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Abstract: This paper proposes a robust design approach based on the Design for Six Sigma (DFSS),
to promote the robustness of our previous model-free-adaptive-control-based (MFAC-based) energy
management strategy (EMS) for the plug-in hybrid electric vehicles (PHEVs) in real-time application.
First, the multi-island genetic algorithm (MIGA) is employed for a deterministic design of the
MFAC-based EMS, and the Monte Carlo simulation (MCS) is utilized to evaluate the sigma level
of the strategy with the deterministic design results. Second, a DFSS framework is formulated
to reinforce the robustness of the MFAC-based EMS, in which the velocity and the vehicle mass
are considered external disturbances whilst the terminal state of charge (SOC) of the battery and
the fuel consumption (FC) are conducted as responses. In addition, real-time SOC constraints are
incorporated into Pontryagin’s minimum principle (PMP) to confine the fluctuation of battery SOC
in MFAC-based EMS to make it closer to the solution of the dynamic programming (DP). Finally,
the effectiveness of the robust design results is assessed by contrasting with other strategies for
various combined driving cycles (including velocity, vehicle mass, and road slope). The comparisons
demonstrate the remarkable promotion of the robust design in terms of the energy-saving potential
and the performance against external disturbance. The average improvement of the FCs can reach up
to a considerable 19.66% and 9.79% in contrast to the charge-depleting and charge-sustaining (CD-CS)
strategy as well as the deterministic design of MFAC-based EMS. In particular, the energy-saving
performance is comparable to DP, where there is only a gap of −1.68%.

Keywords: plug-in hybrid electric vehicle; model-free-adaptive-control; energy management; Design
for Six Sigma; robustness

1. Introduction

Electric vehicles (EVs) have been accepted as a global consensus owing to the shortage
of petroleum resources and environmental concerns [1,2]. Nonetheless, the cost and energy
density of batteries have considerably limited the development of EVs. Therefor, plug-in
hybrid electric vehicles (PHEVs) have become a promising solution due to their significantly
lower capacity of battery requirement and no range anxiety compared to pure battery
electric vehicles (BEVs) [3]. To provide a preferable energy-saving potential, a scientific
energy management strategy (EMS) is necessary to online optimize the distribution of the
demanded power between the internal combustion engine (ICE) and electric motors (EMs)
of the PHEVs [4]. However, it is still a challenging issue owing to the high nonlinearity of
the hybrid powertrain, and is attracting numerous investigations in the literature [5].

Various methodologies have been provided to address the energy management prob-
lems, which can be categorized into rule-based strategies, optimization-based strategies,
and learning-based strategies [6]. The most representative rule-based EMSs can be deter-
ministic strategy [7], fuzzy logic strategy [8], and feedback control strategy [9], as well as
charge-depleting and charge-sustaining (CD-CS) strategy, especially for PHEVs [10]. All of
them can be easily implemented in real time due to their lower computational load and
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higher reliability. Nevertheless, these methods require empirical or heuristic knowledge,
leading to nonoptimal solutions. Therefore, optimization-based strategies, including offline
optimization and online optimization, have been increasingly proposed and demonstrated
to significantly promote energy-saving potential [11]. The offline optimization EMSs are
mainly developed by convex programming [12], dynamic programming (DP) [13], Pon-
tryagin’s minimum principle (PMP) [14,15], or other optimization methods [16], which
can provide the global optimal or near-optimal solution. However, they are difficult to
online implement due to their prior knowledge assumption and elevated computational
effort, but they can be deployed as benchmarks or incorporated into other methods to
enhance the online EMSs [17,18]. By contrast, online optimization approaches are more and
more attractive owing to their abilities in real-time operation, for example, the equivalent
consumption minimization strategy (ECMS) derived from PMP can convert the global
optimization into an instantaneous or local optimization problem to realize the real-time
application [19,20]. Furthermore, some alternative PMP-based EMSs, e.g., adaptive PMP
(A-PMP) [21], adaptive ECMS (A-ECMS) [22], map-based ECMS [23], and mode-switching
ECMS [24], are also employed for developing real-time EMSs. All of them can regularly
provide acceptable performance, yet their drawback is the requirement of fruitful history
operation information in order to obtain an adaptive co-state or equivalence factor.

Another kind of online optimization method is predictive-based EMSs, in which the
power split is optimized based on the predicted information (e.g., power demand, velocity,
etc.) [25,26]. Model-predictive control (MPC) is mainly deployed to realize predictive
energy management, where the forecasting methods are utilized to predict future infor-
mation [27,28], and the global optimization methods (e.g., DP or PMP) are integrated into
EMSs to obtain the optimal solution in the predicted receding horizon [29,30]. Moreover,
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) information can also be em-
ployed in MPC-based strategy to facilitate the forecasting of the vehicle velocity in some
specific scenarios [31]. MPC-based strategies can successfully overcome the impact of the
uncertainty of driving cycles in real time, but the control performance (e.g., fuel economy)
is excessive, dependence on the accuracy of the forecasting model. With the development
of artificial intelligence, the learning-based method gradually plays a key role in the online
energy management optimization of the PHEVs, which can be classified into artificial-
neural-network-based (ANN-based) and reinforcement-learning-based (RL-based) [32].
For the ANN-based method, ANN is commonly utilized to estimate the near-global optimal
solutions or forecast driving cycles [33,34]. However, only if the characteristics of driving
cycles are close to the training data, the results will be efficient. Thus, the training data need
to be updated for ANN so as to achieve better performance for various driving cycles [35].
More recently, RL-based methods have attracted more and more attention due to their
model-free attribute and remarkable adaptability [36,37]. Q-learning (QL) is one of the
most popular approaches; however, the training process is reasonably time-consuming,
and the “curse of dimensionality” may be aroused [38]. Hence, a deep Q-leaning (DQL)-
based strategy is suggested to overcome the unstable learning characteristics of the tabular
Q-learning method [39]. Nevertheless, it commonly falls into an overestimation of action
values. Consequently, double-DQL (DDQL) is recommended to address this problem and
has exhibited excellent fuel economy improvement [40]. Unfortunately, the complexity
of the neural network may inevitably lead to a steep computation burden and overfitting
problems, which is unsuitable for the real-time application of EMSs.

Generally speaking, neither optimization-based nor learning-based EMSs are tough
to implement in real time. Considering the timeliness and optimality of the strategy
for unknown driving cycles, simplicity and strong robustness are essential for real-time
EMSs. The PMP-based method and the derived strategy (e.g., ECMS) are more suitable
for real-time application, owing to their instantaneous optimality and simplified control
variable [41,42]. The main challenge is determining how to guess the co-state of PMP or
the equivalent factor of ECMS in real time to guarantee the optimality and robustness of
EMS [43]. In some cases, the co-state is assumed to be a constant value, if the influence of
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the battery state-of-charge (SOC) on battery voltage and resistance is neglected [44]. The
optimal co-state (or equivalent factor) can be successfully derived based on prior known
driving data. However, it may not be applicable for an unknown driving cycle. Therefore,
adaptive or predictive approaches are commonly employed for the real-time application of
PMP (or ECMS) [14,21,22,45]. Yet, the adaptive or predictive controller is only based on the
typical historical driving cycles without considering the randomness of the driving cycle
and vehicle mass, thereby leading to an unreasonable solution for real-time execution.

Owing to the straightforward control logic, feedback control is considered to be
one of the most effective methods for real-time control of the EMSs [5,7,15,19,21,35], in
which battery SOC is usually deployed as the feedback parameter [3,18,46]. Hence, it is
crucial to provide a reasonable reference SOC trajectory close to the optimal battery SOC
trajectory. Linear reference SOC planning is the simplest method to design a reference SOC
trajectory. Once the whole trip distance and the battery SOC limitation (i.e., initial SOC and
terminal SOC) are specified, the reference SOC trajectory can be easily attained [18,21,23].
Nevertheless, it may be extremely different from the optimal SOC trajectory since the actual
battery SOC trajectory is strongly nonlinear. Hence, numerous nonlinear reference SOC
planning approaches are provided to forecast the reference SOC trajectory [17,24,28,29,46].
However, a desirable estimation result is difficult to obtain unless the complexity of the
method is increased, for which a higher computational burden may be aroused. This would
be a significant drawback for real-time applications. On the other hand, trajectory tracking
is another critical issue once the reference SOC trajectory is successfully designed. The
PID-based (or other iterative-searching-based) controllers are constantly employed for
tracking problems, whilst acceptable tracking performance can be provided [16,26,34,47].
Nonetheless, when the output parameter of the controller is designed to be the co-state of
the PMP, unwanted fluctuations may be evoked, which can also lead to undesired increases
in the energy consumption. Thus, a model-free-adaptive-control-based (MFAC-based)
methodology was recommended to smooth the co-state in our previous research, in which
the results demonstrated a meaningful improvement in the fuel economy of PHEVs [48].
However, it still needs to be strengthened. First, the reference SOC in the previous MFAC-
based EMS is designed to be a linear function, which may be distant from the optimal SOC
trajectory, thus limiting the energy-saving potential. Second, the impact on the robustness of
EMS due to stochastic driving cycles and vehicle mass is not yet considered. This may lead
to unpredictable increases in energy consumption at different actual driving cycles with
external disturbances in real time. Inspired by Refs. [49,50], this paper employs the Design
for Six Sigma (DFSS) method to optimize the MFAC-based EMS in order to strengthen the
robustness of the strategy for stochastic driving conditions in real-time application.

The main innovation and contribution are summarized as follows. (1) A deterministic
optimization method based on multi-island genetic algorithm (MIGA) is proposed to
optimize the MFAC-based EMS, and its robustness is evaluated by Monte Carlo simulation
(MCS). (2) A robust design framework is proposed on the basis of the DFSS to enhance
the adaptive capability of the MFAC-based EMS, in which a real-time SOC constraint
derived from the linear reference SOC is incorporated into the PMP to further reinforce the
energy-saving performance of the PHEV whilst operating in various driving conditions.

The remainder of the paper is organized as follows. Section 2 presents the studied
PHEV powertrain models and vehicle dynamic models. In Section 3, MFAC-based EMS
is described, and optimized by MIGA, followed by the MCS analysis of the deterministic
optimization results. The robust design framework of the MFAC-based EMS based on
DFSS is formulated in Section 4, whilst the SOC constraint is also designed according to
linear reference SOC. Section 5 introduces the actual driving cycles together with DP and
rule-based strategy to verify the robustness of the proposed strategy. Finally, conclusions
are summarized in Section 6.
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2. PHEV Model Description
2.1. Introduction of PHEV Powertrain

This study focused on a single-shaft parallel hybrid powertrain equipped with a
multi-speed transmission. As shown in Figure 1, the hybrid powertrain of the PHEV is
composed of an internal combustion engine (ICE), a diaphragm spring clutch, an electric
motor integrated with an automated mechanical transmission (AMT), a final drive, and a
lithium iron phosphate battery pack that can be charged from the power grid.

Engine Clutch Electric Motor

AMT
Final drive

Battery PackPlug-in

Figure 1. The architecture of the PHEV powertrain [51].

Since the electric motor can not only be utilized as a driving motor but also as a
generator, the vehicle can be operated in five different modes to regulate the working state
of the ICE and electric motor through the separation and combination of the clutch. The
flexible working modes will be of great significance for the energy management of the
PHEV to strengthen its energy-saving potential. In this work, the hybrid powertrain is
applied to a bus that is 12 m long with a curb weight of 12,500 kg, and the key parameters
of the PHEV are provided in Table 1. To design the EMS for PHEV, the control-oriented
models including engine, motor, AMT, battery, and longitudinal dynamics are established
for simulation.

Table 1. Key parameters of the PHEV.

Components Descriptions

Vehicle Curb mass: 12,500 kg, gross mass: 16,500 kg@Max
Engine Peak torque: 850 Nm@1400~1600 r/min, peak power: 162 kW, displacement: 6.75 L
Motor Peak torque: 850 Nm, peak power: 130 kW, peak rational speed: 4500 r/min
AMT 6-speed, speed ratio: 6.39/3.97/2.4/1.48/1/0.73
Final drive Speed ratio: 5.785
Battery Capacity: 50 A·h, rated voltage: 354 V

2.2. Powertrain Models

Both the engine and motor are considered as the steady-state numerical model in
the exploitation of an EMS. The displacement of the engine is 6.75 L, and its peak power
is 162 kW. The brake special fuel consumption (BSFC) map of the engine is plotted in
Figure 2a, according to the steady-state experiment data. The fuel consumption (FC) rate of
the engine can be derived from the BSFC by the following equation [41,51].

ṁ f =
Te · ne · be

3600 · 9550 · ρ f
, (1)

where ṁ f represents the engine FC rate. be can be obtained by looking up the BSFC map in
accordance with the engine rotational speed ne and the engine torque Te. ρ f denotes the
diesel density.
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a b

Figure 2. (a) The BSFC of the engine; (b) efficiency of the motor.

The electric motor is a permanent magnet synchronous motor with a peak power
of 130 kW and a peak rational speed of 4500 r/min. The efficiency map of the electric
motor is indicated in Figure 2b. Since the electric motor can be served as both a driving
motor and a generator, its efficiency for the driving mode and regenerative braking mode is
considered to be the same whilst the torque is, respectively, defined as positive and negative.
Accordingly, the efficiency of the electric motor can be expressed as the parametric function
of the rotational speed and torque.

ηm = ηm(nm, Tm) , (2)

where nm and Tm denote the rational speed and torque of the electric motor, respectively,
and ηm represents the mapping relationship of the motor efficiency. Then, the power of the
electric motor Pm can be expressed as follows [41,51].

Pm =
Tm · nm · ηm

−sgn(Tm)

9550
, (3)

where sgn(·) is a sign function, which can be defined by

sgn(Tm) =

{
1, i f Tm ≥ 0
−1, otherwise.

. (4)

According to the characteristics of the hybrid powertrain, the rotation speed of the
engine and motor should be consistent when it is operated in the hybrid mode. The
relationship of the rotational speed between driving wheels and that of the two power
sources is expressed as follows [48,51].

nwheel =
ne

igi0
=

nm

igi0
, (5)

where nwheel is the rational speed of the driving wheels, and ig and i0 denote the gear ratio
of AMT and final drive, respectively.

The AMT can not only assist in adjusting the working points of the engine and motor,
but also downsize the output torque of the engine and motor. The AMT model can be
described as follows.

Tout = Tin · ig · ηAMT , (6)

where Tout and Tin denote the torque output and input from the AMT, respectively. ηAMT
represents the efficiency of the AMT for different gear.

The lithium iron phosphate battery pack with a rated voltage of 354 V is utilized
for the studied PHEV, and its nominal capacity is 50 A·h. As shown in Figure 3a, the
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internal-resistance equivalent model is utilized to simplify the dynamic characteristics
of the battery pack due to that it has been widely adopted to describe the complicated
dynamics of the charge and discharge process [10,12,17,21,48]. In this model, the open
circuit voltage and the internal resistance are generally considered as the function of the
battery SOC. The nonlinear characteristics of the battery dynamics are indicated in Figure
3b, according to the experimental data.

R0

PbattI

a b

Figure 3. (a) Equivalent circuit model of the battery; (b)battery characteristic curve.

The equivalent circuit model of the battery pack is described as follows.

Pbatt = Uoc(SOC) · I − I2 · R0(SOC) , (7)

where Pbatt is the battery power consisting of the electrical power input or output of the
battery. Uoc, I, and R0 represent the open circuit voltage, the battery current, and the
internal resistance, respectively.

By solving Equation (7) for the current I and according to the definition for the
variation of the battery SOC, the dynamics of the battery pack system can be expressed
as follows.  I = Uoc(SOC)−

√
Uoc(SOC)2−4·PbattR0(SOC)

2R0(SOC)
SȮC = − I

Qbatt
= f (SOC, Pbatt)

, (8)

where SȮC represents the variation of the battery SOC, and Qbatt denotes the nominal
capacity of the battery.

2.3. Vehicle Dynamic Model

The longitudinal dynamic model is normally deployed to solve the energy consump-
tion problem while the impact of the vehicle’s lateral dynamics and vertical dynamics are
neglected. The simplified vehicle dynamic model is described as follows [51].{

M · dv
dt = Td

rwh
− 1

2 Cd Aρdv2 −Mg( fr cos θ + sin θ)

Td = (Te + Tm) · ig · i0 · ηT + Tb
, (9)

where M represents the vehicle gross mass, consisting of the curb mass mr and vehicle
load mass mp. Td, rwh, Cd, A, ρd, and θ represent the wheel torque, wheel radius, air drag
coefficient, front area, air density, and road slope, respectively. v is the vehicle velocity. g,
fr, and ηT , respectively, represent the gravity acceleration, rolling resistance coefficient, and
the efficiency of the transmission. Tb is the mechanical braking torque on wheels provided
by conventional friction brakes, while regenerative braking is insufficient to ensure the
desired braking torque.
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3. Description and Analysis of the MFAC-Based EMS
3.1. Description of the MFAC-Based EMS

The MFAC-based EMS is deployed as a hierarchical control architecture consisting of
two layers. The lower layer is the PMP-based EMS, which is used to distribute the desired
torque between engine and motor to optimize energy consumption. The upper layer based
on MFAC is employed to online adjust the co-state of the PMP to achieve satisfactory
energy-saving performance. It primarily consists of three modules, i.e., reference SOC
planning module, PMP module, and MFAC module, as shown in Figure 4.

PHEV

Reference

SOC planning
MFAC

PMP

Driving 

cycle
Co-state

 SOCref

 SOC

Tm
Te

Ddist

Td

Figure 4. Diagram of the MFAC-based EMS.

3.1.1. Reference SOC Planning

The reference SOC planning is simplified as a linear function of the traveled distance
in the MFAC-based EMS, considering that the battery power is normally depleted at the
end of the driving trip. Then, the reference SOC of the vehicle can be estimated according
to the initial SOC and terminal SOC of the battery, which is expressed as follows.

SOCre f = SOCi −
(SOCi − SOCt)

Dtotal
· Ddist , (10)

where SOCre f , SOCi, and SOCt represent the linear reference SOC, initial SOC, and terminal
SOC of the battery, respectively. Ddist and Dtotal represent the traveled distance and the
whole trip distance, respectively.

3.1.2. Formulation of PMP

Since PMP can convert global optimization into an instantaneous one, it has been
widely adopted to improve EMSs [14,15,17]. The optimization objective of the PMP for a
PHEV can be represented only by the engine FC due to the electric power being commonly
used up at the end of a driving mission [18,21,41]. The cost function is expressed as follows.

J=min
∫ t f

t0

ṁ f (x(t), u(t), t) · dt , (11)

where x(t) and u(t) are the state and control action, respectively. t is the time, whilst [t0, t f ]
is the optimization horizon. ṁ f (x(t), u(t), t) represents the instantaneous fuel consumption
rate. Note that the battery SOC and battery power are critical parameters for EMS; they are
taken as the state variable and control variable, respectively. Accordingly, the Hamiltonian
function is presented as follows.

H(SOC, Pbatt, λ) = ṁ f (SOC, Pbatt) + λ · SȮC , (12)

where λ is the co-state variable. The PMP can simplify the global optimization problem
in capturing the optimal control sequence u∗(t) at each instant of time to minimize the
Hamiltonian function, which can be described as follows.

u∗(t) = arg min H(SOC(t), Pbatt(t), λ(t)) , (13)
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while the state variable and the co-state evolve in the following expression.{
SȮC(t) = ∂H

∂λ = f (SOC(t), Pbatt(t))
λ̇(t) = − ∂H

∂SOC = −λ ∂SȮC
∂SOC

. (14)

Furthermore, the constrained boundaries should be respected for minimizing the
Hamiltonian, in which the initial and the terminal of the battery SOC, namely, SOC(t0)
and SOC(t f ), are prescriptive, respectively. Considering the physical limitations of the
powertrain components, some boundaries are also designed to guarantee the desired power
at the wheels, which can be described as follows:

ne_min(t) ≤ ne(t) ≤ ne_ max(t)
nm_min(t) ≤ nm(t) ≤ nm_ max(t)
Pe_min(ne(t)) ≤ Pe(t) ≤ Pe_ max(ne(t))
Pm_min(nm(t)) ≤ Pm(t) ≤ Pm_ max(nm(t))

, (15)

where ne(t) and nm(t) denote the rotational speed of the engine and the motor, whose lower
and higher boundaries are limited by ne min(t), ne max(t), nm min(t), and nm max(t), respec-
tively. Pe(t) and Pm(t) denote the output power of the engine and the motor, where the
lower and higher boundaries are, respectively, confined by Pe min(t), Pe max(t), Pm min(t),
and Pm max(t).

3.1.3. Formulation of MFAC

For PMP-based EMSs, the co-state is a significant parameter for achieving an out-
standing control performance. Inspired by Ref. [52], a model-free-adaptive-control (MFAC)
method is employed to online adjust the co-state of PMP based on a feedback control
architecture, where the battery SOC is considered as the state variable. The MFAC consists
of the control module and estimating module, and both of them can be converted into a
discrete-time state. Thus, it can be utilized for online adjustment of the co-state for the
PMP-based EMS in real time, and the control system is described as follows.

SOC(k + 1) = SOC(k) + ϕ(k) · ∆λ(k)
∆λ(k)=λ(k)− λ(k− 1)
∆SOC(k) = SOC(k)− SOC(k− 1)

, (16)

where SOC(k) and λ(k) denote the system state and output variable at time k, representing
the current SOC and co-state, respectively. ϕ(k) is the bounded pseudo partial derivative
(PPD) of the system.

Then, regarding the one-step-ahead prediction error function that can address the
excessive control effort of the MFAC, the control law of the system is expressed as follows.

λ(k) = λ(k− 1) +
ρk ϕ̂(k)

λk + |ϕ̂(k)|2
[SOC∗(k + 1)− SOC(k)] , (17)

where ρk and λk represent the step factor and weighting factor to ensure the universality
of the method and confine the variation of the control variable, respectively. SOC∗(k + 1)
represents the reference SOC at k + 1 time. ϕ̂(k) is the estimation of the ϕ(k), which is
determined by the following formula.{

ϕ̂(k) = ϕ̂(k− 1) + ηk∆λ(k−1)
µk+|∆λ(k−1)|2

× [∆SOC(k)− ϕ̂(k− 1)∆λ(k− 1)]

ϕ̂(k) = ϕ̂(1) i f ϕ̂(k) ≤ ε, or |∆λ(k− 1)| ≤ ε
, (18)

where ηk and µk represent the step factor and weighting factor, respectively. ε is a small
positive constant. ϕ̂(1) is the initial value of ϕ̂(k).



Energies 2022, 15, 7467 9 of 24

3.2. Deterministic Optimization of the MFAC-Based EMS

Once the parameters of the MFAC are determined, the MFAC-based EMS can be
utilized for a real-time application. A deterministic method may be appropriate to calibrate
the characteristic parameters of the MFAC to acquire a desirable co-state for PMP. Thereby,
a multi-island genetic algorithm (MIGA) and a combined driving cycle (shown in Figure 5)
containing velocity, road slope, and the random variation of the passenger numbers are
employed to optimize the parameters of the MFAC.
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Figure 5. The combined driving cycle. (a) Velocity; (b) passengers; (c) road slope.

Note that the stochastic vehicle mass is composed of the curb mass and the passenger
mass, which can be calculated by the numbers of the passenger, where the passenger quality
is defined as 70 kg [53]. The combined driving cycle is acquired from an actual bus route.
The main parameters and the constraints of MFAC are listed in Table 2.

Table 2. Main parameters of the MFAC.

Descriptions Parameters Constraints

Step factor of the control law ρk (0, 1]
Weighting factor of the control law λk (0, 1]
Step factor of the PPD estimation ηk (0, 1]
Weighting factor of the PPD estimation µk (0, 1]

In the optimization process, the four parameters of the MFAC are considered as
the design variables, while the fuel consumption of the engine is taken as the objective.
Furthermore, the terminal SOC at the end of the trip is designed as the constraint, which is
defined as a soft constraint of [0.25, 0.32] to avoid the overdischarge of the battery. Thus,
the deterministic optimization model is governed by the following equation.

min FCdt

s.t.


0 ≤ ρk ≤ 1
0 ≤ λk ≤ 1
0 ≤ ηk ≤ 1
0 ≤ µk ≤ 1
0.25 ≤ SOCt ≤ 0.32

, (19)

where FCdt represents the fuel consumption of the engine for deterministic optimization.
The detailed description of the optimization process to obtain the optimal parameters

of MFAC based on MIGA is illustrated in Table 3.
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Table 3. The deterministic optimization process.

MIGA Method to Optimize MFAC-Based EMS

1 Initialize the variables ρk, λk, ηk, µk and setting the constraints;
2 Output Λi through MFAC according to the prescribed ρk, λk, ηk, µk by MIGA at each iteration i;
3 Calculate the Hamilton function according to Equation (12) at each time j for each iteration i, and obtain the optimal control
that minimizes H at each time j;
4 Update the state variable SOC based on the above optimized control variables for the time j + 1;
5 Repeat step 2 to 4 until j meets the time requirement whilst the state variable SOC also meets the predesigned limitation requirement;
6 Calculate the engine fuel consumption for iteration i;
7 Repeat step 2 to 6 until i meets the iteration requirement, and take the control parameters corresponding to the iteration with
the minimum fuel consumption as the optimization results.

The process of the optimization can be seen in Figure 6, and the optimal parameters of
MFAC are obtained corresponding to the minimum objective value where the optimization
lasts for 668 iterations. The optimization results of the parameters are listed in Table 4.

b

Minimum appears 

at 668 iterations a

Figure 6. (a) Optimization objective; (b) design variables.

Table 4. The deterministic optimization results of the parameters for MFAC.

Parameters ρk λk ηk µk

Optimal results 0.4036 0.2220 0.8047 0.9792

Here, the optimal constant co-state (i.e., constant co-state) of the PMP with its cor-
responding results of the EMS are also calculated for comparison with the MFAC-based
strategy. The performance of the MFAC-based EMS for the deterministic optimal solution
can be seen in Figure 7.

The results indicate that the co-state can converge nicely to the optimal constant co-
state after an adaptive adjustment. This will be of significant advantage to decrease the
fuel consumption of the PHEV. Similar to DP and optimal constant co-state control, the
battery SOC of the MFAC-based EMS descends quickly at the initial stage since the vehicle
is operated in the EV mode. With the adaptive adjustment of co-state, the vehicle switches
to the hybrid mode, so that the descending speed of the battery SOC tends to be steady
until the end of the trip. The terminal SOC of the MFAC-based strategy is 0.2526, and is
slightly lower compared to the other two strategies, yet it still satisfies the limitation of the
terminal SOC.
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(b) (c)

(a)

Figure 7. (a) Co-state; (b) SOC trajectory; (c) fuel consumption.

As shown in Table 5, the FC of the MFAC-based EMS with a deterministic optimal
solution is very close to the other two offline optimization methods. It means that the
deterministic solution has considerable effective for the MFAC-based EMS. It is worth
mentioning that the PMP with an optimal co-state can also achieve a perfect performance
in energy saving in consistencywith DP, yet a little difference exists for their SOC trajectory
and FC trajectory.

Table 5. Comparisons of different EMSs.

Items MFAC-Based Constant Co-State DP

Terminal SOC 0.2526 0.2643 0.2713
Fuel consumption (L) 6.454 6.353 6.378

3.3. Monte Carlo Simulation for Deterministic Method

The MFAC-based EMS with a determined optimization has the acceptable performance
for real-time energy management of the PHEV. However, the driving cycles cannot be
known prior; they randomly change. Additionally, the randomness in the number of
passengers may also have a considerable impact on the power requirements of the vehicle,
which will lead to an inadaptability of the deterministic optimal solution. Consequently,
the Monte Carlo simulation is deployed to estimate the reliability of the deterministic
solution. As shown in Figure 8, both the driving cycles (composed of velocity and road
slope) and vehicle mass (regarding the changing of the passengers’ mass) are designed as
the disturbance, where they are assumed as the normal distribution. After applying the
disturbance to the MFAC-based EMS, the response variables are evaluated based on the
designed feasible region, then the sigma level of the deterministic design can be derived.

In this paper, the terminal SOC is designed as the response, so that the reliability
analysis can be transformed into determiningwhether the terminal SOC locates within the
feasible region when the determined optimal solution is applied. Since the descriptive
sampling method can not only reduce sampling times but also maintain the statistical
quality of response analysis compared with the conventional random sampling method,
it is selected to simulate the random disturbance in MCS. Then, the reliability of the
determined design can be described as follows.{

R= 1−Pf

Pf =
N f
Nt

, (20)
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where R is the reliability, Pf is the probability of failure, and N f and Nt represent the
number of points in the infeasible region and the total number of samples, respectively.

MFAC-based 

Energy 

management

Z1

Z2

MCS cloud
Constraints

Feasible 

region

Infeasible 

region

Monte Carlo simulation

Start Terminal

Middle

  

Bus stop
V

eh
ic

le
 M

as
s

Driving cycles

Disturbance Response analysis

 The normal distribution of the sigma level

-1 1-2-3-6 2 3 6

68.3%
95.5%

99.73%
99.9999998%

Mean of Response

Failure probabilityReliability

Constraints

Figure 8. MCS analysis of the optimization design.

Moreover, some specific statistical variables, including the mean and standard devia-
tion (i.e., Std. Dev.), of the terminal SOC are also evaluated by the following equations.

µSOCt =

n
∑

i=1
SOCt(i)

n

σSOCt =

√
n
∑

i=1
(SOCt(i)−µSOCt )

2

n−1

, (21)

where n is the total number of samples, and i represents the ith sample.
The MSC results are shown in the following figures. From Figure 9a, it can be seen

that many sampling points of the terminal SOC are located within the infeasible region,
which implies that it may lead to the overdischarge or incomplete discharge of the battery.
Both of them will have a disadvantageous impact on the vehicle operating. A similar
conclusion can be obtained from Figure 9b. Although the mean value of the terminal SOC
is 0.3, whilst the Std. Dev. is just 0.04, the reliability of the deterministic optimization results
is still unacceptable owing to that the sigma level of the terminal SOC at the lower and
upper boundary are only−1.244σ and 0.487σ. This also demonstrates that the deterministic
optimal method has higher rates of failure probability, and it may be unsuitable for the
characteristic parameters design of the MFAC-based EMS.



Energies 2022, 15, 7467 13 of 24

[0.25,0.32]

Quality:0.328
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Std.Dev.:0.04

Lower bound:0.25

Quality:-1.244

Upper bound:0.32

Quality:0.487

(a) (b)

Figure 9. (a) Number of points for the terminal SOC; (b) probability of terminal SOC.

4. Robust Design of the MFAC-Based EMS
4.1. SOC Constraint Based on Linear Reference SOC

In an MFAC-based EMS, reference SOC is designed as a linear function. In fact, the
actual battery SOC has strong fluctuant characteristics, which may give rise to promote the
energy-saving potential. To investigate the battery SOC characteristics, different driving
cycles are deployed (Figure 10), and the results for MFAC-based EMS and DP are shown in
Figure 11.

Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5

Figure 10. Driving cycles for analysis of SOC.

Figure 11. (a) Battery SOCs of MFAC-based EMS; (b) battery SOCs of DP.

The results reveal that the SOC fluctuation caused by different driving cycles and
load changes is within a certain range, whether MFAC-based EMS or DP. Particularly, the
interval can be thought of as parallel to the linear reference SOC, where the interval of the
DP is much narrower in contrast to the MFAC-based EMS. Inspired by the conclusion, a
battery SOC constraint based on linear reference SOC is designed to impose restrictions on
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the battery SOC caused by MFAC-based EMS. It means that the upper and lower boundary
of the battery SOC for MFAC-based EMS can be defined according to the linear reference
SOC. Therefore, the boundaries are expressed as follows.

SOChigh =

{
SOCre f
SOCre f + α

SOC ≥ 0.65
SOC < 0.65

, (22)

where SOChigh denotes the high boundary of the battery SOC, and α is an adjustment factor,
herein α = 0.1.

SOClow =

{
SOCre f − γ 0.35 ≤ SOC < 0.8
0.25 SOC < 0.35

, (23)

where SOClow denotes the lower boundary of the battery SOC, and γ is utilized to adjust
the lower boundary, which is defined as 0.15. Moreover, the minimum lower boundary is
limited at 0.25, according to the terminal SOC of PMP.

Then, a penalty factor is introduced in the Hamiltonian of PMP to confine the irregu-
larfluctuation of battery SOC, for which an additive penalty function µ(SOC) is incorpo-
rated into Equation (12), which is rewritten as follows:

H(SOC, Pbatt, λ) = ṁ f (SOC, Pbatt) + [λ + µ(SOC)] · SȮC , (24)

where the penalty function is the form of an SOC piecewise function, which is described as

µ(SOC) =


κ
−κ
0

SOC < SOClow
SOC > SOChigh

else
, (25)

where κ is a penalty factor to confirm the battery SOC trajectory within the constraints, for
which it will be more close to the results of DP.

Note that the value of µ(SOC) is zero when the battery SOC limits are satisfied, for
which the original formulation (as shown in Equation (12)) will not be changed. Regardless
of whether the battery SOC tends to go above or go below the boundary limit, the penalty
factor κ will promote or impede the usage of electric energy to confirm the actual SOC
within the predesigned interval.

4.2. Robust Design Based on DFSS

The diagram of the DFSS method for parameter optimization is shown in Figure 12.
It is deployed as a two-layer framework. The outer layer is used for control parameters
(i.e., ρk, λk, ηk, µk) optimization of MFAC, for which the MIGA algorithm is employed. The
inner layer is utilized for reliability analysis of the optimized results, which is constituted
by MCS and MFAC-based EMS. It is necessary to note that the outer layer is the same as
the deterministic optimization, which is described in detail in Section 3.2. The inner layer
analyzes the robustness of the deterministic optimization results based on MCS, which
can randomly generate external disturbance (i.e., stochastic driving cycles and random
vehicle mass).
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Figure 12. The diagram of the DFSS method.

The optimization process is detailed as follows.
Step 1: The control parameters of MFAC are provided by the outer layer for each

iteration while the disturbance is generated by the inner layer. A total of 200 experiments
of the random vehicle mass, together with random velocity profile, are deployed by
descriptive sampling method for each iteration.

Step 2: The fuel consumption and terminal SOCs are determined through MFAC-
based EMS based on the disturbance for each iteration.

Step 3: The sigma level of the terminal SOC together with the mean and the standard
deviation of the FC are assessed by the MCS method. Then, they are considered as responses
to be transmitted into the outer layer.

Step 4: Step 1 to Step 3 are continued until the number of the iterations is satisfied to
the predesigned N. Then, the lowest F(X) among all of the solutions is considered as the
optimal solution, whilst it should satisfy the constraints of the sigma level.

In this paper, the mean and the standard deviation of the FC are designed as the
objective, while the sigma level of the terminal SOC is designed as a constraint. Hence, the
optimization function can be expressed as follows.

min F(X)=v1 · µFC(X) + v2 · σFC(X)

s.t.
{

µSOCt(X) + n · σSOCt(X) ≤ 0.32
µSOCt(X)− n · σSOCt(X) ≥ 0.25

, (26)

where F(X) is the cost function, X is a vector composed of the control parameters of the
MFAC and the external disturbance, µFC and σFC denote the mean and standard deviation
of the fuel consumption, respectively, ω1 and ω2 denote the weighting factor of the µFC
and σFC, and n is the sigma level, herein it is 6.

It needs to be further explained that the control parameters of the MFAC and the
constraints were defined in Equation (19). The external disturbance is mainly constituted
by random velocity and vehicle mass. The random velocity is acquired from a collection of
the driving cycles, as shown in Figure 13.
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Figure 13. Collection of the driving cycles.

Here, 35 groups of the velocity profile from an actual bus route are collected, for which
27 groups are used for DFSS design and the last 8 groups are employed to estimate the
performance of the DFSS design results, subsequently. Accordingly, the variation of the
driving cycle can be defined as follows.{

v = cyclei
i ∈ [1, 2, . . .] & i ≤ 27

, (27)

where i should be a positive integer, and cyclei represents the ith driving cycle.
The vehicle mass is randomly changing according to the variation of the bus stop

interval. It is randomly generated by the optimal Latin hypercube design (Opt, LHD)
method [48], for which the constraints are defined within a scope of [12,500, 16,500] kg.

5. Results and Discussion
5.1. Robust Results

As shown in Figure 14, the terminal SOCs and the FCs corresponding to 200 experi-
ments are returned at each iteration for MCS analysis. The variation of the terminal SOC
has noteworthy distinctive characteristics at the iteration. The lower boundary can be
significantly satisfied for each experiment, while the upper boundary is surpassed in many
cases. It demonstrates that the SOC constraint has a remarkable promotion of the reliability
for the minimum terminal SOC. Additionally, the terminal SOC also has a noticeable impact
on the FC, for which the higher the terminal SOC, the larger the FC.

Figure 14. The experiment for an iteration.

Consequently, a robust design process lasts for 500 iterations to obtain the optimal
solution. The changing of the terminal SOC for each iteration can be seen in Figure 15a. It
is worth noting that the terminal SOC of each iteration is derived based on the mean of the
external disturbance. That means that the mean value of the driving cycles and the vehicle
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mass based on the 200 experiments are employed to calculate the required results at each
iteration. The robustness of the design is evaluated by the sigma level of the terminal SOC,
as shown in Figure 15b. The lower boundary can be better guaranteed, while the sigma
level of the upper boundary is unstablewith respect to the disturbance. Thus, the optimal
results need to ensure that the cost function is minimal whilst the sigma level of the upper
and lower boundaries are simultaneously satisfied. The optimal solution of the robust
design appears at 412 iterations while the sigma level of the response is 8 for both the upper
and lower boundary of the terminal SOC. Meanwhile, the minimum cost function can also
be acquired at the same iteration (Figure 15c).

Accordingly, the optimal control parameters of the MFAC can be obtained at 412
iterations, whilst the optimal parameters are, respectively, 0.5476, 0.9401, 0.1490, and 0.7607,
as shown in Figure 16.

5.2. Discussion

Eight groups of the combined driving cycles are deployed to evaluate the performance
of the robust results whilst the road slope is also considered, according to Figure 5. As
shown in Figure 17, the variation of the velocity and vehicle mass is considered as the main
disturbance to the MFAC-based EMS.

To verify the effectiveness of the robust results, the DP results, as well as the solution
based on the CD-CS, are also calculated and compared with the robust design.

(a)

(b)

(c)

Iterations

Figure 15. (a) Terminal SOC for each iteration; (b) sigma level of the terminal SOC; (c) cost function.

(412,0.5476)

(412,0.9401)

(412,0.1490)

(412,0.7607)

Figure 16. The robust optimization results.



Energies 2022, 15, 7467 18 of 24

NO.1 NO.2 NO.3 NO.4

NO.5 NO.6 NO.7 NO.8

Figure 17. The combined driving cycles for evaluation.

5.2.1. SOC Constraints

In this paper, the SOC constraints based on the linear reference SOC are designed
to narrow the changing space of the battery SOC for a robust design. Figure 18 exhibits
the performance of the SOC constraints concerning different driving cycles. The upper
and the lower constraints of the battery SOC can be satisfactorily generated according
to the linear reference SOC. Furthermore, they can successfully inhibit the battery SOC
within the narrower boundary, thereby it will be more approximate to the optimal battery
SOC trajectory. It should be pointed out that the constraints are integrated into the PMP
whilst a penalty is added to determine whether the battery is working. Although the lower
boundary is evidently less than 0.25 in some cases, it does not mean that the battery SOC
will be below 0.25. It is worth noting that the lower boundary is designed to maintain at
0.25 near the end of the trip; this will be a benefit to ensure the terminal SOC at the expected
value. On the other hand, the upper boundary is parallel to the linear reference SOC in
most cases. Yet, it may have fluctuations in some cases (e.g., in NO. 6), thereby leading
to an unsuccessful restriction to battery SOC. Nevertheless, the introduction of the SOC
constraints can remarkably facilitate the robust design of the MFAC-based EMS.

NO.1 NO.2 NO.3 NO.4

NO.5 NO.6 NO.7 NO.8

Figure 18. SOC constraints for different driving cycles.

5.2.2. Co-State

The comparisons of the co-state between deterministic design and robust design are
shown in Figure 19. The results indicate that the adaptive ability of the robust design is
considerably stronger than that of the deterministic design for which the convergence of the
robust results is obviously better than deterministic solution under different driving cycles.
It needs to be further clarified that the co-state of the MFAC-based EMS can gradually
converge to the optimal constant co-state of the PMP which was confirmed in Ref. [48].
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In other words, the performance of the MFAC-based EMS is significantly influenced by
the convergence of the co-state with respect to different driving cycles. The better the
convergence, the stronger the robustness.

NO.1 NO.2 NO.3 NO.4

NO.5 NO.6 NO.7 NO.8

Figure 19. Comparisons of the co-state.

5.2.3. Battery SOC

The battery SOC can reflect the charge and discharge of the battery, which has a
considerable impact on FC. Figure 20 provides the SOC trajectories of the robust design for
various driving cycles.

NO.1 NO.2 NO.3 NO.4

NO.5 NO.6 NO.7 NO.8

Figure 20. Comparisons of the battery SOC.

SOC trajectories for DP and CD-CS, as well as the deterministic design, are also
deployed for comparison. DP has been accepted as the global optimization method, and
the engine and motor will work more in blended mode during the whole trip. Therefore,
the battery SOC shows a slow downward trend for all driving cycles, unlike the CD-CS.
Regardless of whether for the robust design or the deterministic design, the overall trend of
the battery SOC also descends until the end of the trip. However, there is more fluctuation
for the deterministic design, which therefore may lead to a higher FC. Yet, the robust design
can remarkably reduce the unexpected fluctuation, bringing it closer to the global optimum.

As shown in Table 6, the terminal SOC of the different strategies can satisfy the lower
and upper limitation of 0.25 to 0.32. Nevertheless, the standard deviation of the terminal
SOC for deterministic design and CD-CS is much larger than that of the robust design and
DP. This reveals that the robust design has stronger stability to resist external disturbance,
and its performance is closer to DP. Furthermore, the mean of the terminal SOC for the
robust design is smaller than others. This also demonstrates that the electrical energy can
be consumed more thoroughly, which will decrease fuel consumption.
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Table 6. Results of the terminal SOCs.

Items
Terminal SOCs

Mean Std. Dev.
NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8

DP 0.275 0.268 0.281 0.284 0.267 0.264 0.285 0.267 0.274 0.0085
MFAC-robust 0.255 0.278 0.266 0.253 0.254 0.256 0.256 0.270 0.261 0.0092
MFAC-deterministic 0.255 0.251 0.278 0.304 0.253 0.255 0.256 0.258 0.264 0.0183
CD-CS 0.267 0.281 0.320 0.288 0.265 0.273 0.281 0.287 0.283 0.0173

5.2.4. Fuel Consumption

To examine the energy-saving performance of the robust design, the engine operating
points of the robust design and deterministic design are plotted in Figure 21, as well as the
DP and CD-CD for comparison. Four strategies are executed under different driving cycles,
and the FCs are cumulatively computed based on the BSFC. It can be seen that the working
points of the strategies are comparatively concentrated in the high-efficiency zones, except
that of the CD-CS. It seems that the work points of the robust design are more concentrated
compared to DP; however, this is mainly because the number of the working points is
different. The MFAC-based EMS can lower the operating frequency of the engine in the
low-efficiency region, and both the deterministic and robust designs of the MFAC-based
EMS have fewer engine working points compared to DP. Thereby, the percentage of the
engine working points in the high-efficiency zone is lower than DP.

NO.1 NO.2 NO.3 NO.4

NO.5 NO.6 NO.7 NO.8

Figure 21. Comparisons of the engine working points.

As shown in Table 7, the percentages of engine operating points in the high-efficiency
area with be ≤ 205 g/kWh are calculated. The statistics are focused on the ratio of the
working points within the efficient area to all operating points during the whole trip, so as
to more intuitively reflect the FC of the engine. The results indicate that DP has the most
energy-saving potential due to its globally optimal characteristic. The robust design of the
MFAC-based strategy is slightly suboptimal compared to DP. Although the deterministic
design may have an obvious advantage in contrast to the robust design in some cases (e.g.,
in NO.1), its stability for various driving cycles is weaker than the robust design. The robust
design can be considered as the perfect approach for a real-time application compared with
the deterministic design and CD-CS.
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Table 7. Percentages of engine operating points in the high-efficiency zone.

Items
Percentages of Engine Operating Points @ be ≤ 205 g/kWh (%)

NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8

CD-CS 9.27 10.72 9.07 7.80 7.32 9.36 6.76 7.44
DP 15.18 15.72 14.35 15.23 14.92 15.05 14.77 13.34
MFAC-deterministic 13.21 12.17 11.51 10.88 9.39 12.46 12.40 9.07
MFAC-robust 12.44 15.65 13.51 12.21 13.18 13.43 12.95 12.08

The fuel consumption of the four strategies can be seen in Figure 22. The FCs of the
DP are deployed as a benchmark to evaluate the performance of the other strategies. Note
that the robust design can also perform successfully to ensure the energy-saving potential
for different driving cycles, for which the FCs are more approximate to the DP solution.
Although the deterministic design can also have a better performance than CD-CS, its
robustness still requires to be promoted to adapt to the variation of the driving cycles.
The FCs of the robust design are, respectively, compared with other strategies, and the
results are listed in Table 8. Overall, the FCs of the robust design for MFAC-based EMS are
somewhat higher than DP whilst considerably lower compared to the deterministic design
and CD-CS. The mean value of the promotion in FCs can reach up to 9.79% compared with
the deterministic design, and a remarkable 19.66% compared withthe CD-CS. The most
important thing is that it is only −1.68% less than DP for mean value of FCs for different
driving cycles. This will be a significant advantage for a real-time application.
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Figure 22. FCs of different strategies.

Table 8. Comparisons of the FCs.

Items
Comparisons of the FCs (%)

Mean
NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8

MFAC-robust vs. CD-CS 19.29 19.96 21.12 20.30 18.92 15.50 22.16 20.01 19.66
MFAC-robust vs. deterministic 7.58 12.85 11.30 12.83 10.34 10.14 3.37 9.91 9.79
MFAC-robust vs. DP −2.08 −2.26 −1.60 −1.09 −2.01 −2.03 −1.04 −1.35 −1.68

6. Conclusions

In this paper, a robust design framework based on DFSS is presented to strengthen the
robustness of the MFAC-based EMS for real-time application, in which an SOC constraints
method based on linear reference SOC is also incorporated to further plan the battery SOC.
The robust control parameters of the MFAC-based EMS can be designed on the basis of the
historical driving data, and the velocity and vehicle mass are considered as the external
disturbance. Once the parameters are robustly designed, the MFAC-based EMS can have
a satisfactory performance in stochastic future driving cycles. The results demonstrate
that the SOC constraints have considerable advantages to limit the battery SOC, for which
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the actual battery SOC of the robust design is much closer to the DP. Additionally, the
co-state of the PMP for robust design is more reasonable to decrease the fuel consumption
in contrast to the deterministic design. Finally, the comparisons of the FCs also indicate
that the robust design method has a remarkable FC decrease compared to the deterministic
design, especially compared to the CD-CS strategy. The improvement can reach up to 9.79%
and 19.66%, respectively. More importantly, the energy-saving potential is the same as that
of DP, only −1.68% less than DP.

In the future, a test bench needs to be established to further access our recommended
method, so as to be reliable for real-time application for PHEV. Moreover, an advanced
electro–thermal–aging coupled battery model and the information based on V2I and V2V
can also be integrated into our research to further promote the practicability of the MFAC-
based EMS.
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Abbreviations

DFSS Design for Six Sigma
MFAC Model-free-adaptive-control
EV/BEV/PHEV Electric vehicle/battery electric vehicle/plug-in hybrid electric vehicle
EMS Energy management strategy
ICE/EM/AMT Internal combustion engine/electric motor/automated mechanical transmission
MIGA Multi-island genetic algorithm
MCS Monte Carlo simulation
SOC/FC State of charge/fuel consumption
CD-CS Charge-depleting and charge-sustaining
DP/PMP Dynamic programming/Pontryagin’s minimum principle
ECMS Equivalent consumption minimization strategy
A-PMP/A-ECMS Adaptive PMP/adaptive ECMS
MPC Model-predictive control
V2V/V2I Vehicle-to-vehicle/vehicle-to-infrastructure
ANN/RL Artificial neural network/reinforcement learning
QL/DQL/DDQL Q-learning/deep Q-leaning/double-DQL
BSFC Brake special fuel consumption
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