
Research Article

A Robust EMD-Based RVFL Network Fusion Algorithm for
Low-Cost GPS/INS Integrated System

Da Liu , Shufang Zhang , and Jingbo Zhang

Information Science and Technology College, Dalian Maritime University, Dalian 116026, China

Correspondence should be addressed to Jingbo Zhang; zhang_jingbo@dlmu.edu.cn

Received 28 May 2019; Accepted 1 August 2019; Published 13 October 2019

Academic Editor: Luis Rodolfo Garcia Carrillo

Copyright © 2019 Da Liu et al. ,is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global positioning system (GPS) and inertial navigation system (INS) are commonly combined to overcome disadvantages of
each and constitute an integrated system that realizes long-term precision. However, the performance of the integrated system
deteriorates on which GPS is unavailable. Especially when low-cost inertial sensors based on the microelectromechanical system
(MEMS) are used, performance of the integrated system degrades severely over time. In this study, in order to minimize the
adverse impact of high-level stochastic noise from low-cost MEMS sensors, denoising technology based on empirical mode
decomposition (EMD) is employed to improve signal quality before navigation solution by which significant improvement of
removing noise is achieved. Moreover, a random vector functional link (RVFL) network-based fusion algorithm is presented to
estimate and compensate position error during GPS outage such that error accumulation is suppressed quickly when INS is
working standalone. Performance of the proposed approach is evaluated by experimental results. It is indicated from comparison
that the proposed algorithm takes advantages such as better accuracy and lower complexity and is more robust than the commonly
reported methods and is more appropriate for real-time and low-cost application.

1. Introduction

Nowadays, navigation technology has attracted more atten-
tion than ever before on account of the increasing demand for
positioning or location in various fields such as consumer
electronics, displacement monitoring, and intelligent trans-
portation. Global navigation satellite system (GNSS) and INS
are two main positioning systems with high precision, high
performance, and high reliability. GPS as a representative of
GNSS has advantages of providing high long-term position
accuracy and low cost. However, it suffers from obstruction
and interference, leading to giving a continuous navigation
solution in an urban canyon. On the contrary, INS could
operate continuously with high bandwidth and presents low
short-term noise, but its accuracy degrades with time elapse as
the inertial instrument errors are accumulated fast. ,e
complementary characteristics of INS and GNSS promote the
integration of the two positioning systems, generating a new
system possessing a continuous, complete navigation solution
with high long- and short-term accuracy.

In the GPS/INS integrated system, Kalman filtering (KF)
methods are commonly used for information fusion under
assumption that the dynamic statistical model of the system
and prior knowledge of the sensors in the system are known
which limit the application area and degrade the perfor-
mance of the system when low-cost sensors are used.
Moreover, the accuracy of the integrated system deteriorates
significantly on occasion of GPS outage because only the
standalone INS system is working which makes the in-
tegrated system performance depend on poor long-term
accuracy of INS.

To overcome the disadvantages of KF, a kind of effective
solution based on an artificial neural network (ANN) is
proposed to compensate integrated system deviation caused
by GPS blockage, which utilizes the research results of the
current popular artificial intelligence (AI). ,e purpose of
applying AI is to bridge the relationship between vehicle
motion dynamics and specific information of integrated
system by making use of universal approximation capability
of the neural networks or other similar models, which is an
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intrinsic regression method for fitting a nonlinear function
with some signals of the system. Specifically, output data of
sensors of the integrated system are employed for training an
AI model when GPS is available so that extra information is
predicted by a well-trained model to correct the accumulating
errors produced by a standalone INS once GPS is blocked.
Some scholars have investigated this field and their studies are
reported.,e radial basis function (RBF) is first introduced to
predict position errors between GPS and INS by Sharafʼs team
[1]. In their work, INS position and time were chosen as
network inputs and output was INS error, and wavelet
analysis was used to denoise the GPS and INS position signals
for network training. In their later work, past samples of INS
position and velocity were also utilized as network input to
obtain better dynamics performance [2]. On this basis, Chen
et al. used dynamical neural network to construct relation
between multistep past INS errors and current INS error [3].
,en, Tan et al. developed a new model which combined
increments of force and angular velocity rate as model inputs
and chose the GPS position increments as model outputs,
offering better performance than the traditional INS error
output model [4]. Furthermore, Yao et al. selected current
speed, specific force, angular velocity, and their past one-step
delay as inputs of the multilayer perceptron network to
predict GPS incremental output which was the measurement
reference for correcting the estimated outputs of KF [5]. All
these AI-based methods improved the accuracy of the GPS/
INS integrating system in the case of GPS outage.

Various AI algorithms have been applied in compensating
the precision loss due to GPS loss for the GPS/INS integrating
system, such as the adaptive neuro-fuzzy inference system
(ANFIS) [6], support vector machine (SVM) [7–9], feed-
forward network (FNN) [5], wavelet neural network (WNN)
[3], and ensemble learning algorithm [10, 11]. AI-based
methods proceeded remarkable prediction improvement in
this field. However, they also have disadvantages that cannot
be ignored.,e parameter optimization process of ANFIS is a
time-consuming work so that real-time implementation be-
comes a difficult task; for SVM, there is no uniform kernel
function selection method, training for large samples is slow,
and it is sensitive to data loss; the ANN methods including
FNN and WNN have drawbacks on the local minimum and
overfitting problems, while ensemble learning algorithm like
LSBoost or Bagging suffer from disadvantages such as slow
convergence and heavy and time-consuming computation.
Kinds of new algorithms are proposed to solve these prob-
lems, including extreme learning machine (ELM), which is a
relatively new method with fast convergence and good
generalization ability to train a single-hidden layer feedfor-
ward neural network [12]. ELM is a feedforward neural
network with single-hidden layer and random weight of
hidden nodes, and output weights of ELM are analytically
determined instead of being computed by gradient-based
learning algorithms. ,e fast learning speed of ELM makes it
suitable for real-time applications. For inertial sensors, es-
pecially that are comparatively low cost, preprocessing of the
sensor measurements is comparative indispensable. ,e
reason is that reliable data can be extracted from inertial
sensor measurements mixed with a high level of stochastic

noise and employed for training of a prediction model so that
the model in the prediction mode will offer more actual and
accurate output with a lower noise level of the INS data [13].
Wavelet analysis is a commonly efficient tool for signal
denoising, which can be facilely and effectively implemented
in the integrated navigation system to eliminate high-fre-
quency noise via multiresolution features and improve system
accuracy [14]. In this background, Abdolkarimi et al. pro-
posed a wavelet-based ELM model to predict INS errors
during GPS outage [15]. In their work, the wavelet denoising
technique was adopted for improving signal-to-noise power
ratio (SNR) of inertial sensor measurements and removing
disturbance of high-frequency noise, ELM was used for quick
learning and supply faster prediction update, and perfor-
mance of the proposed model was evaluated in a real-time
environment.

In recently reported investigation in the literatures, an-
other feedforward network similar to ELM, termed as RVFL,
has been proved possessing better performance in classifi-
cation and regression issues [16, 17]. RVFL was first proposed
to solve systems identification problem [18]. It is a single-
hidden layer neural network with random weights and direct
input-output connections between input and output neurons.
,e feature of direct links is the main difference between
RVFL and ELM, without which the network may be unstable
due to the randomly generated weights between the input and
the hidden layer. To acquire superior performance of the GPS/
INS integrating system with low-cost inertial sensors in the
absence of GPS signal, we focus on the advantages of RVFL
and investigate this promising network and evaluate its ef-
fectiveness in integrated navigation field. Moreover, a novel
denoising method based on EMD was recently proposed to
exceed the performance achieved by wavelet analysis [19, 20].
,e newmethod is also complied with thresholding principle,
whereas it exhibits better performance in the cases where the
signal has a high noise level or high sampling frequency.
Motivated by achieving and enhancing continuous high-
precision operation performance even during the GPS out-
ages, a novel AI-basedmethodology for the low-cost INS/GPS
navigation system is proposed in this paper to solve the
problems existing in the methods mentioned above, in which
the high-frequency noise from low-cost sensors are sup-
pressed by EMD denoising technology and high positioning
accuracy, and real-time learning capability are obtained by
taking advantage of the fast learning of RVFL. In this study,
the superior performance of EMD denoising for low-cost
inertial sensors is investigated compared to wavelet analysis
denoising, and the integrated navigationmodel and algorithm
utilizing RVFL is experimentally evaluated with some existing
methods to demonstrate effectiveness and excellent perfor-
mance of the proposed method.

,e rest of this paper is organized as follows: Section 2
concisely describes the INS/GPS integrated navigation system
with extended Kalman filter (EKF). Section 3 introduces
theoretical details of EMD denoising technology. Section 4
presents an RVFL-based fusion algorithm and overall in-
tegration model. Experimental results on field test that verify
the proposed methodology are illustrated and discussed in
Section 5. Section 6 concludes this work in the end.
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2. INS/GPS Integrated Navigation System

In order to take advantage of the complementary charac-
teristics of INS and GNSS, systems combining both tech-
nologies are established for a variety of applications.
Integrated with GNSS, even low cost INS can be suitable for
practical navigation solution. Integration is usually based on
a Kalman filter, and INS solution is corrected by GNSS
solution to form integration solution.

To describe the vehicle motion dynamics, continuous
time state-space equations are constructed as

_x � F(x) + Gw,

z � Hz + r,
 (1)

where F denotes the state transition process of the dynamic
model which is formulized as nonlinear vehicle motion
equations, x is the state vector whose elements are variable of
F, G is the system noise matrix, w and r are the process and
observation noise vector, both of which are supposed to be
zero mean white noise. z represents the observation vector. x
is selected as follows:

x � δΨ δvE δvN δvU δL δλ δh ∇x ∇y ∇z εx εy εz T,
(2)

where δΨ � δϕ δθ δψ , δϕ, δθ, and δψ are roll, pitch, and
yaw errors in the navigation frame (n-frame) in which the x-
y-z axes are set as East, North, and Up, respectively. δvE, δvN,
and δvU denote vehicle speed errors relative to referential
orientation. δL, δλ, and δh are position errors of vehicle
resolved as longitude, latitude, and altitude.,e subscripts x,
y, and z represent the x, y, and z axis of the body frame (b-
frame); thus, ∇x, ∇y, ∇z, εx, εy, and εz are expressed as
accelerometer and gyros biases along the body-axis.

H is themeasurementmodelmatrix that can bemodeled as

H � 03×6 I3×3 03×6 , (3)

where the subscripts represent the matrix dimension. It is
indicated that position variables are chosen as measure-
ments which can be updated by sensors’ position in-
formation supply.

Matrix F can be derived from INS navigation error
propagation equations, which are formulated as follows [21]:

_Ψ � I − C
n′
n ωnin + δωnin − C

n
bδω

b
ib,

δ _v � I − C
n
n′( Cn′b fbib + C

n′
b δf

b
ib + δv × 2ωnie + ω

n
en( 

+ v × 2δωnie + δωnen( ,
δ _L � δvN

RN + h
− vNδh

RN + h( 2,
δ _λ � δvEsec L

RE + h
+ vE tan L secLδL

RE + h
− δhvEsec L

RE + h( 2,
δ _h � δvU,

(4)

where ωcba denotes the angular velocity of the a-frame with
respect to the b-frame resolved in c-frame.,e inertial frame
is symbolized with subscript i as i-frame. Likewise, e-frame
represents the earth-centered earth-fixed frame. Cn′b is a
transformation matrix from b-frame to actual navigation
frame (n′-frame). RN and RE are referred as the meridian
radius of curvature and the transverse radius of curvature;
Cn
n′ is a transformation matrix from n-frame to n′-frame

which is expressed as

C
n
n′ �

CθCψ − SθSφSψ CθSψ + SθSφCψ − SθCφ
− CφSψ CφCψ Sφ

SθCψ + CθSφSψ SθSψ − CθSφCψ CθCφ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where C represents the cosine operation and S represents the
sine operation. It is obvious that state variables are multi-
plied so that nonlinear couples exist in the state equations.
When attitude angles are small quantities, it is commonly
true to consider the system dynamic model is linear.
However, if large system uncertainty exists, especially for
yaw error, linear assumptions are not valid as a result of the
elements coupled in Cn

n′ [22]. In this case, KF, which is
limited to be only suitable for linear system optimal esti-
mation, is no more an effective fusion algorithm for the
integrated navigation system. ,erefore, EKF is chosen as
the fusion algorithm when GPS is normally working. EKF
essentially transforms the nonlinear model to a linear model
by Taylor series approximation before applying the KF
paradigm. After discretizing the state-space equation (1),
first-order EKF is involved in the following two steps.

Prediction:

xk|k− 1 � f xk− 1( ,
Pk|k− 1 � Fk− 1 xk− 1( Pk− 1FT

k− 1 xk− 1(  +Qk− 1.
(6)

Update:

Kk � Pk|k− 1H
T
k HkPk|k− 1H

T
k + Rk − 1,

xk � xk− 1 + KkHkxk|k− 1,

Pk � I − KkHk Pk|k− 1,
(7)

where f is the discretized nonlinear functions from con-
tinuous INS navigation error propagation equations. Sub-
script k denotes the kth epoch in the iteration. P is the
predicted state covariance matrix, Q and R are the process
and measurement noise covariance matrix, K is the filter
gain matrix, and I is the identity matrix.,e Jacobian matrix
Fk is determined as

Fk �
δf xk− 1( 
δxk− 1

. (8)

3. EMD-Based Denoising

It is necessary to refine raw sensor measurements before
applying to the integrated navigation system on account of
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the reasons that low-cost inertial sensors have high stochastic
noise and highly complex nonlinearity which deteriorate the
signal quality and decline the system performance.

As the development of signal-processing technology, a
variety of denoising methods are developed such as basing
on Fourier transform, short-time Fourier transform, and
wavelet transform [15]. A new signal-processing technology
termed EMD was developed and researched recently [23].
Signal can be decomposed to a few basic components as
intrinsic mode functions (IMFs) via an iterative sifting
procedure, the advantages of which are multiresolution
analysis ability and free of difficulty in selecting basis. In this
background, the signal denoising method based on EMD
was proposed to enhance SNR performance, compared to
wavelet denoising in a worsened noisy environment [19].
,e same principle with thresholding according to wavelet
denoising was used in this method, whereas special natures
of decomposed signals resulting from EMDwere considered
to properly choose adaptive thresholding operation to obtain
better signal noise reduction. Several denoising procedures
were alternative, among which the clear iterative EMD in-
terval-thresholding (EMD-CIIT) was proved to have better
performance.

To avoid contaminated signal with the noise integrated
navigation system from degrading performance of the in-
tegrated navigation system, the EMD-CIITdenoising method
is adopted to remove harmful noisy signals for enhancing
SNR of the raw measures of inertial sensors which are
employed for dead reckoning of INS and training of the
neural network, so that the precision of the system is im-
proved. ,e fundamental procedure of EMD-CIIT is sum-
marized in the following 3 phases.

3.1. Redistributing Noise Signal. ,is phase is key operation
of EMD-CIIT, which has the main difference compared to
other EMD-based denoising algorithms such as EMD-ITand
EMD-IIT.

(1) ,e original noisy signal x(t) is decomposed by
EMD to L IMFs: h1(t), h2(t), . . ., and hL(t).

(2) Extract denoised signal h1(t) from the first IMF h1(t)
via the thresholding method such as Bayesian
wavelet denoising.,e purpose of this operation is to
avoid contamination results from altering the mix-
ture of the noise signal and useful signal.

(3) Separating actual noise signal h1(n)(t) from h1(t),
h1(n)(t) � h1(t) − h1(t). (9)

(4) ,us, a partial reconstruction signal xp(t) excluding
noise signal in first IMF is obtained:

xp(t) �L
i�2
hi(t) + h1(t). (10)

(5) Generate new noisy versions of the origin noisy
signal by adding modified versions of h1(n)(t) whose
sample positions are randomly altered.

xa(t) � xp(t) + h1(a)(t), (11)

where h1(a)(t) is the altered version of h1(n)(t) and the
relationship is expressed as

h1(a)(t) � alter h1(n)(t) , (12)

in which the alter function often deals with the samples
of h1(n)(t) in two forms: random circulation or random
permutation.

3.2. /resholding Denoising

(6) Apply EMD expansion on xa(t) to generate IMFs.

(7) Employ EMD soft thresholding to process each IMF
of xa(t) and get a denoised version x1(t) of x(t),
which is formulized as

h(i) z(i)j  �
h(i) z(i)j  h(i) r(i)j   − Ti

h(i) r(i)j   , h(i) r(i)j  >Ti,

0, h(i) r(i)j  ≤Ti,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(13)

where h(i)(z(i)j ) is referred as the zth interval of the
ith IMF component which is divided by zero
crossings, and h(i)(r(i)j ) denotes the single extrema
correspond to this interval. Ti is an adaptive
threshold depended on the noise level and is com-
monly determined as σ

�����
2 lnN

√
, where N is the

sample length and σ is the standard deviation of the
noise and can be empirically estimated.

In actual application, some low-order IMFs are
excluded of reconstruction for flexibility and ratio-
nality which are handled empirically, and for more
details, refer to [19].

(8) Iterate k − 1 times from Steps (5) to (7) and obtain
different k denoised versions of x(t), i.e., x1(t),x2(t), . . . , xk(t).

3.3. Obtaining Denoised Signal

(9) Calculate the average of each denoised version of
x(t) to get final denoised results of the origin signal.

x(t) � 1

k
k
i�1
xi(t). (14)

After completing the denoising process between Phase 1
and Phase 3, refined signals of inertial sensors with higher SNR
are obtained that are more suitable for the next prediction.

4. Integrated System Based on RVFL

As mentioned above, RVFL is a single layer feedforward
neural network (SLFN) with fast training algorithm, having
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favorable features on overfitting, local minima, and gener-
alization, which is attributed to the characteristic network
structure illustrated in Figure 1.

In the input layer, M selected features are fed into the
input layer neurons where x1, . . . , xM represent the elements
of the input vector and i1, . . . , iM represent M input neu-
rons. ,e input layer neurons do not change information
from the input of the network and only serve as transfer
nodes, that is

im � xm, (15)

where m ∈ 1, . . . ,M{ } represents the mth of allM elements.
In the hidden layer, each of the hidden layer neurons hn,

n ∈ 1, . . . , N{ }, also known as enhancement nodes, takes the
weighted sum of all the output of the input layer neurons and
generates its output via an activation function:

hn � f M
m�1

wmnim + bn⎛⎝ ⎞⎠, (16)

where wmn is the connected weight between im and hn, bn is
the bias of the nth hidden layer neuron, and f(·) is a
nonlinear function in which radial basis transfer function is
employed as

f(x) � e− x
2

. (17)

In the output layer, neurons combine all the output of
hidden layer neurons according to interconnected weight
between every hidden layer neuron and output layer neuron;
besides, output from the input layer are also weighted
summed to the output layer neurons, and the output is

yl � ol � N
n�1
wnlhn + M

m�1
wmlim, (18)

where l ∈ 1, . . . , L{ }, L is the number of output, yl is lth
output which is equal to the output of the lth output layer
neuron, i.e., ol, wnl is the connected weight between hn and
ol, and wml is the connected weight between im and ol.

,e structure of RVFL is similar as normal SLFN except
the direct link from the input layer to the output layer. ,is
special character makes RVFL perform better and stable
compared to no direct link [16, 17]. Moreover, for RVFL, the
weights from input neurons to hidden neurons such as wmn,
and hidden layer biases such as bn, are assigned fixed random
values, which is usually in accordance with uniform dis-
tribution in a determined range. As a result, the network
does not have to turn and update parameters during training
by back propagation (BP) algorithm which is time-con-
suming, heavy computing burden, and prone to local
minimization; on the contrary, it is able to proceed the
training process on “one step”, by solving the linear optimal
problem. ,e relationship of input and output can be for-
mulized as

T � O � Aβ, (19)

where A � [H, I] represents the augmented matrix com-
prising of output of hidden layer and input layer, T is the

actual output vector, O is the expected optimized output
vectors of RVFL aiming to minimalize squared error be-
tween prediction and actual output in the learning stage, and
β represents the output weights which can be mathemati-
cally solved. To obtain the optimal solution, Moore–Penrose
pseudoinverse matrix is commonly used such that the
output weights can be derived as

β � A
+
T, (20)

where A+ is the Moore–Penrose pseudoinverse matrix of
matrix A. ,ere is another alternative method called ridge
regression that may provide better performance for RVFL
than the Moore–Penrose pseudoinverse matrix method.,e
solution of ridge regression is

β � A A
T
A + λI − 1T, (21)

where λ is a turned regularization parameter. In this way,
parameters of RVFL are determined much faster than those
of BP on account of processing combination of original
features and random features and target output in batch
mode.

In this work, RVFL is utilized to bridge the discontin-
uous navigation course during the GPS outage by means of
predicting the accuracy position information. ,ere are a
few basic input-output models reported in literature which
can be divided into several classes. One of these models is
called OINS − δPINS, the which utilizes output of INS to
predict the INS error compared to GPS and other kinds of
models called OINS − Xk directly to predict the state vector
involved in KF. Both of the models take the output of KF as
the network target; as a result, the prediction is intended to
be affected by the uncertain estimated error of KF whichmay
be accumulated to larger error, especially when low-cost
inertial sensors are used in the system. ,erefore, a model is
developed recently termed as OINS − ΔPGPS that selects GPS
incremental output as a target by which the network pre-
diction is no longer influenced by the past filtered results of
KF. Hence, an RVFL-based GPS incremental prediction
model is proposed to realize the AI-aided integrated navi-
gation system. ,is model works in two modes which are
training and predicting, respectively, illustrated in Figures 2
and 3.

Figure 2 shows the integrated system is operating in the
training mode when GPS signal is available. An inertial
measurement unit (IMU) with 6 degrees of freedom (DOF)
supplies three axes accelerator and three axes gyro origin
measurement output, which are denoised by the EMD-CIIT
method in the next step to generate cleaner signal with
higher SNR. f and ω denote the original specific force vector
and original angular rate vector, respectively, comprising
three components resolved in the body frame. f and ω are
the denoised version of f and ω. With the inertial mea-
surement input, the attitude, velocity, and position in-
formation, i.e., ΨINS, vINS, and PINS, are obtained in the way
of applying inertial mechanization equations in INS. ,en,
the output information of INS and position information of
GPS are fused in a loosely couple architecture via EKF, in
which the deviation of INS increasing over time are
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corrected by GPS information in fixed time steps such
that the integrated navigation system becomes relatively
stable and accurate. Meanwhile, the velocity of INS and
denoised inertial measurement are fed into RVFL as input
features, and the GPS increment ΔPGPS is chosen as the
target of RVFL. ,e training process establishes a non-
linear relationship between the inertial inputs and GPS
increment position by taking advantage of input and
output data to determine network parameters. Hence, the
trained RVFL holds the predicting character, and it is a
backup for harsh environment or situation on which GPS
is unavailable.

When the GPS signal has been blocked in a worse urban
environment, the integrated system is switched into the

predicting mode, which is illustrated in Figure 3. In this
working mode, unreliable GPS information is abandoned
and no more employed to the integration of EKF, instead,
RVFL is utilized to correct INS errors. RVFL takes inertial
signals as input which is the same as that in the training
mode. Input signals are processing in real time in RVFL, and
the network output is “quasi-GPS incremental position” that
is used as a substitution output of GPS. ,erefore, EKF
combines the outputs of INS and prediction of RVFL to
generate new integrated navigation output. In other words,
the INS errors that have been corrected by GPS are com-
pensated via RVFL so that the navigation outputs will di-
verge from the actual position much slower compared to
standalone INS.

IMU
EMD

denoising
INS EKF

GPSRVFL

vINS
PGPS

Outputf
f
~

, ω~

ω

ΔPGPS

ψINS, vINS, PINS 

Figure 2: EMD-based RVFL integration scheme in training mode.

IMU
EMD

denoising
INS EKF

RVFL

vINS
PGPS

Output
f
~

, ω~
f

ω

ΔPGPS

ψINS, vINS, PINS 

Figure 3: EMD-based RVFL integration scheme in predicting mode.
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Figure 1: RVFL network structure.
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5. Experimental Results and Discussion

5.1. Experimental Technical Description. To evaluate and
verify performance of the proposed integrated navigation
system, field experiment is conducted in Dalian, Liaoning
Province, China. ,e duration of the experiment is 2400 s,
and the driving trajectory of the vehicle with navigation
equipment is shown with colored line in Figure 4. ,e
marked red line denotes simulated GPS outage in which
different driving dynamics are considered. In actual appli-
cation, whether GPS is available needs to be determined. An
effective method is to estimate whether GPS signals are
direct LOS according to carrier-power-to-noise-density
ratio [24].

Navigation equipment including low-cost MEMS-based
IMU, GPS receiver, and attitude and heading reference
system (AHRS) were mounted inside an electric automobile.
,e IMU consists of three accelerators and three gyros which
are produced via MEMS technology characterized on low
cost as well as lower precision and works at 100Hz sampling
rate to generate raw specific force and angular rate mea-
surements. ,e information of specified technical parame-
ters is listed in Table 1. A GPS receiver which has 0.1m/s
speed accuracy, 2.5m position accuracy, and 5Hz update
rate was employed to constitute the loosely couple integrated
navigation system with IMU. In order to provide a reference
for the proposed system, an AHRS with static accuracy of
0.1°, dynamic accuracy of 0.5° , and resolution of 0.1° was
used in the experiment.

As shown in Figure 5, the sensors contained in IMU, i.e.,
accelerators and gyros, output raw measures of specific
force, and angular rate, respectively, which are combined in
binary data steam in the SPI interface to be sent to an
embedded system based on the STM32F405 processor. ,e
GPS receiver also sends measurements and monitor status
information formatted as NEMA messages in the UART
interface with a baud rate of 115200.,e embedded system is
composed of an ARM processor and peripheral circuits, and
it is used to process signal from inertial sensors and extract
position information from data of the GPS receiver. All the
processed data to be used for the proposed algorithm are
transmitted by an RS232 serial port from the embedded
system to host computer in which robust integrated navi-
gation algorithm is implemented. Meanwhile, AHRS is
connected to the host to supply referential position and
attitude information.

5.2. Performance Improvement of Applying EMD Denoise.
To suppress the effect of noise on the system, a denoise
method based on EMDmentioned above is utilized to refine
the output signals of INS such as specific force and angular
rate. ,e filtered parameters are determined as iterations
number is 5, sifting number is 10, and soft thresholding is
applied.

Figure 6 shows the result of denoised signals compared
to raw signals during experiment time from 400 s to 900 s,
where f and ω with subscript denote specific force and
angular rate resolve in the body frame, respectively. ,e

specific force and angular rate comparisons are listed in the
left and right columns on top, middle, and bottom, re-
spectively. ,e raw and denoised signals in each subfigure
are indicated in blue and red lines.

From the results illustrated in the figure, it is concluded
that most of the high-frequency noise in the processed
signals is removed, which comes from intrinsic electrical
characteristics of inertial sensors and external vibration. In
application, some of the high-frequency noise could be
smoothed in the integrating process of dead reckon; how-
ever, in a dynamical motion, the noise will not be averaged
out to the same extent which leads to the errors in solution.
,erefore, it is necessary to denoise signals of sensors before
inertial navigation computation. In addition, fast responses
of denoised signals are also shown, indicating that useful
dynamics containing important motion information is
retained that is significant for navigation as well.

Table 2 lists the SNR of various signals on condition of
being original and denoised versions which adopt different

Figure 4: Navigation trajectory.

Table 1: IMU parameter characteristics.

Parameter Accelerometer Gyroscope

Range ±2 g ±1000°(s)
In-run bias stability 5mg 50°(h)
Noise density 110 μg(

���
Hz

√
) 0.005°(s/

���
Hz

√
)

Misalignment error 0.05° 0.05°

Nonlinearity 0.5% 0.2%
Axis alignment 0.05° 0.05°

GPS receiver

Accelerators

Gyros

Embedded
system

IMU

Host computerSPI

UART

RS232

AHRS

RS232

Figure 5: System deployment.
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Figure 6: Comparison of raw and denoised specific force and angular rate resolved in body frame along x-, y-, z-axes. (a) Specific force
resolved along x-axis. (b) Angular rate resolved along x-axis. (c) Specific force resolved along y-axis. (d) Angular rate resolved along y-axis.
(e) Specific force resolved along z-axis. (f ) Angular rate resolved along z-axis.
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denoising methods such as wavelet transform and EMD; in
this way, it is evident to further evaluate the effectiveness of
EMD-based denoising.

It can be seen from the results that the EMD-based
method performs better than the wavelet-based method
which also improves the SNR of raw signals. Moreover, the
EMD-based method gives better performance especially
when the raw signals are with lower SNR. As a result, EMD is
a fairly promising denoising method for MEMS-based
sensors in some harsh conditions with disturbance and
interference.

After denoising, the refined measurements of sensors are
used as input signals of inertial navigation so that more
accurate and reliable solution could be obtained. Besides the
advantage of denoising for INS, it is also conducive for the
prediction of neural network because cleaner data are
provided for the network to adapt to the real dynamics; as a
result, the well-trained network tends to offer more precise
estimation results and enhance the robust performance of
the system.

5.3. Performance Evaluation of the Proposed Algorithm.
In this study, the proposed model and algorithm are eval-
uated in different dynamics under urban traffic condition, as
depicted in Figure 4, where the red line denotes three
simulated GPS outage sections. ,ese sections are distrib-
uted in whole trajectory on time interval from 750 s to 870 s,
1450 s to 1570 s, and 1950 s to 2070 s, respectively, which are
expressed as outage 1, outage 2, and outage 3. Outage 1 and
outage 3 obviously contains change of vehicle motion in
north and east directions, respectively, whereas outage 2
illustrates slow position changing of the experimental ve-
hicle, so that fully dynamic conditions are considered.

Figure 7 shows the experiment results tested in outage 1
using different methods.,e position errors produced by the
navigation system without prediction and compensation,
i.e., a standalone INS, are plotted with black line as basic
reference. Blue dashed line and red dashed-dotted line,
respectively, represent the position error of the system
applying ELM and RVFL. For both the predicting algo-
rithms, the train and test data sets of both networks are kept
for the same; besides that the network parameters are also
identically turned.

It can be seen from the results that, both in north and
east directions, the proposed RVFL-based method has best
performance among all the candidates, the pure INS has
worst performance which exhibits largest position deviation,
and the ELMmethod has worst performance than RVFL but
better than the pure INS. Especially for east direction, rapid
change takes place at 780 s and INS error increased quickly
leading to large deviation from true position, while errors of

ELM and RVFL presented lower increase. ,e reason pure
INS performs much worse than the other two methods is
that when INS is working alone without correction of GPS
information, the accuracy of the navigation system is only
depended on the performance of low-cost MEMS inertial
sensors which is fairly sensitive to inherent in-run bias
stability and drift; therefore, errors are quickly accumulated
over time such that significant deviation of estimated po-
sition arises from GPS outage. It is obvious that RVFL
outperforms ELM in the outage section. Compared to ELM,
besides the same basic feedforward network structure, RVFL
adds directly connections from the input layer to the output
layer by which the network becomes more stable that of no
links due to discrimination power of input features are
increased. As a result, both north and east position errors of
RVFL are smaller than those of ELM. It can be noted that the
errors of the three methods have bias from zero at first when
outage occurs, and this is caused by limited precision of INS/
GPS integrated system which has errors as well.

North and east position errors for outages 2 and 3 are
illustrated in Figures 8 and 9. Outage 2 and outage 3, re-
spectively, represent the vehicle dynamic condition on
gradual change of position and rapid change in north. It can
be seen form the result that similar performance for the three
methods as that in outage 1 is obtained; moreover, the
analysis is the same as well.

To further evaluate performance of the proposed RVFL
algorithm, Table 3 gives the root mean square error (RMSE)
results of outages 1–3 in north and east, respectively. RMSE
increasing from top to bottom for each column indicates
identical consequence as that of Figures 7–9. ,e effec-
tiveness of the proposed RVFL method is demonstrated by
the result that performance improvement on error reduction
in comparison with the pure INS and ELM approach is
obtained. It proves that RVFL has superior capability than
the other methods to realize accurate and robust navigation
in various road dynamic test conditions.

Performance evaluation on RVFL and common neural
network such as radial basis function network is also con-
ducted.,e radial basis function network (RBN) is a popular
feedforward artificial neural network that uses radial basis
functions as activation functions and is widely used in the
field of function approximation, time series prediction,
classification, system control, and so on. ,e RBN has good
capability of generalization, approximation accuracy, and
fast convergence speed; moreover, it can adaptively adjust
number neurons to satisfy required accuracy of the model.
RVFL and RBN are compared in east position error for
outage 1, the result of which is shown in Figure 10, and the
errors of the RVFL and RBN are depicted with a red line and
a green line. In comparison, it is obvious that the RVFL has
smaller position error than the RBN, which is clearer when

Table 2: SNR comparison on raw signal and denoised signal based on different methods.

Parameter fx fx fx ωx ωy ωz

Raw signal − 11.38 − 2.29 − 17.31 − 10.36 − 12.78 − 5.74
Wavelet denoised − 10.25 − 1.99 − 14.25 − 9.83 − 12.42 − 5.37
EMD denoised − 5.18 − 1.47 − 10.78 − 9.37 − 11.6 − 4.85
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the vehicle is on dynamic change after 780 s. So it can be
concluded that the RVFL outperforms the RBN in high
dynamics for the integrated navigation system.

Conclusions obtained above are also confirmed by
RMSE results in Table 4. ,is table lists RMSE for different
methods in north and east directions, respectively. More-
over, time consumption of each algorithm is also compared,
on host computer configuration of Intel i7-6700CPU@
3.40GHz, 4G RAM. As shown in the table, the RVFL has
best accuracy compared to the RBN and ELM and achieves
faster learning than RBN, which is due to the special pa-
rameter determination method by solving linear matrix
equation instead of BP. Hence, it is promising to employ
RVFL in the integrated navigation system because of not
only outstanding capability of nonlinear approximation in

complex dynamic environments suffering from the GPS
blockage but also fast response that is important for real-
time implementation.

,e RMSE of north position error for RVFL and ELM in
outage 1 is computed on different noise levels to further
prove the effectiveness of EMD denoising. Before denoising,
measurements of MEMS-based inertial sensors are fully
mixed with stochastic noise, which are used for navigation
solution, and RMSE of east position error for ELM and
RVFL are 219.7 and 90.3. When EMD denoising is used for
raw measurements of sensors, refined input signals are
utilized for the prediction model such that more reliable data
are used in training and prediction process to produce more
actual position estimation results. Denoised results are listed
in Table 3, in which RMSE of east position error for ELM and
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Figure 7: Position errors comparison for outage 1. (a) North position errors of INS, ELM, and RVFL. (b) East position errors of INS, ELM
and RVFL.
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Figure 8: Position errors comparison for outage 2. (a) North position errors of INS, ELM, and RVFL. (b) East position errors of INS, ELM,
and RVFL.

10 Mathematical Problems in Engineering



RVFL are 71.3 and 45.1, respectively. Hence, 67.5% and
50.1% error reduction are achieved for ELM and RVFL after
applying EMD denoising, which shows significant perfor-
mance improvement. According to the comparison, it is
evident to prove advantage of denoising technology in
improving accuracy of the system.

6. Conclusions

In order to improve accuracy of the GPS/INS integrated
navigation system based on low-cost MEMS sensors char-
acterizing high level of noise and complex error, an RVFL-
based fusion algorithm is proposed to provide continuous,
stable, and robust navigation service even in GPS outage
circumstances. In the proposed integrated navigation sys-
tem, EMD denoising technology is used to smooth high
stochastic noise such that the negative effect of disturbance is
minimized. In addition, a position incremental model is
utilized together with RVFL to adaptively establish re-
lationship between some output of inertial sensors and
position increment such that the error of INS can be pre-
dicted and compensated during GPS blockage. Solutions of
GPS, which are superseded by those of the RVFL model
when GPS is unavailable, and outputs of INS are integrated
by EKF to generate actual navigation outputs against
nonlinear characteristics of the system. A field test is carried
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Figure 9: Position errors comparison for outage 3. (a) North position errors of INS, ELM, and RVFL. (b) East position errors of INS, ELM,
and RVFL.

Table 3: RMSE comparison for different outages.

Outage 1 Outage 2 Outage 3

North East North East North East

Pure INS 455.1 258.6 710.4 466.2 843.6 876.9
ELM 166.5 71.3 310.8 177.6 288.6 123.1
RVFL 122.1 45.1 266.4 166.5 66.7 66.0
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Figure 10: Position errors comparison of RVFL and RBN for
outage 1.

Table 4: RMSE comparison for different methods in outage 1.

North East

RMSE Time RMSE Time

RBN 255.3 0.099314 60.4 0.076550
ELM 166.5 0.015102 71.3 0.010056
RVFL 122.1 0.016556 45.1 0.01223
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out to demonstrate the effectiveness of the proposed model,
and the superior improvement is verified by experiment that
the RVFL-based method obtains best accuracy among the
algorithms being compared and needs less time to train and
predict the process which is proved to be more suitable for
implementation in the system requiring real-time operation
and low-cost design.
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