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Abstract

The capacity for data mining algorithms to learn rules from data is influenced by, inter-alia, the random nature of

training and test data as well as by the diversity of domain partitioning models. Isolating normal from malicious data

traffic across networks is one regular task that is naturally affected by that randomness and diversity. We propose a

robust algorithm Sample-Measure-Assess (SMA) that detects intrusion based on rules learnt from multiple samples.

We adapt data obtained from a set of simulations, capturing data attributes identifiable by number of bytes, destina-

tion and source of packets, protocol and nature of data flows (normal and abnormal) as well IP addresses. A fixed

sample of 82,332 observations on 27 variables was drawn from a superset of 2.54 million observations on 49 variables

and multiple samples were then repeatedly extracted from the former and used to train and test multiple versions of

classifiers, via the algorithm. With two class labels–binary and multi-class, the dataset presents a classic example

of masked and spurious groupings, making an ideal case for concept learning. The algorithm learns a model for the

underlying distributions of the samples and it provides mechanics for model assessment. The settings account for

our method’s novelty–i.e., ability to learn concept rules from highly masked to highly spurious cases while observing

model robustness. A comparative analysis of Random Forests and individually grown trees show that we can circum-

vent the former’s dependence on multicollinearity of the trees and their individual strength in the forest by proceeding

from dimensional reduction to classification using individual trees. Given data of similar structure, the algorithm can

order the models in terms of optimality which, means our work can contribute towards understanding the concept of

normal and malicious flows across tools. The algorithm yields results that are less sensitive to violated distributional

assumptions and, hence, it yields robust parameters and provides a generalisation that can be monitored and adapted

to specific low levels of variability. We discuss its potential for deployment with other classifiers and potential for

extension into other applications, simply by adapting the objectives to specific conditions.

Key Words: Bagging, Bootstrapping, Classification, Cross-Validation, Cyber-Security, Data Mining, Decision Trees,

Intrusion Detection, Over-fitting, Random Forests, Robustness, Supervised Modelling, Unsupervised Modelling

1 Introduction

Modern communication networks are characterised by large volumes of data–highly dynamical, volatile and variable

which, inevitably, complicates systems security. Successfully isolating normal from malicious traffic across networks

is an integral function of predictive modelling, a fundamental objective of which is to attain accurate and reliable

results. Striking a balance between the two attributes remains an interesting subject of research. While using the Max-

imum Likelihood Estimators (MLEs) to obtain distributional parameters from well-behaved data may be straightfor-

ward, problems arise when underlying distributional assumptions are violated. Under such circumstances the general

practice is to deploy algorithms that learn rules from training data and apply them to new data. One common approach

is to deploy robust methods–a general description of a set of statistical tools that are less sensitive to violation of

distributional assumptions as described in Kent and Tyler [1], Mwitondi [2] and Mwitondi et al. [3]. The methods

work well for mixtures of two normal distributions with different standard deviations; under this setting, parametric

methods like the t-test work poorly in separating the two densities. Various data mining methods for learning rules

from data have been developed in recent years, examples include Wu and Banzhaf [4], Sommer and Paxson [5] and

Mitchell and Chen [6]. The overall performance of many of these methods is constrained by variability in the data

and model parameters, with performance used in its model fitting context to refer to metrics relating to accuracy and

optimality, whereas domain partitioning refers to a decomposition of multiple training and test samples to be processed
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1. INTRODUCTION

by several classifiers. We propose a novel method based on a robust algorithm–Sample-Measure-Assess (SMA) that

detects intrusion based on rules learnt from multiple samples. The approach considers the nature of data generation

and domain partitioning as the converging point between data randomness and domain-knowledge.

1.1 Motivation, Problem Definition and Objectives

Learning rules from data relies heavily on prior knowledge, both in the form of historical data and expert knowledge,

making attribute matching and adding features (see Section 2.1) a crucial part of the process. Such a process is suscep-

tible to variability, its accuracy and reliability both depend on the multiplicity of data sharing and model evaluation, an

area our paper seeks to contribute to. We set off from the overall Bayesian approach to classification, as discussed in

Dunsmore [7], to set the scene for using prior knowledge to generate posterior information (Section 2.2.2). Thus, we

define the problem as: Using testbed configuration generated data to model variations due to data randomness.

To address the foregoing problem, we set the following objectives.

1. To train and test classifiers that conform to data variability.

2. To carry out predictive modelling of intrusion using the UNSW-NB15 and ACCS [8] dataset.

3. To carry out a performance comparative analysis of the classifiers.

4. To highlight the potential role of interdisciplinarity in intrusion detection.

The foregoing objectives are fairly standard and, conventionally, they have been pursued based on pre-defined on-

tologies with inherently highly dynamic parameters. Such an approach tends to randomise, not only the training and

testing datasets, but also, as reported in Mwitondi and Said [9], the predictive power of classifiers. Standard solutions,

in many applications, focus on competing models, voting and cross-validation–implying that results are conditional

on the classifiers’ internal mechanics. For instance, the Random Forests (Breiman [10]) error rate, typically, depends

both on the multicollinearity of the trees and the strength of individual trees in the forest. In this case, subjecting the

data to dimensional reduction potentially reduces both multicollinearity and tree strength, making the data dimension

a crucial adjustable parameter. This paper exploits the well-documented natural, sequential relationship between un-

supervised and supervised modelling as described in Chapmann [11] and Ashfaq et al. [12]. Reducing unsupervised

to supervised learning is a standard practice, but as exhibited by Garg and Kalai [13], there is a need for a paradigm

for mitigating subjectivity in unsupervised decision-making via leveraging prior knowledge. Their meta-clustering

approach chooses the unsupervised algorithm with lowest empirical error on training set and, although they apply the

method on high-dimensional data, limiting the applications to two clusters has a potentially masking effect. A more

informative approach would be to explore as many natural groupings as possible, from the smallest to the largest num-

ber of clusters (Section 2). This step can then be followed by supervised modelling, allocating new cases to established

classes. As well as data sources, another source of the randomness in Table 1 are model settings and these are the

issues SMA seeks to address. As explained below, our approach provides a non-standard sequence of these methods.

1.2 Main Contribution

While the two foregoing sequence of activities may sound standard, they are based on novel mechanics. More specifi-

cally, the papers novelty is embedded in Sections 2.2.1 and 2.2.3. In particular, Algorithm 1 explores as many naturally

emerging groupings as possible and the results are used as inputs in training learning models. The activities between

the two sections provide a generalisation that can be monitored and adapted to specific low levels of variability, as

shown in lines 19 and 20 of the algorithm. These outcomes are less sensitive to violated assumptions for data drawn

from various sources with disparate distributions, and as such they yield robust parameters, as described in Kent and

Tyler [1]. This generalisation is particularly emphasised by the first objective, while the remaining three objectives

not only provide an application basis for an authoritative dataset in intrusion detection, but they also provide scope for

adapting the method to other applications by simply replacing objective 2.

The use of binary and multi-class labels, present a classic example of tackling masked and spurious clusters. The

former arises when the model fails to isolate distinctive clusters in such as way that potentially heterogeneous clusters

overlap while the latter is when the model adapts itself so well to the data, that even random variations are incorporated
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into cluster formation. Both cases, also known as under-fitting and over-fitting respectively, are undesirable and, the

two class labels help in determining optimality. That is, combining the power of automated learning techniques

(via objectives 1, 2 and 3) and existing domain knowledge (via objectives 2, 3 and 4) to uncover networks intrusion

empowers the method to learn concept rules from highly masked to highly spurious cases while observing model

robustness. No existing work provides such a robust generalisations on variations due to data randomness, a well-

documented challenge in data science as reported Bridges et al. [14], Mwitondi et al. [3] and Mwitondi and Said [9].

Finally, from an intrusion detection perspective, normal and malicious flows do not fit in any current concept definition

across tools. This work is expected to enhance that understanding from a modelling point of view, as described below.

2 Methods

This section sets the scene for achieving the objectives in Section 1. We use testbed configuration generated data from

UNSW-NB15 and ACCS [8] to explore variations for the purpose of addressing randomness in allocation rules in

intrusion detection. The dataset, fully described in Section 2.1, consists of 82,332 observations on 27 variables, drawn

from a large set of 2.54 million observations on 49 variables with binary and multi-class labels. Extracted samples

are used to train and test multiple versions of classifiers, proceeding from dimensional reduction to classification via a

specially-designed algorithm. The data and implementation strategy are described below.

2.1 Data Sources

Data were obtained from thousands of raw network packets of the UNSW-NB 15 created by the IXIA PerfectStorm

tool in the Cyber Range Lab of the Australian Centre for Cyber Security (ACCS). The data generation process was

accomplished using twelve algorithms as described in UNSW-NB15 and ACCS [8] and in Moustafa and Slay [15, 16].

The process ran through a testbed configuration generating over 2.54 million records of normal and malicious flows

through the IXIA traffic generator involving three servers–two normal and one malicious, passing the flow through

a firewall configured to pass both types of traffic onto the Internet and a tcpdump. The latter, a packet analyzer al-

lowing visibility of TCP/IP and other transmitted packets being transmitted or received over the testbed configuration,

allows the process to visually validate the packets from IXIA. The process is followed by feature creation, graphically

illustrated on the left hand side in Figure 1, matching attributes via a database and adding features before generating

CSV files. The datasets are avaliable at UNSW-NB15 and ACCS [8] stored in multiple files. For computational and

comparative convenience, we adopt only part of the data, with attributes shown in the right hand side panel of Figure

1, and denoted by

X = [xi,j ] ; i = 1, 2, 3, ..., n− 1, n and j = 1, 2, 3, ..., p− 1, p (1)

where n = 82, 332 is the number of observations and p = 27 is the number of variables. This setting does not

invalidate our modelling strategy as described below. Given n ≫ p and the paper’s motivation, the data size is good

enough for domain-partitioning based on multiple sampling, training and testing, so we repeatedly sample from it.

Our strategy is to randomly select m random observations from n, keeping p unchanged. We denote each sample by

[xν,τ ] ; ν = 1, 2, 3, ...,m− 1,m < n and τ = p (or p∗ ≤ p) (2)

where ν and τ are the equivalents of i and j in Equation 1 and, as we shall see in Section 2.2.3, while for individual trees

τ = p is given by design, it is a randomly sampled quantity, τ = p∗ ≤ p, for random forests. Our strategy, detailed

below, is to repeatedly sample xν,τ from X over different combinations of ν and τ, for performance parameters.
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Figure 1: Data generation process and CSV file output (left) and generated data attributes (right)

We work on a labelled data scenario, both binary and multi-class, as graphically illustrated in Figure 2. The binary

case distinguishes the highest frequency bar as normal data flows versus the remaining nine attributes categorised as

malicious while the multi-class splits the malicious into nine different levels. The scenario provides a classic example

of masked and spurious groupings, hence rendering itself readily for concept learning as outlined in Section 2.2.

Figure 2: Binary variable normal flows are represented by the highest bar while the remaining nine are attacks

The data flow types are graphically illustrated in Figure 2. Normal attacks, represented by the blue bar, comprise of

44.94% of the total flow and of the remaining 55.06% categorised as attacks, Generic make 41.63%, Exploits make

24.56% and Fuzzers 13.37%. Other attack types, DoS, Reconnaissance, Analysis, Backdoor, Shellcode and Worms

make 9.02%, 7.71%, 1.49%, 1.29%, 0.83% and 0.1% respectively. They represent different types of attacks, for

example, Fuzzers will attempt to suspend a program or network by feeding it the randomly generated data, whereas

Analysis consists of different attacks of port scan, spam and html files penetrations. A full description of these data

attributes is provided in Moustafa and Slay [15]. Our modelling strategy is outlined in the following exposition.

2.2 Modelling Strategy

Our modelling approach is to train, test and assess multiple models on data sampled from Equation 1, using multi-

ple versions of domain-partitioning algorithms. The process, via Algorithm 1, is designed to attain consistency in

uncovering intrusion types’ partitioning rules and their dynamics. Thus, our goal is two-fold–to identify cyber-attack
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predictors through unsupervised modelling and extending their potential into predicting likelihoods of future attacks.

As noted above, the two class label scenarios–binary and multi-class, present a classic example of masked and spurious

groupings, making an ideal case for concept learning. The main idea is to combine the power of automated learning

techniques and existing domain knowledge to uncover networks intrusion patterns–an idea that derives naturally from

the overall objective of data mining–extraction knowledge from data. The settings account for the method’s novelty,

i.e., ability to learn concept rules from highly masked to highly spurious cases while observing model robustness.

2.2.1 Unsupervised Modelling

Two natural challenges to dealing with data of this magnitude is that variables may be highly correlated and sampling

from the data typically yields high variability. One standard approach to addressing these issues is through dimensional

reduction–i.e., reducing the number of variables by combining them. Two popular approaches to dimensional reduc-

tion are data clustering, as described in Maechler et al. [17], in many variants, and Principal Component Analysis, as

described in Kambhatla and Leen [18]. As we shall be extracting multiple samples, we are concerned about several

data-dependent variations across samples–among them, the proportion of explained variance due to dimensional re-

duction. This variation is captured by the eigenvalues for each component and it can be visualised via scree plots which

provide an indication as to how many components to retain. Figure 3 provides simple illustrations of data–dependent

variations. The panels on the left and right hand side are based on samples of size 20 and 1500 respectively, drawn

from the subset in Equation 1. The former suggests that we retain just over 10 components, while the latter suggests

just over 20 components. The corresponding bi-plots show the influence of the variables in constructing the compo-

nents–the first two components account for 73.86% of the variation in data for the smaller sample and 40.1% for the

larger sample. Implementation through Algorithm 1 records loadings and the eigenvalues for each retained compo-

nent, from each sample. The process is repeated many times, paying particular attention to variations in the samples.

Over repeated runs, consistency of each variable’s contribution to component formation will be observed and stored

to determine the final structure which we can then compare to the two known class labels.

2.2.2 A Bayesian Approach to Supervised Modelling

This sub-section presents the Bayesian framework to illustrate its role in classification as originally discussed in Dun-

smore [7]. We do not specifically seek to apply the method for intrusion detection as in Sharma and Mukherjee [19],

but rather as a tool for using existing prior knowledge to learn about the data behaviour and generate new posterior

information, as implied in steps 15 to 17 of Algorithm 1. That is, train a classifier on part of [xi,j ] , test it on [xl 6=i,j ]
and, given an unlabelled sample [xν,τ ] not used in the training, we allocate each flow in the sample, into one of the

known classes. The problem is that of predicting class k given m observations in sample [xν,τ ] as follows

p (k|x) =
p (x|k) p (k)

p (x)
∝

πk.mfk.m (x)
∑k

j=1
πk.mfk.m (x)

(3)

where conditional probability p (k|x) represents the posterior information generated from existing prior knowledge of

class membership–i.e., p(k) ∝ πk.m and p(x|k) ∝ fk.m (x) is the data distribution in the kth class as observed from

the mth sample –i.e., the probability of observing x given that we are in the kth class of sample m. Assuming a correct

classification incurs no loss, then given data [xν,τ ] and classes {k1, k2} a prediction rule is defined as

p (x|k1)

p (x|k2)
>

Ck2,k1
p (k2)

Ck1,k2
p (k1)

=⇒ P (k1|x) >
Ck2,k1

Ck1,k2
+ Ck2,k1

(4)

where p(k1) and p(k2) are class priors and Ck2,k1/k1,k2
represent the cost of incorrectly allocating an observation to a

class, which also implies that the probability of class given data is greater than the corresponding loss i.e.,
C2,1

C1,2+C2,1

.

The cost function was introduced via the Bayesian framework in order to highlight the importance of updating prior

with posterior information. It can be shown that the Bayesian decision rule for minimum risk is the weighted sum

Ψ = Ck1,k2
p (k1)ω1 + Ck2,k1

p (k2)ω2 (5)
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Figure 3: Eigenvalues and standard deviation patterns for sample sizes 20 (left) and 1500 (right)

where ω1 and ω2 are the probabilities of misclassifying observations from k1 and k2 respectively. The decision rule is

Ψ =
1

n

n∑

i=1

L (ŷi, yi) where L (ŷi, yi) =

{

0, if ŷi = yi

1, otherwise
(6)

This framework epitomises the general concept of learning rules from data as applied by a wide range of classifiers,

an interesting area of research in Machine Learning (ML) and all Data Science related areas. In their literature survey

of various ML methods in cyber security applications, Buczak and Guven [20] focus on the variety and complexity

of the methods and note that it is impossible to make one recommendation for each method, based on the type of

attack the system is supposed to detect. They identify several criteria for consideration, including predictive accuracy,

model complexity and timeliness, and conclude that more work needs to be done in search of effective methods for

cyber applications. Classifiers like decision trees, neural networks and Support Vector Machines (SVM) can always be

driven to high training accuracy by tuning appropriate parameters, yielding unreliable models. According to Mwitondi

and Said [9], striking a balance between model accuracy and reliability is a major challenge in data mining, i.e., the

challenge to avoid over-fitting. Bridges et al. [14] consider thresholding of multiple heterogeneous streaming anomaly

detectors and they go on to define anomalies as events with low p-values. Their algorithm relies heavily on the

distributional assumption that the data are sampled from a known distribution. However, Mwitondi et al. [3] show that

even with a reasonable consideration of probability distribution of the data and the bounding likelihood of an anomaly,

challenges relating to data and model randomness remain. Here it suffices to first recognise that the parameters used

in the fitting and, hence, computation of Ψ in Equation 6 are data-dependent. Mwitondi and Said [9] show that the

empirical rule is fully associated with randomness due to the allocation region and that the allocation rule is trained,

validated and tested on random data. This randomness, exhibited in Table 1, implies that our posterior knowledge is

random, and therefore susceptible to variability. This paper seeks to contribute towards addressing this issue.
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ALLOCATION RULE ERRORS DUE TO DATA RANDOMNESS

Population Training Cross-Validation Testing

ΨPOP ΨTRAIN ΨXVALID ΨTEST

Table 1: Data-dependent allocation errors impinging on model fitting and on the computation of Ψ

Notice that Ψ in Equation 6 is a function of the loss function, priors and errors. Any domain partitioning algorithm

using rules learnt from data is susceptible to allocation rule errors in Table 1. Our work, through Algorithm 1, heavily

depends on managing the variability in Table 1. Its main idea is to combine existing domain knowledge and automated

learning techniques for intrusion detection. Thus, decisions on key parameters such as assessing the misclassification

costs would have to be made based on domain knowledge–i.e., with full involvement of system administrators, say.

2.2.3 Implementation Mechanics

This section outlines the implementation mechanics for training, validation and assessing Decision Trees and Random

Forests. With two different class labels describing the nature of the data flow, each of the data points in the sampled

data in Equation 2 is forced into only one of the classes. In other words, the entire sample xν,τ consists of two

structures, which makes it susceptible to obscured classes. Our analyses are based on individually grown Decision

Trees (DT) and Random Forests, both due to Breiman et al. [21][10]. With individual trees, unlike Random Forests,

the number of variables, τ , is not altered to enable identification of the importance of predictor variables which also

minimises the influence of multicollinearity and strength of individual trees. To minimise Ψ, we propose an algorithm

that repeatedly samples from the sub-space in Equation 1 and applies multiple Decision Tree models for both training

and testing. If the data attributes are used one at a time to split the data into normal and malicious flows by only

considering the number of observations at node N∗ then, given the attribute x.τ and the threshold, the rule is

{

k1 = {η ∈ N∗ : x.τ ≤ w

k2 = {η ∈ N∗ : x.τ > w
(7)

The observations in each of the two sets lie on either side of the hyper-plane x.τ = w chosen in such a way that a

given measure of impurity is minimised. While training and testing this rule on random datasets are the main causes

of the variations in Table 1, other variations in decision tree model results derive from setting model parameters.

On the other hand, Random Forests are constructed from the training samples drawn from Equation 1 with replace-

ment and with the number of variables also sampled from p. The procedure involves no pruning and so the error

rate depends both on the multicollinearity of the trees as well as on the strength of individual trees in the forest. Di-

mensional reduction (i.e., reducing the number of predictor variables) reduces both multicollinearity and tree strength

which makes τ a crucial adjustable parameter. We circumvent this complex scenario by applying random forests with

unaltered p and generating multiple versions of DT models to capture the consistency of predictor variables across the

repeated runs as outlined in the algorithm below. This approach derives from bagging Breiman [22] but rather than just

dividing [xi,j ] into fixed training and test sets, multiple bootstrap training and testing samples are repeatedly drawn

from it with a fixed p. The two models are repeatedly trained and tested on these multiple samples, recording the key

performance parameters, accuracy and reliability. Model optimisation and selection are finally done by harmonising

data variability through cross-validation. The algorithm learns a model F (φ) = (P )
︸︷︷︸

x,y∼D

[φ (x) 6= y] , where D is the

underlying distribution, and it provides the mechanics for assessing the models. Particularly when class labels are

known, its outputs provide great insights into the overall behaviour of the data particularly how the attributes relate to

the target variable as illustrated in the following sections.
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3. IMPLEMENTATION, RESULTS AND DISCUSSIONS

Algorithm 1 SMA-Sample, Measure, Assess

1: procedure SMA

2: Set X = [xi,j ] : Accessible Data Source

3: Learn F (φ) = (P )
︸︷︷︸

x,y∼D

[φ (x) 6= y] based on a chosen learning model

4: Set the number of iterations to a large number K

5: Initialise:Θtr := Θtr(.) : Training Parameters

6: Initialise:Θts := Θts(.) : Testing Parameters

7: Initialise:Πcp := Πcp(.) : Comparative Parameters

8: Initialise: s as a percentage of [xν,τ ] , say 1%

9: str : Training Sample [xν,τ ]← [xi,j ] extracted from X = [xi,j ]
10: sts : Test Sample [xν,τ ]← [xl 6=i,j ] extracted from X = [xi,j ]
11: for i := 1→ K do: Set K large and iterate in search of optimal values

12: while s ≤ 50% of [xν,τ ] do Vary sample sizes to up to the nearest integer 50% of X

13: Sampling for Training: str ← X

14: Sampling for Testing: sts ← X

15: Fit Training and Testing Models L̂tr,ts ∝ Φ(.)tr,ts with current parameters

16: Update Training Parameters: Θtr(.)← Θtr

17: Update Testing Parameters: Θts(.)← Θts

18: Compare: Φ(.)tr withΦ(.)ts : Plotting or otherwise

19: Update Comparative Parameters: Π(.)cp ← Φ(.)tr,ts
20: Assess:P (ΨD,POP ≥ ΨB,POP ) = 1⇐⇒ E [ΨD,POP −ΨB,POP ] = E [∆] ≥ 0
21: end while

22: end for

23: Output the Best Models L̂tr,ts based on E [∆] ≥ 0
24: end procedure

Initialisation of the algorithm is problem–specific and focuses on the two main problems in data mining–data clustering

and classification. Thus, the learning model in line 3 may be initialised without or with class labels. The initial training

and testing parameters in lines 5 and 6 are determined by the investigator–these may be from sources ranging from

experimental to expert knowledge. A simple example for unlabelled data would be the starting points for running

the K-Means algorithm or in the case of random forest classification, the number of bagged trees. The comparative

parameters in line 6 provide comparative performance measures after each successive iterations, updating the set as

the algorithm proceeds and selecting the best performance at the end of the algorithm execution.

3 Implementation, Results and Discussions

Optimal results of random forests obtained from multiple runs are presented in Figure 4 with an estimated Out-of-Bag

(OOB) error of 18.41% obtained from training sample aggregation of 1500 trees in the left hand side panel while the

predicted traffic structures are in the right hand side panel. Notice that since the random forest classifier aggregates

individual trees based on a generic bagging procedure, it may not always be possible to find the best split. Bootstrap

aggregation without underlying model relies only on sample reprsentativeness which may not always be guaranteed.

It becomes a serious issue with imbalanced class as then, the model will learn more of the highly weighted classes

than of others.

As noted above, we circumvent the shortcomings of random forests by applying Algorithm 1. One of its key outputs

is the tree partitioning in Figure 5 with its overall results showing that the importance of the splitting variables is in

the order sbytes (20), smean (11), dload (11), rate (11), sload (8), dur7, sttl (6), dbytes (6), dmean (5), dpkts (4),

dloss (4), synack (3), tcprtt (3), sjit (2), ackdat (2), dinpkt (2), sloss (1), swin (1) and djit (1). Note that the order

of the attack types–the bar charts at the bottom of Figure 5 is the same as that in the right hand side panel of Figure 4.

The binary response version of the tree is shown in Figure 6 the overall results of which order the importance of
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3. IMPLEMENTATION, RESULTS AND DISCUSSIONS

Figure 4: Optimal results of random forests obtained after multiple runs yielded a 18.41% OOB error

Figure 5: Individual random trees showing the main tree splitting variables and proportions at nodes

variables as follows: sttl (14), dload (12), dbytes (7), dpkts, dloss, tcprtt, dmean, smean, dinpkt and synack (6),

sjit, djit and ackdat (5), sbytes (3), sload (2) and rate, sinpkt, dttl, dur, spkts (1). This type of discretisation pools

together all types of attacks versus normal flow and while it may look like masking information, it has greater pro-

tection potential than breaking them down in that the number of attributes required to identify intrusion is minimised.

Performance comparisons of the two targets can be contextualised as follows. System administrators will typically be

interested in identifying the specific nature of the attacks and while this knowledge may help them develop specialist

deterrents, Zargari and Voorhis [23] note that the dynamic behaviour of attacks can add an extra burden on them,

technically and financially. The foregoing concern, further highlights the need for developing enhanced variability

monitoring tools. For example, the nine attack types identified in this paper are likely to be highly dynamic and so it

is reasonable to expect some attacks evolving into other previously unknown variants or two or more merging.
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3. IMPLEMENTATION, RESULTS AND DISCUSSIONS

Figure 6: The binary target version of the Individual Decision Trees model

Figure 7: Multiple Decision Tree models on the binary variable

A better option is probably being able to generalise–i.e., isolating normal from malicious data flows. Below is a com-

parative performance based on specific and general target variables. Figure 7 exhibits error plots based on the binary

variable label with an OOB of just over 6% compare this to the 18.41% for the multi-class target above. While it is

technically obvious to see why the binary target yields more accurate results than the multi-class target variable, it is

imperative to focus on the analytical impact of randomness in the intrusion types as implied in Table 1. One way of

achieving that goal is to focus on the variability of the model results which is what this paper sought to achieve.

Various model variability outputs can be captured for comparative purposes. For DT models, these may include the

key parameters in Table 2–the complexity parameter, number of splits and variation in the model validation process.

We can assess the predictive performance of the model by looking at the root node error in conjunction with the values

in this table. The relative error is equivalent to 1−R2 and it represents the error on the observations used to estimate

the tree model. The training and validation errors are obtained by multiplying relative error RE and CV E by the

XSTD respectively. To avoid over-fitting, the two errors and the standard deviation provide a guide as to when to

stop growing the tree–typically, RE +XST < CV E, and will feature in Θtr,ts in Algorithm 1.
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Complexity Parameter Splits Relative Error (RE) Cross-Validation Error (CVE) XSTD

0.479838710 0 1.000000000 1.000000000 0.023526986

0.117943548 1 0.520016129 0.520016129 0.020034240

0.073588710 2 0.422177420 0.439516129 0.018848184

0.072580645 3 0.328629032 0.349798387 0.017233736

0.017137097 4 0.256048387 0.283266129 0.015782203

0.014112903 5 0.238911290 0.246975806 0.014874193

0.010000000 6 0.210685484 0.230846774 0.014439031

Table 2: Performance of the algorithm on binary target data

Table 2 epitomises some of the results from the SMA Algorithm, which addresses the randomness issues in Table 1,

by searching for optimal values for line 23. The algorithm works with a wide range of unsupervised and supervised

models and Table 2 illustrates predictive performance assessment of the model, based on DT’s complexity parameter,

number of splits and variation in the model validation process. Different complexity parameters and other relevant

metrics would be tabled for different models–such as the number of layers, number of neurons and learning rate,

in the case of Neural Networks or the margins on hyperplanes, for Support Vector Machines. These parameters are

fundamental in determining the quantities in line 19 which, ultimately, determine the desired optimal values in line 23.

4 Concluding Remarks

This paper was motivated by the random nature of analytical studies which has previously inspired many comparative

analyses-based classifier design, datasets used and other experimental setups, particularly Moustafa and Slay [15, 16]

and Mwitondi et al. [24]. We presented an iterative algorithm that is trained and tested on multiple random datasets

with the ultimate objectives being to identify key predictors of intrusion and predict likelihoods of future attacks. The

algorithm generates an ensemble model–a derivative data mining technique embedded with data adaptation capabilities

for intrusion detection and it is adaptable to various learning algorithms. Its main idea is to combine existing domain

knowledge and automated learning techniques for intrusion detection which fits in nicely with the overall objective

of data mining–extraction knowledge from data as highlighted in Wu and Banzhaf [4]. The paper provided a unified

unsupervised-supervised approach to modelling of cyber intrusion dataset. The two examples drawn from binary and

multi-class target variable were motivated by the fact that frameworks for attaining the two objectives are based on

pre-defined ontologies with inherently highly dynamic parameters. As reported in Mwitondi and Said [9], these pa-

rameters tend to randomise not only the training and testing datasets, but also the predictive power of the models. The

proposed algorithm can be applied with many learning algorithms and, as we seek to achieve generalisation rules in

isolating malicious from normal data flows, we expect that this work will pave the way for more model comparisons

across applications. Results show that the ensemble model conforms to data variability and yields more insightful

predictions on multinomial targets. We sought to combine the power of automated learning techniques and existing

domain knowledge to uncover networks intrusion patterns.

The nature and purpose of data generation and the two-class label scenario provided perfect settings for our method’s

novelty–ability to learn concept rules from highly masked to highly spurious cases while observing model robustness.

From an intrusion detection perspective, normal and malicious flows do not fit in any current concept definition across

tools, and so our work is expected to enhance that understanding from a modelling point of view. The objectives of

the paper confined it to developing, training and testing an ensemble models that conform to data variability; carry out

predictive modelling of intrusion using historical data and carrying out comparative analysis of the predictive models.

It is imperative to envision some of the attributes in Equations 1 and 2 as being encrypted, since encryption is always

going to remain part of IT security. For the purpose of this paper, a plain text or numerical variable jumbled into

unreadable code will still retain its key feature, describing its type as a data attribute. Thus, while the paper pays no

particular focus on Deep Packet Inspection (DPI), Algorithm 1 has the potential for dealing with encrypted packages,

given minor adaptation and the right data attributes. One example of such adaptation is Roni et al. [25] who propose
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using the K-Nearest Neighbour method to classify real-time encrypted data.

Finally, the SMA Algorithm performed fine on a single machine, but it is reasonably assumed that it is suitably

applicable to large, distributed situations. We did not delve further into this, as it is an infrastructural design problem.

Thus, while SMA has neither been tested for the number of users on a distributed system, nor on multiple processors,

it provides new potential for scalable systems for intrusion detection. The algorithm is adaptable to multiple users

and concurrent database access–i.e., running distributed applications on multiple servers across geographical and time

zones as in Neill and Carloni [26]. The work was completed using open source tools–RStudio and TexStudio as the

authors commitment to promoting Open Science. It is expected that our findings will open new research directions

into cyber-security and related areas of open science through sharing of data and research findings.
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