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Abstract

We present a robust elastic and partial matching metric
for face recognition. To handle challenges such as pose, fa-
cial expression and partial occlusion, we enable both elas-
tic and partial matching by computing a part based face
representation. In which N local image descriptors are ex-
tracted from densely sampled overlapping image patches.
We then define a distance metric where each descriptor in
one face is matched against its spatial neighborhood in the
other face and the minimal distance is recorded. For im-
plicit partial matching, the list of all minimal distances are
sorted in ascending order and the distance at the αN -th
position is picked up as the final distance. The parameter
0 ≤ α ≤ 1 controls how much occlusion, facial expression
changes, or pixel degradations we would allow. The opti-
mal parameter values of this new distance metric are exten-
sively studied and identified with real-life photo collections.
We also reveal that filtering the face image by a simple dif-
ference of Gaussian brings significant robustness to lighting
variations and beats the more utilized self-quotient image.
Extensive evaluations on face recognition benchmarks show
that our method is leading or is competitive in performance
when compared to state-of-the-art.

1. Introduction
Face recognition has been extensively studied in the

community for several decades [1, 2, 8, 14, 17, 24, 29, 30].

It has been shown by the face recognition grand chal-

lenge [19] that under controlled settings, the recognition

rate can be higher than 99% with false acceptance rate

as low as 0.1%. Nevertheless, this is not the case when
performing face recognition in uncontrolled real life pho-

tos [11]. Such photos include considerable visual varia-

tions caused by, for example, lighting [7, 21], difference in

pose [21], facial expression [2] and partial occlusion [20].

It has been demonstrated that state-of-the-art photomet-

ric rectification techniques such as self-quotient image [26]

can largely mitigate lighting variations except for extreme

Figure 1. Examples of matched faces in our experiments. Notice

the significant variations in lighting, pose, facial expression as well

as partial occlusion. Each row shows two pair of matched faces.

cases. In our experiments, we reveal that a simple difference

of Gaussian (DoG) filter outperforms the more utilized self-

quotient image method in handling normal lighting varia-

tions.

Although there has been great research progress on face

alignment [12], significant pose variations may still exist

after alignment. Therefore, besides extreme lighting varia-

tion [7], pose, facial expression and partial occlusion remain

great challenges. Intuitively, these challenges can largely

be alleviated by designing robust face distance metrics that

leverage both elastic and partial matching. By design prin-

ciple, there are two types of face distance metrics: learning

based metrics [24, 2, 8, 14, 30, 29] and hand-crafted met-

rics [1, 18, 15].

Inspired by the seminal work of Turk and Pentland on

Eigen-Faces [24], learning based distance metrics have been

a very active topic in face recognition. The predominant re-

search efforts consist of identifying a discriminative embed-

ding of faces in order to define a distance metric. Fisher-

Faces [2], Laplacian-Faces [8] and their regularized vari-

ants [5, 4, 3] are all along this line. Other learned met-
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rics include those based on SVMs [17] and Bayesian meth-

ods [16].

Nevertheless, learned metrics based on strongly super-

vised learning, such as linear discriminative embeddings [2,

8] or SVMs [17], need to be trained on the specific data-set

that they deal with and most often the face images need to

be aligned well to facilitate learning of meaningful struc-

ture of facial appearances. This makes them more suitable

for controlled surveillance scenarios with limited subjects

where labeled gallery faces are ready to be used for train-

ing. In addition, the training data-set has to be large enough

to reduce the risk of over-fitting. For many face recogni-

tion tasks on real-life photos, these conditions may not be

satisfied. Hence, it is desirable to have a plug-and-play dis-

tance metric, which does not need to be trained and can

conveniently be used in face recognition tasks dealing with

real-life photos.

Hand-crafted distance metrics do not suffer from the

problems confronting the learned metrics. They also pro-

vide much more flexibility in incorporating elastic and par-

tial matching schemes. For example, Elastic Bunch Graph

Matching (EBGM) [28] represents each face by a graph, the

nodes of which are a set of Gabor jets extracted from facial

land-marks. Then a graph matching algorithm is designed

to calculate the distance between two face representations.

Notwithstanding their demonstrated success, graph match-

ing is computationally intensive and the Gabor jets may not

be discriminative enough for robust matching.

Ahonen et al. [1] proposed a distance metric that is cal-

culated by a weighted sum of χ2 distances, each of which

is calculated between histograms of local binary patterns

(LBP) on non-overlapping image partitions. However, it

does not enable elastic matching at all, and hence, it is not

robust to pose variations. Vivek and Sudha [18] proposed

a partial Hausdorff distance metric where each pixel is rep-

resented as a binary vector similar to local binary pattern.

The drawback of this method is that the spatial structure is

largely discarded since a pixel in one face could be matched

with any other pixel having the same local binary pattern

in the other face. This is not desirable, especially when the

faces are roughly aligned with each other.

In search for a robust face distance metric to handle all

the challenges in face recognition, we take a part based

face representation to enable elastic and partial matching,

where a set of N local image descriptors [13, 27, 9, 23]

are extracted from overlapping and densely sampled image

patches. Then, in the matching process, each local image

descriptor in one face image is compared against descrip-

tors in its spatial neighborhood in the other face image and

the minimal distance is recorded.

To perform partial matching, the list of all recorded min-

imal distances are then sorted in ascending order and the

distance at the αN -th position is picked up as the final dis-

tance metric, where 0 < α ≤ 1 is a control parameter on
how much pixel degradation, facial expression changes and

partial occlusions we would allow in the face images. The

optimal parameter settings of our distance metric is exten-

sively studied on real life photos obtained from several peo-

ple’s ”family & friends” photo collections. With these op-

timal parameter settings, the proposed distance metric ex-

hibits great robustness to pose variation, partial occlusion,

as well as facial expression changes. This is demonstrated

in our experiments on various face recognition benchmarks.

We present in Figure 1 some matched faces in our experi-

ments on real-life photo collections to demonstrate how ro-

bust our distance metric is to all the different visual varia-

tions.

The design of our distance metric follows the fundamen-

tal principle of the generalized Hausdorff distance. How-

ever, unlike its previous applications in face recognition,

in which it was used to match edge points in the image

space [6, 22], our distance metric is defined in the feature

space, i.e., the space of the local image descriptors. Fur-

thermore, we reinforce constraints to only allow each lo-

cal image descriptor to be matched with its spatial neigh-

bors in the image space. This spatial constraint is essential

for matching two face images as shown in our experiments.

This way, we perform explicit elastic matching and implicit

partial matching in an efficient and robust way. Our main

contributions are two fold:

1) We propose a novel robust partial matching metric for
face recognition, which performs explicit elastic matching

and implicit partial matching and shows leading perfor-

mance when compared to the state-of-the-art.

2)We empirically show that a simple difference of Gaussian
filter outperforms the more utilized self-quotient image and

brings significant lighting invariance.

2. Part-based Face Representation
Figure 2 presents our pipeline used to extract the repre-

sentation of a face. As illustrated in the figure, given an

input image containing a face, we first run a variant [31]

of the Viola-Jones face detector [25]. Next, the detected

face image patch is fed into an eye detector, a convolutional

neural network regressor, which localizes the left and right

eye locations.

Our geometric rectification step is conducted by warping

the face patch with a similarity transformation that places

the two eyes into canonical positions in a patch of sizew×w
(w = 128 in our settings). The geometrically rectified face
patch I is then passed through a DoG filter to obtain the

photometrically rectified face patch Î, i.e.,
Î = Iσ1 − Iσ2 , (1)

where Iσ is produced by smoothing I with a Gaussian ker-
nel Gσ with standard deviation of σ pixels. Our empirical
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Figure 2. Our processing pipeline to extract the face representation.

investigations reveal that the combination of σ1 = 0, which
simply means no smoothing (i.e., Iσ1 = I), and σ2 = 1 is
optimal.

After the photometric rectification step, we densely par-

tition the face image into N = K ×K overlapping patches

of size n × n (n = 18 in our settings), with both the hor-
izontal and vertical step set to s pixels (s = 2 in our set-
tings). To obtain our part-based representation, we compute

a local image descriptor for each of the size n × n small
patches. We adopt a variant of the descriptor T2-S2-9 pro-

posed by Winder and Brown [27], which essentially accu-

mulates 4 dimensional histograms of rectified image gra-
dients {|∇x| − ∇x, |∇x| + ∇x, |∇y| − ∇y, |∇y| + ∇y}
over 9 spatial pooling regions, as shown in Figure 2(f). This
descriptor provides excellent performance when matching

image patches subject to different lighting and geometric

distortions.

After we extract the local image descriptor for each of

the local image patches, our final face representation is a

matrix of N = K ×K local image descriptors, i.e.,

F = [�fmn], 1 < m < K, 1 < n < K (2)

where �fmn corresponds to the descriptor extracted from the

patch at location (m · s, n · s) in pixel coordinates. Given
such face representations we now proceed to define our dis-

tance metric.

3. Robust Elastic and Partial Matching Metric

We would like to utilize both elastic and partial match-

ing to handle the different visual variations in face images.

To calculate the distance between two face representations

F (1) and F (2), we first perform elastic matching for each

local descriptor �fij in F (1). This is done by finding that

descriptor’s best match among its spatially neighboring de-

scriptors in F (2). More formally, for each 1 ≤ i, j ≤ K,
we have

d(�f (1)
ij ) = min

k,l:|i·s−k·s|≤r, |j·s−l·s|≤r
‖�f

(1)
ij − �f

(2)
kl ‖1. (3)

r

each min distance

match each 
feature within 
region 

d11 d12 …             …              dij …             …                   dKK

sort distances

-th percentile as final distance

fKK

f11

fij

d73 d82 …             …              d11 …             …                  d34

Figure 6. Illustration of our robust distance metric. Note however

that the α-th percentile selection can be implemented with a quick
selection algorithm, i.e. no explicit sorting is needed.

where ‖ · ‖1 stands for the L1 norm, and r is a parame-
ter controlling how much elasticity we would allow during

matching. We name the neighborhood defined by r as r-
neighborhood. Then, let

[d1, d2, . . . , dαN , . . . , dN ] = Sortascend{d(�f (1)
ij )}K

i,j=1

(4)

be the sorted distances of all d(�f (1)
ij ) in ascending order, we

define

d(F (1) → F (2)) = dαN (5)

as the directional distance from F 1 to F 2, where 0 ≤ α ≤ 1
is a control parameter for partial matching. Note that it is

not needed to do an explicit sorting in the implementation,

we can instead use a quick selection algorithm. The para-

meter α controls how much pixel degradation, partial oc-

clusion or facial expression changes we expect in the face

images. Figure 6 visually illustrates how the distance metric

is computed.
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Figure 3. Histogram of the number of subjects owning a specific number of faces.
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Figure 4. Comparison of DoG filter with self-quotient image.

Similarly, we can also define d(F (2) → F (1)) and it is
clear that most often d(F (1) → F (2)) �= d(F (2) → F (1)).
To make our distance symmetric, our final robust distance

metric is defined as

D(F (1), F (2)) = max(d(F (1) → F (2)), d(F (2) → F (1))).
(6)

The following property of the proposed distance metric is

trivially realized.

Property 3.1 If D(F (1), F (2)) < V , then at least α por-
tion of the local image descriptors in F (1) (F (2)) have a
matched local descriptor in their r-neighborhood in F (2)

(F (1)) with distance less than V .

Property 3.1 reflects how the proposed distance metric per-

forms partial matching, i.e., the distance represents how

well α portion of the face images are matched.

4. Experiments
We present extensive experiments to validate the quality

of our face distance metric. Our somewhat optimized C++

implementation executes the distance metric at a speed of

0.23ms for a pair of faces (on a machine with a single core
3.0GHz CPU). This is excluding the time for extracting the

face representations. Below, we first explore the parameter

values of our distance metric on real-life photo collections.

Then, fixing the optimal parameter values, we perform ex-
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Figure 5. From top row to bottom row, the ROC curves for different values of the parameters s, r, and α, respectively. Both on FF1
(Column (a)) and FF2 (Column (b)).

tensive evaluation on benchmarks such as Labeled Faces

in the Wild (LFW) [11], the Olivetti Research Laboratory

(ORL) database [20], the Yale face database [2], and the

CMU PIE database [21]. To make the presentation more
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concise, we call them LFW, ORL, Yale, and PIE, respec-

tively.

4.1. Parameter Exploration

There are three important parameters in our distance

metric that we need to explore in order to obtain optimal

performance. The first one is the patch sampling step pa-

rameter s in the face representation pipeline. It determines
how many densely sampled patch descriptors we generate.

The parameter s should be carefully chosen to balance be-
tween speed and recognition quality. The second parame-

ter is the elasticity range parameter r, which defines the r-
neighborhood an individual descriptor would match against.

The third parameter is the partial matching control para-

meter α. As discussed before, α controls how much pixel
degradation, partial occlusion, or facial expression changes

we would expect.

To explore the effects of these parameters, we collected

two real-life photo collections from several people’s ”family

& friends” photo albums. We manually tagged all the faces

that were detected by our face detector in these photos. We

call them ”family & friends” data set one and two, or in

short FF1 and FF2, respectively. FF1 has a total of 856 faces
of 269 subjects. While FF2 contains 4933 faces of 1294
subjects. The number of faces per subject is not uniform

in these data sets. Figure 3 presents the distribution of how

many faces images each subject has. The horizontal axis

of the figure displays the number of faces, the vertical axis

represents the number of subjects that have that number of

faces. For example, in Figure 3 (a), we can see that there are

124 subjects in FF1 who only have 1 face, and in Figure 3
(b), we can see that there are around 250 subjects in FF2

who have 2 faces.
With each data set, we split the faces half and half per

subject into two subsets. One subset is used as the gallery

set and the other is used as the probe set. The recogni-

tion rate is evaluated by 1 nearest neighbor classification.

A ROC curve is generated by picking a threshold on a ratio

of the distances between the query face to the best matched

gallery face and the distance between the query face to the

second best matched gallery face with a different identity

than the best matched one. If the ratio is below a certain

threshold, then we accept the match, otherwise we do not

accept the match. The horizontal and vertical axis present

the number of falsely and correctly recognized faces among

the accepted matches, respectively. Both subsets are served

as gallery set once so the final ROC curve is the aggregation

of two tests.

We have exhaustively run evaluations with all possible

combinations of the two photometric rectification methods,

i.e., DoG filter and the self-quotient image [26], with differ-

ent settings of the parameters s, r and α. Our conclusion
is that using the DoG filter, with s = 2 pixel, r = 4 pixel,

and α = 0.2 is the optimal setting. To better understand
this investigation, in Figure 4 and 5, we present compara-

tive ROC curves by setting each parameter to be a different

value than the optimal one, while keeping the other settings

at their optimal values. We also present in these figures the

ground truth ROC curve (red dotted line) that a perfect face

recognizer would achieve. Such a recognizer would refuse

to accept a match for faces that do not have a correspond-

ing gallery face, while correctly matching all the other faces

which do have corresponding gallery faces.

More specifically, Figure 4 presents the recognition ROC

curves using either the DoG filter (blue curve) or self-

quotient image (green curve) for photometric rectification.

We can clearly observe, on both FF1 and FF2, that using

DoG achieves significantly better recognition rate than us-

ing self-quotient image. Similarly, the first, second, and

third row in Figure 5 presents the effect of different values

of the parameters s, r, and α, respectively. We can clearly
observe how the recognition performance degrades when

the value is not the optimal one.

We did note that overall s = 1 (blue curve) obtained
slightly better performance than s = 2. However, s = 2
saves almost 4 times the computation time for extracting
the local descriptors and also makes the face representation

size 4 times smaller. Therefore, we choose to use s = 2 at
the slight sacrifice of recognition performance. Another ob-

servation is that the optimal setting for α, an optimal value
of 0.2, implies that the best matched 20% region in the face

images largely determines the identity of the face.

Last but not least, we would like to emphasize the im-

portance of using the parameter r to control the amount of
elasticity we would allow in the distance metric. As clearly

observed in the second row of Figure 5, neither allowing

no elasticity r = 0 (blue line in the figure) nor allowing
maximal elasticity r > K (red line in the figure) is desired.

The former does not handle pose variation well. While the

latter does not take into consideration that face images are

very structured, especially after they are roughly aligned.

The matching of the local descriptors should not be over

the whole face image.

In the following, we exclusively use the identified op-

timal settings for our distance metric to compare with the

state-of-the-art on various face recognition benchmarks.

4.2. Experiments on Recognition Benchmarks

4.2.1 Face Recognition on LFW

We first present our recognition result on the LFW

dataset [11]. We followed the test settings specified in [11].

The evaluation of the quality of a face recognition algorithm

on LFW is to classify a pair of faces as either match or non-

match based on the distance between them. From differ-

ent threshold settings, a ROC curve is generated. Figure 7
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presents the ROC curve from our approach (black dotted

line), along with the ROC curves of previous methods such

as the hybrid descriptor based method proposed by Wolf

et al. [29], Nowak’s method on image matching applied to

face recognition [17], the MERL face recognizer [10], and

the combined MERL+Nowak method [10].

As shown in Figure 7, our method outperforms both the

MERL recognizer and Nowak’s method in both the low

and high false positive regions. While the hybrid descrip-

tor based method has the leading performance in the low

false positive region and the MERL+Nowak method is lead-

ing in the high false positive region. Moreover, our method

outperforms MERL+Nowak in the low false positive region

and is comparable to the hybrid descriptor method in the

high false positive region. We must emphasize that in or-

der to show the generalization ability of our method, we did

not leverage the training data provided in LFW to tune the

parameters of our algorithm, we simply used the parame-

ters reported above. Also notice that our algorithm is the

top performing non-combination method, i.e. unlike hybrid

descriptor-based and Merl+Nowak it does not combine the

output of several algorithms.

4.2.2 Face Recognition on ORL, Yale, and PIE

We perform extensive experiments on three face recognition

benchmarks including Yale, ORL, and PIE1. We briefly de-

scribe each of the data-sets and our experimental setting:

• The Yale database contains 165 faces of 15 subjects.
There are 11 faces per subject, which are of different fa-

cial expressions. We randomly select 5 faces per person to

1The cropped and aligned faces of these datasets are obtained from Dr.

Deng Cai at http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html

Yale ORL PIE
Base 43.8± 4.1 13.7± 2.4 28.0± 0.6
PCA 43.8± 4.174 13.7± 2.4199 28.0± 0.61006
LDA 21.2± 3.414 7.2± 1.739 7.9± 0.367
LPP 21.1± 3.414 6.8± 1.639 7.5± 0.3135
RLDA 17.4± 3.314 3.6± 1.239 4.3± 0.267
SLDA 14.9± 3.214 2.3± 1.039 3.6± 0.267
Ours 9.4± 3.1 1.6± 0.9 2.4± 0.2

Table 1. Error rates on three academic benchmarks. The table enu-

merates the average face recognition error rate and the standard

deviation in percentage over 50 runs. The subscripts present the

optimal dimension of different embedding methods.

form the set of gallery faces, and the rest are used as the

probe faces.

• The ORL database contains 400 faces of 40 subjects.
There are 10 faces per subject, which were taken at different

time, lighting, and facial expressions. We randomly select 5

images per subject to form the set of gallery faces, and the

rest are used to form the probe set.

• The PIE dataset contains 41368 images of 68 subjects
with 13 poses, 43 illumination conditions, and 4 expres-

sions. We used the images of the 5 nearly frontal poses

(C05, C07, C09, C27, C29) under all illumination condi-

tions and expressions, i.e., a subset of 11560 face images

with 170 images per person. We randomly selected 30 im-

ages per person as the gallery faces, and the rest were used

for testing.

In our experiments, the face images were all resized to

32 × 32 with the eyes aligned in the same canonical loca-
tion. For each data set, we randomly split it 50 times and we

report the average recognition error rate in percentage, see

Table 1. The matches are calculated by 1 nearest neighbor

classification. Note because the faces are already aligned,

we bypassed the geometric rectification step when calculat-

ing our face representation.

Since the various discriminative embedding methods

show the state-of-the-art performances on these dataset,

we compare the performance of our algorithm mainly to

them, including the Fisher-Face (LDA) [2], Laplacian-Face

(LPP) [8], spatially smooth Fisher-Face (SLDA) [5], and

the regularized Fisher-Face (RLDA) [3]. We also present

two baseline results: the first one is taking Euclidean dis-

tances between the raw face images, and the second one is

using Eigen-Faces (PCA) [24]. The recognition error rates

of all the methods are also summarized in Table 12. All the

learned metrics are trained on the gallery faces. The face

image vectors are all normalized to be unit vectors in pre-

processing, as suggested in [5, 3].

From Table 1, it can be seen that our face distance met-

2To generate the comparison results, we used the Matlab script from Dr.

Deng Cai at http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html.

2088



ric outperforms all the learned metrics by a significant mar-

gin in all tests. This is even though we did not perform

any training or parameter tuning on these data sets. For ex-

ample, our method achieves error rates of 9.4% ± 3.2%,
1%± 0.9%, 2.4%± 0.2% on Yale, ORL, and PIE, respec-

tively, while the second best results achieved by SLDA are

14.9% ± 3.1%, 2.3% ± 1.0%, and 3.6% ± 0.2%. These
results clearly demonstrate the performance and generaliza-

tion ability of our method.

5. Conclusion and Future Work
In this paper, we propose a robust distance metric for

face recognition. The distance metric incorporates the ideas

of both elastic and partial matching. The metric can deal

with all various visual variations found in real life face pho-

tos. This includes lighting variation, difference in pose,

facial expression, as well as partial occlusion. We exten-

sively studied the effects of different parameters when deal-

ing with photos from several people’s real life photo collec-

tions. The distance metric with the optimal parameter set-

tings was then evaluated on various face recognition bench-

marks. The extensive evaluation demonstrated the excellent

performance of our proposed approach. We also demon-

strated that a simple DoG filtering is better than the more

utilized photometric rectification method self-quotient im-

age in handling lighting variations. Future research includes

further exploration of using different local image descrip-

tors as well as experimentation with the photometric rectifi-

cation algorithm to handle more extreme lighting variations.
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