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A Robust Detection and Isolation Scheme for Abrupt
and Incipient Faults in Nonlinear Systems

Xiaodong Zhang, Marios M. Polycarpou, and Thomas Parisini

Abstract—This paper presents a robust fault diagnosis scheme
for abrupt and incipient faults in nonlinear uncertain dynamic
systems. A detection and approximation estimator is used for on-
line health monitoring. Once a fault is detected, a bank of isolation
estimators is activated for the purpose of fault isolation. A key
design issue of the proposed fault isolation scheme is the adaptive
residual threshold associated with each isolation estimator. A fault
that has occurred can be isolated if the residual associated with
the matched isolation estimator remains below its corresponding
adaptive threshold, whereas at least one of the components of
the residuals associated with all the other estimators exceeds its
threshold at some finite time. Based on the class of nonlinear un-
certain systems under consideration, an isolation decision scheme
is devised and fault isolability conditions are given, characterizing
the class of nonlinear faults that are isolable by the robust fault
isolation scheme. The nonconservativeness of the fault isolability
conditions is illustrated by deriving a subclass of nonlinear
systems and of faults for which these conditions are also necessary
for fault isolability. Moreover, the analysis of the proposed fault
isolation scheme provides rigorous analytical results concerning
the fault isolation time. Two simulation examples are given to
show the effectiveness of the fault diagnosis methodology.

Index Terms—Fault detection and approximation, fault isola-
tion, nonlinear adaptive estimator, nonlinear uncertain systems.

NOMENCLATURE

Nominal model dynamics.
Modeling uncertainty.
Known bound on theth component of the modeling
uncertainty.
Fault vector function.
Fault time-profile matrix function.
Incipient-fault evolution rate in theth state equation.
Known lower bound on .
Class of faults.
Parameter vector associated with theth fault affecting
the th state equation.

Manuscript received December 12, 1999; revised July 30, 2000, March 2,
2001, and August 2, 2001. Recommended by Associate Editor M. Krstic. This
work was supported in part by the EU RTN Project “DAMADICS,” in part by
the MURST Project “Identification and Control of Industrial Systems,” and in
part by the Italian Space Agency.

X. Zhang is with Intelligent Automation, Inc., Rockville, MD 20855 USA
(e-mail: xzhang@i-a-i.com).

M. M. Polycarpou is with the Department of Electrical and Computer
Engineering and Computer Science, University of Cincinnati, Cincinnati,
OH 45221-0030 USA, and also with the Department of Electrical and
Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus (e-mail:
mpolycar@ececs.uc.edu).

T. Parisini is with the Department of Electrical, Electronic and Computer En-
gineering, University of Trieste, 34127 Trieste, Italy (e-mail: parisini@univ.tri-
este.it).

Publisher Item Identifier S 0018-9286(02)03737-6.

Estimate of the parameter vector.
Known compact set to which belongs.
Known vector field associated with theth fault af-
fecting the th state equation.
Diagonal matrix of the poles associated with theth es-
timator.
Online fault approximation model.
th component of the state estimation error associated

with the th estimator.
th component of the dead-zone threshold associated

with the fault detection and approximation estimator.
th component of the adaptive threshold associated with

the th estimator.
th component of the fault approximation error associ-

ated with the th estimator in the case that faultoccurs.
Computable bound on theth component of the param-
eter vector estimation error in the case of a matched fault
function.
Fault mismatch function between theth and th faults
in the case of an incipient fault.
Fault mismatch function between theth and th faults
in the case of an abrupt fault.
Absolute fault detection time.
Fault detection time.
Absolute fault isolation time associated with theth
fault.
Fault isolation time associated with theth fault.
Maximum fault isolation time associated with theth
fault.

I. INTRODUCTION

A FAULT diagnosis procedure is typically divided into three
tasks: i)fault detectionindicates the occurrence of a fault

in a monitored system; ii)fault isolation establishes the type
and/or location of the fault; and iii)fault identificationdeter-
mines the magnitude of the fault. After a fault has been de-
tected and diagnosed, in some applications it is required that
the fault be self-corrected, usually through controller reconfig-
uration. This is usually referred to asfault accommodation. The
design and analysis of fault detection and isolation (FDI) algo-
rithms using the model-based analytical redundancy approach
have received significant attention in the literature (see, for ex-
ample, the survey papers by Frank [9], Gertler [13], and Iser-
mann [20] and the books by Pattonet al. [36], Gertler [15], and
Chen and Patton [3]).

0018-9286/02$17.00 © 2002 IEEE



ZHANG et al.: ROBUST DETECTION AND ISOLATION SCHEME FOR ABRUPT AND INCIPIENT FAULTS 577

The objective of this paper is the design and analysis of a
fault isolation scheme for nonlinear uncertain systems. Unlike
the fault detection problem, which has been extensively inves-
tigated in the literature, the fault isolation problem has received
less attention, especially in the case ofnonlinear uncertain sys-
tems. Some of the approaches that have been examined for fault
isolation in linear systems include the utilization ofstructured
residualsandfixed directional residuals[15], which can be gen-
erated by observer-based methods or parity relations. For ex-
ample, the unknown input observer approach [9], [38] and the
eigenstructure assignment method [34] have been used to gen-
erate structured residuals for fault isolation in linear systems,
whereas fault detection filters [29], [32], [50] have been used
for fixed directional residuals. Structured and directional resid-
uals can also be generated via parity relations for fault isolation
[14], [16]. The equivalence between diagnostic observers and
parity equations is discussed in [14].

In recent years, there has been considerable research activity
aimed at the design and analysis of fault diagnosis schemes spe-
cific for nonlinear systems [3], [12], [26]. Several researchers
have developed nonlinear fault diagnosis schemes based on non-
linear observer approaches. In [11], the unknown input observer
approach has been extended to include nonlinear terms. A class
of nonlinear systems that has attracted a lot of attention is that
of systems with bilinear dynamics [23], [53], [55]. Some studies
have attempted to extend the parity relations approach to non-
linear systems [25], [27]. Recently, there has been significant
activity and some exciting results [18], [37] have been obtained
in addressing the FDI problem in the case of nonlinear systems
in which the structured modeling uncertainty and faults can be
decoupled. Adaptive and online approximation approaches to
nonlinear fault diagnosis have also been developed [8], [39],
[44]–[47], [54]. These techniques are based on the idea of on-
line adaptation and approximation of the fault function. One of
the tools that have been widely used is represented by anonline
approximation model, which is usually in the form of a neural
network, a fuzzy logic system, etc. Despite these promising ap-
proaches to addressing the problem of fault diagnosis in a non-
linear framework, there have not been many analytical results
on fault isolation, especially in the case of unstructured mod-
eling uncertainty and nonlinear faults, which cannot be exactly
decoupled from each other.

In this paper, we present a fault detection and isolation archi-
tecture for nonlinear uncertain dynamic systems, and provide
a rigorous analysis of the performance properties of the related
isolation scheme. The class of faults considered is allowed to
be nonlinear with respect to the state and input, and includes
both abrupt and incipient faults. We consider a class of non-
linear systems with full-state measurements and the presence of
possibly nonlinear and unstructured modeling uncertainty. The
proposed FDI scheme consists of a bank of nonlinear adaptive
estimators. One of them is thefault detection and approxima-
tion estimator, whereas the others are used for fault isolation
(each associated with a specific type of fault). Under normal
operating conditions, only thedetection and approximation es-
timator is used to monitor the process for any fault. Once a
fault is detected, thefault isolation estimatorsare activated,
and the fault detection and approximation estimator adopts the

mode of approximating the fault, by using online approxima-
tion methods.

The main contributions of this research are the design of a
fault isolation scheme as the key part of a diagnosis architecture
based on a nonlinear framework justified by practical consid-
erations, and the analysis of the proposed isolation scheme
in terms of derivation of adaptive threshold functions, fault
isolability conditions, and fault isolation time. The residual of
each fault isolation estimator is associated with anadaptive
threshold, which can be implemented online by using linear
filtering methods. The case of the occurrence of a particular
fault is excluded if at least one of the residual components of
the corresponding isolation estimator exceeds its threshold in a
finite time. Fault isolation is achieved when all faults but one
are excluded. Under the imposed assumptions, an incorrect
isolation decision is precluded. However, two faults may be
nonisolable if the two fault functions are not “sufficiently
different.” This concept is formalized by the definition of the
so-calledfault mismatch function.

The presented fault isolation analysis consists of three parts: i)
derivation of adaptive thresholds; ii) investigation of fault isola-
bility conditions; and iii) computation of the fault isolation time.
The derived adaptive thresholds ensure that an incorrect isolation
decision will be avoided. This is achieved by selecting an adap-
tive threshold for each possible fault such that the residual as-
sociated with the isolation estimator that matches the occurred
fault is guaranteed to remain below its threshold. In the design
of adaptive thresholds, there is always a tradeoff between false
alarms and missed faults. The analysis of fault isolability condi-
tions characterizes (in nonclosed form) the class of faults that can
be isolated by the isolation scheme. This class is rigorously char-
acterized by thefault mismatch function, which intuitively pro-
vides a measure of the difference between two faults. The non-
conservativeness of fault isolability conditions is illustrated by
the derivation of a subclass of nonlinear systems and faults for
which these conditions are also necessary for fault isolability.
The fault isolation timeis defined as the length of the time in-
terval between the detection of a fault and the determination of
its type. For the proposed fault isolation scheme, an upper bound
on the fault isolation time is derived. The design scheme and the
analytical results are described through the use of two nonlinear
simulation examples. The first deals with a simple second-order
nonlinear system, whereas the second example refers to the well-
known FDI benchmark problem concerning a three-tank system.

The paper is organized as follows. Section II defines the
classes of nonlinear systems and faults to be investigated. The
design of the proposed FDI scheme, including the derivation
of adaptive thresholds, is described in Section III. Section IV
analyzes the fault isolability conditions on the robust fault
isolation scheme. In Section V, the fault isolation time is
addressed. Finally, the FDI scheme design and the analytical
results are illustrated by two simulation examples in Section VI,
and Section VII contains some concluding remarks.

II. PROBLEM FORMULATION

In this section, we formulate the classes of nonlinear systems
and faults to be investigated, and discuss the practical motivation
of the proposed formulation.
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A. Nominal Plant, Uncertainty, and Fault Representation

Let us consider a general multivariable nonlinear dynamic
system described by the differential equation

(1)

where is the state vector of the system, is the
input vector, , and
are smooth vector fields, and is a matrix function
representing the time profiles of the faults, wheredenotes
the unknown fault occurrence time. The vector fields, , and

represent the dynamics of the nominal model, the modeling
uncertainty, and the change in the system dynamics due to a
fault, respectively. For the sake of well-posedness of (1), the
following assumption will be made.

Assumption 1:The system states and controls remain
bounded before and after the occurrence of a fault, i.e., there
exists some stability region , such that

, .
Remark 2.1: It is worth noting that the reason for introducing

such a uniform boundedness assumption is just a formal one.
In general, this paper deals with the design and analysis of a
detection and isolation scheme based on the measurements of

and . Since no fault accommodation is considered in
the paper, the feedback controller must be such that the measur-
able signals and remain bounded for all (i.e.,
before and after the occurrence of a fault). However, it is impor-
tant to note that the proposed FDI design is not dependent on
the structure of the controller. Actually, as will be clear later on,
the proposed fault diagnosis scheme will make use of and

to yield the detection and isolation decisions, but it will not
influence at all the dynamic behavior of system (1).

The modeling uncertainty, represented by the vector field,
includes external disturbances as well as modeling errors. In the
fault-diagnosis literature, efforts to enhance the robustness of
FDI schemes can be made either at the residual generation stage
by usingdecoupling techniquesor at the decision making stage
by usingadaptive thresholds. In the first approach, the mod-
eling uncertainty is often assumed to be structured, i.e., to be of
the form , where is a known(or approximately
known) and not necessarily constant distribution matrix, and
denotes an unknown function of time. This structured model of
uncertainty allows the use of linear and nonlinear state transfor-
mations to exactly decouple faults from unknown inputs [23],
[37], [41], [52]. In the cases where such a decoupling frame-
work can be achieved, it provides powerful methods for devel-
oping FDI algorithms. However, if the modeling uncertainty is
unstructured, decoupling faults from modeling uncertainty is
not possible and this justifies the use of adaptive thresholds to
obtain robustness at the residual-evaluation stage. In the adap-
tive threshold approach [3], [7], [10], modeling uncertainty can
be unstructured but has to be bounded by some suitable constant
or function. This bound is used to derive thresholds for distin-
guishing between the effect of a fault and the effect of mod-
eling uncertainty [7], [45]–[47]. Another important approach
that has been extensively used to represent modeling uncertainty
in fault diagnosis is the formulation of the problem in a sto-

chastic framework [2], [30]. The FDI scheme presented in this
work is based on the adaptivethreshold approach.

As regards modeling uncertainty, the following assumption
will be used throughout the paper.

Assumption 2:The modeling uncertainty represented by the
vector field in (1) is unstructured and possibly a unknown
nonlinear function of , , and , but it is bounded by some
known functional, i.e.,

(2)

where, for each , the bounding function
is known, integrable, and bounded for all

in some compact region of interest and for all .
Remark 2.2:The above assumption provides nonuniform

bounding functions on the modeling uncertainty
in some compact region , where is defined in
Assumption 1. It is worth noting that a simpler, though more
restrictive assumption, would be to assume thatis globally
uniformly bounded, i.e., ,
and , where is a constant bound. It is important to
emphasize that by allowing eachto be a function of , , and
, the above formulation provides a framework fornonuniform

bounds, thus enhancing the achievable fault sensitivity and
decreasing the detection and isolation times. For example, in
many practical applications the nominal model is obtained
by small-signal linearization techniques (around a nominal
operating point or trajectory). In this case, may
represent the residual nonlinear terms, which are typically
small for close to the operating point but can be large
elsewhere. If nonuniform bounds are not known, the
designer can consider the worst-case scenario and use uniform
constantbounds as a special case.

As to the faults affecting the nominal system modes, from
a qualitative viewpoint, the term represents
the deviation in the system dynamics due to a fault. The matrix

characterizes the time profile of a fault that occurs
at someunknowntime , and denotes the nonlinear
fault function. This characterization allows both additive and
multiplicative faults (since is a function of and ) [15], and
even more general nonlinear faults. We let the fault time profile

be a diagonal matrix of the form

where is a function representing the time profile
of a fault affecting the-state equation, for . More
specifically, we consider faults with time profiles modeled by

if
if

(3)

where the scalar denotes the unknown fault evolu-
tion rate. Small values of characterize slowly developing
faults, also known asincipient faults. For large values of ,
the time profile approaches a step function, which models
abrupt faults. The main difficulty in dealing with incipient faults
is that their small effects on the residuals can be hidden as if
they are due to modeling uncertainty. The incipient-fault time
profile described by (3) has been considered in [6], [40], [44]
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Fig. 1. Architecture of the fault detection and isolation scheme.

to develop a learning-based fault detection methodology. In this
paper, we first consider the fault isolation problem in the gen-
eral case of incipient faults, and then examine the special case
of abrupt faults.

Note that the fault time profile given by (3) only reflects the
developing speed of the fault, while all its other basic features
are captured by the function described below. For iso-
lation purposes, we assume that there aretypes of possible
nonlinear fault functions; specifically, belongs to a fi-
nite set of functions given by

(4)

Each fault function , , is described by

(5)

where , , is an unknown -dimensional param-
eter vector assumed to belong to a known compact set(i.e.,

), and is a known smooth
vector field.

This representation characterizes a general class of nonlinear
faults where the nonlinear vector field represents the func-
tional structure of theth fault affecting the th state equation,
whereas the unknown parameter vectorcharacterizes the
“magnitude” of the fault in theth state equation. The dimen-
sion of each parameter vector is determined by both the
type of fault and the specific state component considered. In the
case where the fault function is completely unknown
(i.e., does not belong to ), the fault approximation
estimator designed in Section III by approximation methods
can be used to reconstruct online the unknown fault function.

As discussed in [13], most practical faults are nonlinear func-
tions of the system stateand/or input . For example, the mag-
nitude of a leak in a thermal system or in a chemical process is,
in general, a nonlinear function of the pressure and the temper-
ature. Such failure representation characteristics are captured in
(1) by allowing the deviation to be a nonlinear function of

and . Moreover, it is worth noting that the above formula-
tion allows parametric faults [15] and, in addition, other types
of nonlinear faults such as the ones that cause the nominal plant
model to change from to another new nonlinear func-
tion.

Remark 2.3: In many engineering applications, the full-state
measurement assumption in the above formulation may result in
quite a critical and possibly limiting requirement. The removal
of this assumption requires the use of nonlinear observers,
which, in general, impose additional restrictions on the class
of nonlinear systems and the type of allowable faults [45].
Note, however, that several nonlinear control design methods
require full-state measurements for the design of the feed-
back controller. Such methods include feedback linearization
[22], backstepping and adaptive backstepping methods [28],
input-to-state stability (ISS) control design [42], and robust
nonlinear control using nonlinear damping [5]. Therefore, the
nonlinear fault-isolation design method developed in this paper
can be applied to such a class of feedback control systems.

Remark 2.4:Typically, a robust feedback control system
may “hide” the occurrence of a fault, especially a small, incip-
ient one. While, in some cases, it is desirable to automatically
accommodate a small fault by using the robustness of the
controller, in most situations small faults may prognosticate
future larger faults that can result in catastrophic consequences,
unless they are detected and accommodated early. This problem
of robust feedback control “hiding” or “desensitizing” fault
effects has been recognized by several researchers (see, for
example, [17], [35], and [51]). Allowing the fault function
in the above formulation to depend explicitly onprovides a
suitable method for detecting faults, even if the control input

has been adjusted to reduce the effect of the fault on the
tracking error. Another approach that has been proposed to
address this problem is based on designing the fault diagnosis
scheme and the feedback controller simultaneously [31], [43].

III. FAULT DETECTION AND ISOLATION ARCHITECTURE

A bank of nonlinear adaptive estimators are used in
the proposed FDI scheme, whereis the number of nonlinear
faults of the fault class described in Section II. One of the
nonlinear adaptive estimators is thefault detection and approx-
imation estimator(FDAE) used to detect faults. The remaining
ones arefault isolation estimators(FIEs) that are used for iso-
lation purposes only after a fault has been detected. Each FIE
corresponds to a particular type of fault of the class. A block
diagram representation of the overall architecture is shown in
Fig. 1.
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Under normal operating conditions (without faults), the
FDAE is the only estimator monitoring the system. Once a
fault is detected, the bank of FIEs is activated and the FDAE
adopts the mode of approximating the fault function. The
case where none of the isolation estimators matches the fault
that has occurred (to some reasonable degree) corresponds to
the occurrence of a new and unknown type of fault, and the
approximated fault model can then be used to update the fault
class and also the bank of isolation estimators. The fault
model generated by either an isolation estimator (in the case of
a match) or the detection/approximation estimator can be used
for fault diagnosis and possibly fault accommodation.

In Sections III-A and III-B, the structures and the adaptation
mechanisms for the FDAE and the bank of FIEs will be de-
scribed.

A. FDAE

Based on the system representation (1), the FDAE is chosen
as follows:

(6)

where is the estimated state vector,
is an online approximation model, repre-

sents a vector of adjustable weights of the online approximator,
and , where is the th esti-
mator pole. The initial weight vector, is chosen such that

, , which corresponds to the
case where the system is in “healthy” (no fault) condition.

A key component of the nonlinear adaptive estimator de-
scribed by (6) is theonline approximator, denoted by , which
can be described as follows: theth component of the func-
tion has the structure

(7)

where are given parametrized basis functions and
and the components of are the parameters to be determined,
i.e., . In the
presence of a fault, provides the adaptive structure for approx-
imating online the unknown fault function. This is achieved by
adapting the weight vector which has the effect of changing
the input/output behavior of the approximator. The term “online
approximator” is used to represent nonlinear multivariable ap-
proximation models with adjustable parameters or weights, such
as neural networks, fuzzy logic networks, polynomials, spline
functions, wavelet networks, etc. In the last few years, several
online approximation models have been studied in the context
of intelligent systems and control [33], [49], [56]. Some of the
properties of online approximators, like linear parametrization
and “curse of dimensionality” [1], [57], and localization [48],
also play a crucial role when such approximators are used, in this
paper, as estimators of fault functions. Although a comparison of
different online approximation models would reveal some inter-
esting issues (see [57] for an extensive treatment of the approx-
imation properties relevant to rather a large class of approxima-
tion models), in this paper, we simply consider the general class
of sufficiently smooth parametrized functions represented by (7)
as online approximators.

The next step in the construction of the FDAE is the design of
the learning algorithm for updating the weights. Let

be the state estimation error. Using techniques from
adaptive control (Lyapunov synthesis method) [19], the learning
algorithm of the online approximator is chosen as follows:

(8)

where theprojection operator restricts the parameter esti-
mation vector to a predefined compact and convex region

, is a symmetric positive definite
learning rate matrix, and denotes
the gradient matrix of the online approximator with respect to its
adjustable weights, i.e., . Thedead-zone
operator is defined as

if ,
otherwise

(9)

where is a suitable threshold function that will be specified
later on.

The presence of modeling errors (denoted by in the
stateequation) causes a nonzero state estimation error, even
in the absence of a fault. The dead-zone operatorprevents
adaptation of the approximator weights when the modulus
of every estimation error component is below its corre-
sponding threshold , thereby preventing any false alarms.
Thedecisionontheoccurrenceofa fault (detection) ismadewhen
the modulus of at least one of the estimation error components

exceeds its corresponding threshold . More precisely,
theabsolute fault detection time is defined as the first instant
of time such that , for , for some , that is

(10)

The fault detection time is defined as the difference between
the absolute fault detection time and fault occurrence time

, i.e., .
The time-varying dead-zone threshold need to be suf-

ficiently large to prevent false alarms. To this end, we choose
as

(11)

which can be easily implemented as the output of a linear filter
(with the transfer function and under zero initial
conditions) whose input is given by .
Note that, as long as is bounded, the output of the stable filter
remains bounded as well.

In the absence of any faults and with the initial weights of the
online approximator such that , by (1) and (6)
it can be easily verified that each component of the state
estimation error satisfies

(12)

Therefore, therobustnessof the detection scheme, i.e., the
ability to avoid any false alarms in the presence of modeling
uncertainty, is guaranteed. In the special case of uniform (con-
stant) bounds on the modeling uncertainty, the dead-zone
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threshold is given by . The
dead-zone can be further simplified to aconstantthreshold

by taking a uniform upper bound over time.
As is well known in the fault diagnosis literature, there is

an inherent tradeoff between robustness and fault-detectability.
The detectability property of the nonlinear fault diagnosis
scheme described by (6) and (8) was rigorously investigated
for the special case of a constant boundin a previous work
[40]. For completeness of the presentation, this detectability
result is also stated in the following theorem (the proof can be
found in [40]).

Theorem 3.1:Consider the nonlinear fault diagnosis scheme
described by (6) and (8).

a) If there exists an interval of time , over which
, such that at least one component of the

fault vector satisfies the condition

(13)

then a fault will be detected, that is, .
b) For any positive constants , and for any ,

there does exist a time such that if at least one
component of the fault vector satisfies
the condition

then a fault will be detected, that is, .
The first part of the above theorem shows that, if at least one

component of the fault vector function satis-
fies (13) over some time interval , then a fault will be
detected at , thus triggering the learning algorithm. Intu-
itively, condition (13) includes the case where the fault function

changes its sign over time. The second part of the
above theorem shows that, if there is no change of sign and the
magnitude of the fault function is greater than for a suf-
ficiently long time, then a fault will be detected.

In general, after the detection of a fault (i.e., for ),
the dead-zone becomes unnecessary during the approximation
phase and can therefore be disabled. The projection operator
is required during the approximation phase in order to guarantee
the stability of the learning algorithm in the presence of approx-
imation errors, which may be caused by the inability of the on-
line approximator to match the fault function exactly. Moreover,
some stability properties of the above FDAE (with aconstant
dead-zone threshold ), e.g., the boundedness of the state and
parameter estimates and the convergence of the estimator error
to a neighborhood of zero in the presence of modeling uncer-
tainty, have been analytically studied in [6].

B. Fault Isolation Estimators and Decision Scheme

After a fault has been detected, the isolation scheme is acti-
vated (see Fig. 1). Specifically, the followingnonlinear adap-
tive estimators are used as isolation estimators:

(14)

where , for , , is the estimate
of the fault parameter vector in theth state variable. Moreover,

, where are design constants
representing the estimator pole locations. For notational sim-
plicity and without loss of generality, in this paper we assume
that , for all .

The design of FIEs is similar to the design of the FDAE. Each
isolation estimator corresponds to one of the possible types of
nonlinear faults belonging to the fault class. The adaptation
in the isolation estimators arises due to the unknown parameter
vector . The adaptive law for updating each is derived by
using the Lyapunov synthesis approach, with the projection op-
erator restricting to the corresponding known set . Specif-
ically, if we let be the th component of the state
estimation error vector of theth estimator, then the learning al-
gorithm is chosen as:

(15)

where is a symmetric, positive–definite learning
rate matrix. Note that, since the isolation estimators are acti-
vated only after the detection of a fault, there is no need to use
the dead-zone on the state estimation error. In addition to the
state estimation error of each isolation estimator, the parameter
estimate also provides useful information for fault isolation
purposes. However, it is important to stress that it cannot be
guaranteed that for the actual fault the parameter estimate
converges to the true value, unless we assume persistency of
excitation [19], a condition which, in general, is too restrictive
(in this paper, we donot assume persistency of excitation).

The fault-isolation decision scheme is based on the following
intuitive principle: if the th fault occurs at some time and is
detected at time , then a set of adaptive thresholds

can be designed such that theth component of the
state estimation error associated with theth estimator satis-
fies , for all . Consequently, for each

, such a set of thresholds
can be designed for theth fault isolation estimator. In the fault
isolation procedure, if for a particular isolation estimatorand
some , its state estimation error satisfies

for some , then the possibility that the faultmay
have occurred can be excluded. Using this intuitive idea, the fol-
lowing fault isolation decision scheme can be devised.

Fault isolation decision scheme:If, for each
, there exist some finite time and some

such that , then the occurrence
of the fault is deduced. The absolute fault isolation time is
defined as and the fault
isolation time is defined as the difference between
and the absolute fault detection time, i.e., .

In order to gain a deeper insight into the above-stated fault
isolation decision scheme, we refer to Fig. 2. For the sake of sim-
plicity, a scalar case is considered (i.e., the indexis dropped).
Moreover, without loss of generality, we assume that the class

is made up of three different kinds of faults (i.e., ) and
that Fault 1 occurs at time . After detection of the occurrence
of a fault at time instant (see (10)), the FIEs are activated and
the time-instants and are determined. Accordingly, Fault 1
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Fig. 2. Example of application of the fault decision scheme to a scalar three-fault case. A faulty situation is detected at time-instantT , and fault number 1 is
isolated at timeT = t .

is isolated at time . In the situation presented in Fig. 2,
a constant bound is considered for the sake of sim-
plicity [see the discussion after (12)].

Remark 3.1: In the fault-diagnosis literature, one can find
several types of observer schemes. For example, within the fault
isolation framework, thededicated observer scheme(DOS) pro-
posed by Clark and thegeneralized observer scheme(GOS)
presented by Frank are typically used [4], [9], [36]. In both
schemes, the FDI architectures consist ofobservers, where

is the number of faults under consideration. In the DOS, the
th residual is designed to be sensitive only to theth fault,

, but decoupled from all other faults. In the spe-
cial case where the DOS can be designed, this scheme permits
a single detection and a single isolation offaults, even if they
occur simultaneously. A more commonly used scheme is the
generalized observer scheme, where the th residual is sensi-
tive to all faults but the th one. The decision function of the
GOS is as follows: if theth residual is zero (or below a certain
threshold) and all the remaining residuals are nonzero (or above
their corresponding thresholds), then a decision on the occur-
rence of the th fault is made. Therefore, the above-stated fault
isolation scheme falls within the GOS architectural framework.

Clearly, a basic role in the above fault isolation scheme is
played by the adaptive thresholds . In this respect, we now
proceed to compute nonconservative thresholds associated with
the residual of each fault isolation estimator in the general case
of incipient faults (in the following analysis, we denote by
the absolute fault detection time given by (10)). The following
lemma provides a bounding function for the state estimator error
of the th isolation estimator in the case where the incipient fault

occurs. Later on, the bounding function will be used to derive
adaptive thresholds for the fault isolation scheme.

Lemma 3.1: If the incipient fault occurs, then for all
and for all , the th component of the state esti-
mation error of theth isolation estimator satisfies the following
inequality:

(16)

where

(17)

represents the fault function estimation error in the case of a
matched fault.

Proof: On the basis of (1) and (14), in the presence of
the fault , the th component of the error dynamics of theth
isolation estimator for is given by
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Therefore, the solution to the previous differential equation is

where is defined in (17). By taking norms, we have

Note that . Then, we obtain

Equation (16) follows directly from (2), thus concluding the
proof.

Although Lemma 3.1 provides an upper bound on the state
estimation error of theth estimator, it cannot be directly used
as a threshold function for fault isolation because in (16) the
fault approximation error , the fault evolution rate and
the fault occurrence time are unknown. However, as the es-
timate belongs to the known compact parameter set,

we have for a suitable dependent on
the geometric properties of the set. For instance, letting the
parameter set be a hypersphere (or the smallest hypersphere
containing the set of all possible ) with center and ra-

dius , it follows immediately that
and

(18)

Moreover, we assume that, for the incipient fault time profile
given by (3), the unknown fault evolution rate satisfies

, for , where denotes a known lower bound
on the unknown fault evolution rate . In a sense, can be

Fig. 3. A block diagram of the algorithm for generating online the adaptive
threshold� (t).

interpreted as a tuning parameter that can be set by exploiting
somea priori knowledge of the fault developing dynamics. If no
specific knowledge of the fault evolution rate is available, it is
always possible to make a cautious (and possibly conservative)
choice of a suitably small . Note that decreases
with respect to and . In addition, as , it
follows that:

(19)

Hence, based on (16), (18), and (19), the following threshold
functions for fault isolation are chosen:

(20)

The bound described by (20) represents an adaptive
threshold, which, as discussed in [3], [7], [10], has obvious
advantages over a fixed threshold. The adaptive threshold can
be easily implemented online, as shown in Fig. 3. Specifically,
the first term of the threshold can be implemented as the output
of a linear filter (with the transfer function ) with the

input given by

and under zero initial conditions.
Let us now address the special case of abrupt faults. As de-

scribed above, large values of the fault evolution ratein (3)
represent abrupt faults. Specifically, we consider abrupt faults
whose time profiles are modeled by a step function, i.e.,

if
if

(21)

where is the occurrence time of the fault. Then using (20)
in the special case where approaches infinity, the following
adaptive thresholds for abrupt-fault isolation are chosen:

(22)

Again, the adaptive threshold described by (22) can be easily
implemented as the output of a linear filter (with the transfer
function ) with the input

and under zero initial conditions.
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IV. FAULT ISOLABILITY CONDITION

In this section, we analyze the fault isolability condition on
the proposed FDI scheme; the condition deals with the fault sen-
sitivity property and characterizes the class of faults that can be
isolated by the robust fault-isolation algorithm. Moreover, the
nonconservativeness of the isolability condition is illustrated by
the derivation of a subclass of nonlinear systems and a subclass
of faults, for which this condition is also necessary for fault
isolability. First, the general case of incipient faults is investi-
gated.

Intuitively, faults are easier to isolate if they are sufficiently
“mutually different” in terms of a suitable measure. In the fol-
lowing analysis, we introduce afault mismatch functionin the
form:

(23)

which can be interpreted as the difference between the ac-
tual th fault function in the th state equation, represented
by , and the estimated fault
function associated with any other isolation
estimator whose structure does not match the actual fault.
Before stating a theoretical result on the isolability of incipient
faults, we need the following definition.

Definition 1: A fault is isolable if the fault isolation scheme
described in Section III is able to make a correct decision in a
finite time.

The following theorem characterizes the class of incipient
nonlinear faults that are isolable by the proposed FDI scheme
according to Definition 1.

Theorem 4.1:Consider the fault isolation scheme described
by (14), (15) and (20). The incipient faultis isolable if for each

there exist some time and some
such that theth component of the fault

mismatch function satisfies the following inequality:

(24)

Proof: Based on (1) and (14), in the presence of the fault
, the th component of the error dynamics associated with the

estimator is given by

where is the fault mismatch function defined in (23).
Therefore, the solution of the above differential equation for

is

(25)

By using the triangle inequality, we obtain

(26)

We recall that the threshold for the state estimation error of the
th estimator is

Therefore, if (24) is fulfilled, the occurrence of the faultis
excluded at time , i.e., . If this is satisfied
for each , then the th fault can be isolated,
thus concluding the proof.

Remark 4.1:According to the above theorem, if, for each
, at least one of the components of the

fault mismatch function satisfies condition (24) for some
, then the correspondingth residual component asso-

ciated with the isolation estimatorwill exceed its threshold
at , i.e., , hence excluding the occurrence of
the th fault. Therefore, the above theorem characterizes in non-
closed form the class of nonlinear faults that are isolable by the
proposed FDI scheme.

Remark 4.2:Based on the bound on the
modeling uncertainty, we can easily obtain a more practical
version of (24) as follows:

(27)

Note that all the quantities on the right-hand side of inequality
(27) are now known. Therefore, given a particular fault, its fault
isolability can be checked by condition (27) and, as a conse-
quence, the class of isolable faults can be approximately deter-
mined by a suitable numerical algorithm.

From a qualitative point of view, the fault isolability condi-
tion describes an interplay between the fault mismatch function
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on the one hand and the maximum fault approximation error
in the case of a match, the modeling uncertainty and the initial
conditions on the other hand. It should be noted that (24) is ob-
tained in the worst-case scenario. In other words, in general, (24)
is a sufficient condition for fault isolability. However, among all
possible fault scenarios, there exist some cases such that (24) is
also necessary for fault isolability, as stated by Theorem 4.2.

Theorem 4.2:Consider the fault isolation scheme defined by
(14), (15), and (20). Inequality (24) is also necessary for fault
isolability, if the following conditions are satisfied:

(28)

where is defined in Theorem 4.1, for .
Proof: In the proof of Theorem 4.1, suppose that (26) be-

comes an equation at time, i.e.,

(29)

In this case, if the fault isolability condition (24) is not satisfied,
that is

then, by (29), we obtain

Therefore, the fault cannot be isolated at. From the above
analysis, it follows that inequality (24) is also a necessary con-

dition for fault isolability if (26) is an equation. According to
(25), this needs the sign condition given by (28) and

Clearly, the above inequality is always guaranteed by (24), thus
concluding the proof.

Remark 4.3:Theorem 4.2 characterizes a subclass of non-
linear uncertain systems and a subclass of nonlinear faults for
which the fault isolability condition described by (24) is both
sufficient and necessary for fault isolability. The conditions
given in the theorem are existence ones, and are included only to
gain a more theoretical insight into the nonconservativeness of
Theorem 4.1. In other words, the fault isolability condition given
in Theorem 4.1 isnot conservative in the sense that, among all
the possible nonlinear systems and faults under consideration,
there does exist a case in which a fault will not be isolated by the
proposed FDI scheme,unlesscondition (24) is satisfied.

A Special Case—Abrupt Nonlinear Faults:The analysis
developed so far for the case of general incipient faults can be
specialized to the important case of abrupt faults. Specifically, in
order to investigate the fault isolability properties in the abrupt-
fault case, we redefine the fault mismatch function as

(30)

which represents the difference between the actual fault
function and the estimated fault function

associated with the estimatorwhose struc-
ture does not match the actual fault. Then, from (24), in the
special case where approaches infinity, the following result
follows immediately.

Corollary 4.1: Consider the fault isolation scheme described
by (14), (15) and (22). The abrupt faultis isolable if, for each

, there exist some time and some
such that theth component of the fault

mismatch function satisfies the following inequality:

V. FAULT ISOLATION TIME

One of the most important performance criteria in fault diag-
nosis isfault isolation time, which refers to the time taken by
the fault isolation scheme to identify a fault that has occurred
[15]. However, in the literature, there exist very few analytical
results on fault isolation time. In this section, we derive an ana-
lytical upper bound on the incipient-fault isolation time, which
is defined as the length of time between the detection and the
isolation of a fault. Specifically, we have the following result.
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Theorem 5.1:Consider the fault isolation scheme described
by (14), (15), and (20). For each , assume
that there exist a time interval , an index

, and a scalar such that, for all

(31)

where , , and is a time period
given by

(32)

Then, the maximum fault-isolation time for the incipient fault
is given by

(33)

Proof: In order to compute the fault isolation time, we
adopt a more practical version of the fault isolability condition
given by (27), whose right-hand side is based on known quan-
tities. Specifically, for a given , consider a
time instant such that

(34)

From the inequality

it follows that a sufficient condition for (34) to be satisfied is
given by

The aforementioned inequality can be rewritten as

(35)

Now, consider a time instant such that

(36)

Note that the previous definition of time-instantstems from
assuming that . Otherwise,

and the possibility of the
occurrence of the fault would already be excluded. Hence,
from (36), it follows that (35) is satisfied if

(37)
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Then, under (31), we obtain

(38)

By combining (37) with (38), we have

The previous inequality can be simplified as

Note that the left-hand side of the aforementioned inequality
is an increasing function of, whereas the right-hand side is a
decreasing function of. Therefore, the fault isolation time can
be obtained by solving the following equation for:

By some algebraic manipulation, we obtain

The proof is completed by letting .
Remark 5.1:By the previous theorem, if the fault mismatch

component is sufficiently large for some time period
, which, in turn, is longer than the time period

given by (32), then the possibility of the occurrence of
the fault is excluded at time . Note that
can be easily computed by linear filtering techniques. Specif-
ically, the integration term in (32) can be implemented as the
output of a linear filter (with the transfer function )

with the input

and under zero initial conditions. In addition,
this theorem describes a relationship between the fault isolation
time and the magnitude of the fault mismatch function ,
which is represented by the maximum positive constant
satisfying (31). More specifically, (32) shows that the time
period decreases with respect to . In other terms, we
obtained analytical evidence for the intuitive fact that the larger
the fault mismatch function, for a sufficiently long period of
time, the earlier a fault can be isolated.

Remark 5.2: In addition to providing an upper bound
on the isolation time of the incipient fault, the above the-
orem also gives a relationship between this upper bound and
the fault evolution rate . Specifically, (32) and (33) show that
the maximum fault isolation time decreases with respect to

, which means that the faster a fault evolves, the earlier it can
be isolated.

As in the incipient-fault case, the following results provide an
estimate of the abrupt-fault isolation time.

Corollary 5.1: Consider the fault isolation scheme described
by (14), (15) and (22). For each , assume
that there exist a time interval , an index

, and a scalar such that

where , , and is a time period
given by
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Then, the maximum fault isolation time for the abrupt faultis
given by

Proof: Consider inequalities (31) and (32) in the special
case where approaches infinity. Then, the above results can
be immediately obtained.

VI. SIMULATION RESULTS

We now present two examples to illustrate the effectiveness
of the proposed FDI methodology. The first example is based
on a simple nonlinear system, and aims at showing a complete
application of the analytical results presented in the paper. The
second example addresses the well-known three-tank bench-
mark problem in FDI [21]. This application is particularly im-
portant in order to point out both the practical significance of
the FDI problem statement in terms of faults with known func-
tional structures, and the applicability of the proposed FDI ar-
chitecture to afeedback controlled system.

A. Van Der Pol Oscillator Example

In this section, we use the proposed FDI scheme to detect
and isolate incipient faults in a simple nonlinear second-order
dynamic system, i.e., the Van der Pol oscillator, which is de-
scribed by

where , , are positive constants,represents the time profile
of a fault and is the change in the system due to the fault.
Specifically, we consider two types of faults:
and , where and

. We assume that the unknown incipient-fault
evolution rate defined in (3) satisfies: . The
modeling uncertainty is unstructured and assumed to be some
inaccuracy in the value of. Therefore, the state equations for
the nominal system are

where denotes the state vector. More-
over, the class of faults is described as

By using the methodology described in Section III-B, a bank of
two isolation estimators is designed

where and denote the esti-
mated state vectors associated with estimator 1 and estimator
2, respectively, and is the filter pole location; and

are the adjustable parameters. For the FDAE, the online ap-
proximator is implemented as a continuous radial basis func-
tion (RBF) neural network with eleven fixed centers evenly dis-
tributed over the interval . As described in Section III-A,
the stability and fault-detectability properties of the FDAE have
been investigated in [6], [40]. Note that, in this example, faults
are only possible in the state component; therefore, for the
sake of notational simplicity, the state indexis dropped.

We perform the simulation with the following nominal
system parameters: , , . The control
input is set to . The modeling uncertainty is assumed
to arise out of a 5% inaccuracy in the value of. It is also
assumed that the uncertainty in is at most 10%, which
gives a nonuniform bound on the modeling uncertainty as

. The bounding function is clearly
bounded in any compact region of the state space. Moreover,
we set and for the isolation estimators.

Fig. 4 shows the simulation results when an incipient fault of
type 1, with and the fault evolution rate ,
occurs at s. The evolution of the actual fault function

(solid line) and the output of the neural network approxi-
mator (dash-dotted line) associated with the FDAE es-
timator are shown in Fig. 4(a). The state estimation error (solid
line) of the FDAE and its corresponding dead-zone threshold
(dash-dotted line) are shown in Fig. 4(b). As we can see, the fault
is detected at approximately s. Moreover, in Fig. 4(c)
and (d), the residuals (solid lines) and their corresponding
thresholds (dash-dotted lines), associated with each iso-
lation estimator, are shown. It can be seen that the residual of
estimator 1 always remains below its threshold, whereas the
residual of estimator 2 exceeds its threshold at approximately

s, thus allowing the isolation of fault 1.
Concerning the fault isolation time, the time-behavior of

(see
inequality (31)) is shown in Fig. 4(e). Moreover, Fig. 4(f)
shows the time period (described by (32)) corre-
sponding to each in the case where . From
Fig. 4(f), we can see that is approximately 0.5 s when

s. In other words, according to Theorem 5.1,
if there exists an interval of time (longer than 0.5 s and with

s as the starting point) over which the condition

is satisfied, then the maximum fault isolation time is
s s s, i.e., the

absolute fault isolation time s s s.
In Fig. 4(e) we can see that this condition is satisfied for all

s s . Therefore, s is a valid upper
bound on the absolute fault isolation time.

An analogous example is shown in Fig. 5, corresponding to
the occurrence of an incipient fault of type 2, with and
the fault evolution rate , occurs at s. In this case,
too, the fault isolation turns out to be successful. In Fig. 5(e)
and (f), with , an upper bound on the absolute fault
isolation time can be similarly computed as: s

s s.



ZHANG et al.: ROBUST DETECTION AND ISOLATION SCHEME FOR ABRUPT AND INCIPIENT FAULTS 589

Fig. 4. (a) Time-behaviors of the fault function (solid line) and the neural-network output (dash-dotted line) associated with the FDAE estimator. (b) Time-
behaviors of the state estimation error (solid line) associated with the FDAE and the dead-zone threshold (dash-dotted line) (the fault detection time instant is
shown by an arrow). (c) and (d) Time-behaviors of the state estimation errors (solid lines) and the thresholds (dash-dotted lines) associated with the two isolation
estimators (the fault isolation time instant is shown by a vertical arrow). (e) Time-behaviors ofjh (t)j� (� (t)+e j�̂ (t)j)jg (x; u)j�2�� associated
with estimator 2; (f) The time periodD (t ) for eacht (derived from (32) with� = 0:10).

Fig. 5. (a) Time-behaviors of the fault function (solid line) and the neural-network output (dash-dotted line) associated with the FDAE estimator. (b)
Time-behaviors of the state estimation error (solid line) associated with the FDAE and the dead-zone threshold (dash-dotted line) (the fault detection time instant
is shown by an arrow).(c) and (d) Time-behaviors of the state estimation errors (solid lines) and the thresholds (dash-dotted lines) associated withthe two isolation
estimators (the fault isolation time instant is shown by an arrow). (e) Time-behaviors ofjh (t)j � (� (t) + e j�̂ (t)j)jg (x; u)j � 2�� associated with
estimator 1; (f) The time periodD (t ) for eacht (derived from (32) with� = 0:20).
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Fig. 6. The three-tank system.

B. The Three-Tank System Example

Let us consider thecontrolledthree-tank system depicted in
Fig. 6 (the reader is referred to [21] and to the invited session
[24] for several interesting issues regarding this well-known
benchmark for FDI). The three tanks, , and are identical
and are cylindrical in shape with a cross section m .
The cross section of the connection pipes is m ,
and the liquid levels in the three tanks are denoted by, ,
and , respectively m . The sup-
plying flow rates coming from pumps 1 and 2 are denoted by
and , respectively ( m s ). and

represent the flow rates between tanks 1 and 3 and between
tanks 3 and 2, respectively, and is the outflow rate.

By using balance equations and Torricelli’s rule, we obtain
the state equations shown at the bottom of the page, where

denotes the state vector, de-
notes the control vector, anddenotes theth component of the
vector function . Moreover, , , and
denote nondimensional outflow coefficients, andis the gravity
acceleration.

We consider the case of abrupt faults (the case of incipient
faults is completely analogous and is not addressed here for the
sake of brevity). The class of nonlinear faults is defined by
the following two types of faults possibly acting on each of the
two tanks and .

1) Leakage in tank . We assume that the leak is circular
in shape and of unknown radius. Then, denoting by
the outflow rate of the unknown-size leak in tank, we
have .

2) Actuator fault in pump 1 . We consider a simple multi-
plicative actuator fault in pump 1 by letting

, where is the supply flow rate in the non-
fault case, and is the parameter characterizing the mag-
nitude of the fault. For , we have the nonfault sit-
uation in pump 1, whereas implies that the pump
is completely faulty, in the sense that there is no flow.

3) Leakage in tank . Analogously to the case of a leakage
in tank , we have .

4) Actuator fault in pump 2 . Analogously to the case of a
fault in pump 1, we have .

The fault class can now be written as

where , , ,
, , ,
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Fig. 7. (a)–(d) Time-behaviors of the estimation errors in the first state associated with the four isolation estimators. (e) Time-behavior of the estimation errors
associated with the FDAE. (f) Same as for (e) but plotted in enlarged form; the dashed lines represent the dead-zone thresholds.

, and . Therefore, the state equations for
the three-tank system can be put into the general form (1).

With regards to modeling uncertainties, a 4% inaccuracy in
the cross section of the connection pipe has been consid-
ered. Moreover, after simulating the whole system under sev-
eral operating conditions, we have obtained ,

, and (for simplicity, uniform bounds
on the modeling error are used). In order to guarantee fault isola-
bility (see (24), Theorem 4.1), after a suitable offline simula-
tion procedure, the following parameter sets have been defined:

, ,
, and . A bank of four isolation esti-

mators has been implemented according to the scheme depicted
in Fig. 2. We have set ,

, and . For the detection/ap-
proximation estimator, the online approximator has been imple-
mented as a feedforward neural approximator with one-hidden
layer of five neurons and a linear output layer. The dead-zone
has been computed on the basis of the uncertainty bounds de-
scribed above.

As an illustrative example (an exhaustive simulation study is
clearly beyond the scope of the paper), Fig. 7 shows the simu-
lation results obtained when fault 1, with , occurred
at time s. The estimation errors in the first state com-
ponent associated with each of the four FIEs are shown in
Fig. 7(a)–(d), respectively. Moreover, in Fig. 7(e) the state es-
timation error of the FDAE is presented. Finally, Fig. 7(e) is
replotted in enlarged form in Fig. 7(f); the dead-zone thresholds
are also plotted (dashed lines). Fig. 7(f) allows one to appreciate
the absolute fault detection time (time instant when one of
the state estimation errors crosses its corresponding threshold

due to uncertainty). As can be noticed from Fig. 7(a)–(d), only
the state estimation error of the first estimator always remains
below its threshold, whereas the estimation errors of the other
three estimators exceed their corresponding thresholds immedi-
ately after , thus allowing the isolation of fault no. 1. In this
specific case, the absolute fault isolation time is approxi-
mately equal to the absolute detection time.

VII. CONCLUSION

Presently, there is great industrial interest in automated
fault-diagnosis methodologies. This is fueled by two main
factors. First, the cost of a failure in a dynamic system can
be tremendous. Secondly, modern engineering systems are
becoming more automated and complex, thus making it almost
impossible to manually monitor the health condition of a
system, except for very simple faults. Fault isolation is one
of the key tasks of fault diagnosis as it provides the user with
information about the type of fault; this can be a significant
step toward correcting the fault (either online or offline).

In this paper, we have designed and analyzed a robust fault
detection and isolation scheme for nonlinear uncertain dynamic
systems. The analysis has addressed both abrupt and incipient
developing faults. The proposed architecture consists of a bank
of nonlinear adaptive estimators, one of which is used for the
detection and the approximation of a fault, whereas the rest
(one for each fault type) are used for online fault isolation. The
fault-isolation decision scheme is based on adaptive threshold
functions that are derived to guarantee no false isolation deci-
sion. We have also investigated the fault isolability conditions
on the developed FDI scheme, and derived the class of faults



592 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 4, APRIL 2002

that can be isolated, and that is defined in terms of the so-called
fault mismatch functions. The nonconservativeness of the fault
isolability conditions is characterized by a subclass of nonlinear
uncertain systems and a subclass of nonlinear faults for which
these conditions are sufficient and necessary for fault isolability.
Moreover, an analytical upper bound on the fault isolation time
has been obtained. Finally, two simulation examples have been
given to illustrate the effectiveness of the proposed FDI scheme.
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