimal la is on the line segment that

connects l̂a and l̂b with distance R away from the middle

point of that line segment.

Consequently, the optimal lb is also on the line segment

that connects l̂a and l̂b with distance R away from the middle

point of that line segment, on the other side of la.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Testbed Setup and Experimental Devices

In order to evaluate the performance of the proposed

scheme, we setup an indoor testbed which spans an area

of 140 m2 in one laboratory on campus, as shown in

Fig. 2. Numerous desktop computers and metal cabinets are

scattered in the testbed. They distort the Earth’s magnetic

fields, which disturb the digital compass readings.

As shown in the same figure, an indoor walking path is

picked in our testbed. The path covers about 90 m in total

distance, with various obstacles and turns. It takes about

2 minutes to walk along it, under normal indoor walking

speed. Note that, actual distances covered and time taken

for travel vary across different experimental trials.

Three smartphones with Android operating system are

carried by a pedestrian for data collection and experiment

control purpose, as shown in Fig. 3. All the phones are

equipped with Wi-Fi modules which connect to the same

wireless LAN for communication purpose.

Figure 3. Experimental data collection devices. From left to right: Google
NexusOne (Worker 1); HTC Magic (Worker 2); HTC Hero (Manager).

Two of the three phones, which are referred to as the

“worker” devices, are placed in the pedestrian’s two trousers

pockets. They are both equipped with 3-axis accelerometers

and 3-axis magnetometers. We program them to record

their sensor readings and timestamps at the highest possible

rate (< 25 Hz), and transmit them back through wireless

connections. Note that, in this case, the radius R for both

phones’ local random movements about the center of motion,

is set to 0.075 m. The third phone is referred to as the

“manager” device, which is hand-held by the pedestrian. We

install programs for the pedestrian to control the experiment

and record ground truth in the “manager”.

B. System Synchronization

All the three smartphones record data using their own

local clock with millisecond time resolution. The syn-

chronization between the phones is performed as follows.

As soon as the pedestrian tabs the “Start” button on the

“manager”, it records down its local timestamp T1, and

sends out a START message to both the “workers”. The ith

“worker” records its local timestamp, T i
2
, and replies with

an ACK message immediately, when it receives the START

message. The manager records down the local timestamp T i
3

when the ACK message is received from the ith “worker”.

We assume both the START message and ACK message

between “manager” and the same “worker” takes the same

amount of transmission time. Therefore, to synchronize with

the ith “worker”, the manager subtracts (T1+T i
3
)/2 from all

of its local timestamps. On the other hand, the ith “worker”

subtracts T i
2

from all of its local timestamps in order to

synchronize with the “manager”.

C. Ground Truth Collection

There are mainly two methods to collect ground truth for

performance evaluation in the DR-based pedestrian tracking

literature. The first method uses location coordinates pro-

vided by GPS [13]. It works only in the outdoor scenario.

Moreover, commercial GPS’s location estimation itself is

subject to considerable error. The second method obtains
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Figure 4. Average tracking errors before and after fusion for 10 experi-
mental trials.

ground truth relying on a reference DR unit [16], which is

built on top of dedicated hardware with low noise and good

updating rate. It can be foot-mounted on the tester so that

ZUPT can be applied for noise cancellation. However, this

approach is expensive and the reference DR system is still

subject to error propagation over time.

For our experiment, we developed an efficient approach

to collect accurate ground truth indoors, utilizing the “man-

ager” phone and testbed setup. Along the walking path

we have marked 10 distinctive locations as waypoints on

the floor. Because each waypoint location is reached twice

or thrice following the walking path, ground truth can be

recorded and referred to for a total of 22 times in one

walking trial. Note that, in order to maintain natural walking

behavior, the pedestrians who participate in the experiment

are not required to follow the path strictly as sketched in the

figure, nor do they have to step on the waypoint locations

precisely, as long as all the waypoints are passed through

exactly in the correct sequence.

The pedestrian starts one trial of experiment by tabbing

the “Start” button on the touch screen of the “manager”. The

“manager” will instantly order both the “workers” to start

sensor data collection through wireless connection. When-

ever the pedestrian is passing through a certain waypoint

on the walking path, he will tab the “Waypoint” button on

the touch screen of the “manager”, which will record the

timestamp of this particular instance of passing. Therefore,

22 pieces of ground truth with timestamps can be collected

accurately and efficiently for each trial of experiment. The

estimated location, at the instance when a certain actual

waypoint is passed by, can be compared to the actual

waypoint location for error distance computation.

D. Tracking Performance

Fig. 4 shows the average location tracking error delivered

by the two “worker” phones, before and after the proposed

fusion algorithm is applied, for 10 experimental trials. As
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Figure 5. Temporal error propagation before and after fusion for Trial 6.

shown in the figure, the effects of the proposed scheme can

be categorized into two different scenarios.

In the first scenario (Trial 3, 4, 5, 6, and 8), both phones’

average tracking errors using traditional DR have been

significantly reduced with our proposed fusion scheme. The

largest error reduction rate is reported in Trial 6 at 73.7%.

We show the error propagation (Fig. 5) and actual tracking

paths (Fig. 6) for this trial, as an example here. Fig. 6

shows that, individual DR systems of the two phones exhibit

adverse error biases in location tracking estimates. On the

other hand, Fig. 5 shows that the difference between the

magnitudes of the two phones’ (adverse) error biases is not

so big. Therefore, the proposed scheme effectively cancels

these error biases out, leaving small residual errors. As a

result, the tracking errors of the proposed scheme for both

phones are significantly smaller than those before fusion.

In the second scenario (Trial 1, 2, 7, 9, 10), the proposed

algorithm delivers intermediate tracking performance, with

average errors in between those of the two phones’ indi-

vidual DR systems. Here, we show the error propagation

(Fig. 7) and actual tracking paths (Fig. 8) for Trial 7, as an

example. Fig. 8 has shown that, the two phones still give

adverse error biases in location tracking estimates, as in the

previous scenario. On the other hand, Fig. 7 has shown that,

the difference between the magnitudes of the two phones’

(adverse) error biases is much larger than before; Phone B’s

DR tracking error before fusion happens to be very small

in this particular trial. Therefore, even after the proposed

scheme cancels part of the error bias out, a large residual

error bias is still left in the fused results. Therefore, the

tracking errors of the proposed scheme for the two phones

are between those of the two phone’s original DR systems.

However, we argue that, the proposed scheme is still

useful in the second scenario, for two reasons. First, in

practical application scenarios, it is hard, if not impossible,

for the pedestrian user to tell which one of the multiple
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Figure 6. Tracking paths before and after fusion for Trial 6.

devices is providing better tracking performance. Second,

the absolute error reduced by the proposed scheme, from

the more erroneous phone, is significantly larger than the

error that it has raised, from the phone with small original

errors. Overall, the proposed scheme is still giving robust

and stable tracking performance.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we have proposed a robust pedestrian track-

ing system, exploiting the stability of inter-device relative

displacements, in commercial mobile devices containing

DR-capable sensors. We have derived the robust tracking

algorithm in general and specialized it to a simple computa-

tion procedure. A prototype of the proposed system, as well

as an efficient and accurate ground truth collection system

have been implemented with accompanying performance

evaluation. The proposed scheme has shown significant

performance improvement in a realistic indoor testbed.

We point out two future directions. First, we have assumed

equal variance for different DR systems in this paper and

performed experiments with devices placed symmetrically

in the pedestrian’s body. A real-time scheme which approx-

imates the estimates’ variance would make the proposed

scheme more accessible. Moreover, map-matching schemes,

and/or external localization technologies can also be fused

into the proposed scheme to further reduce tracking error

and provide initial location information.
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