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Abstract

Eye localization is an important part in face recogni-
tion system, because its precision closely affects the per-
formance of face recognition. Although various methods
have already achieved high precision on the face images
with high quality, their precision will drop on low quality
images. In this paper, we propose a robust eye localization
method for low quality face images to improve the eye de-
tection rate and localization precision. First, we propose a
probabilistic cascade (P-Cascade) framework, in which we
reformulate the traditional cascade classifier in a proba-
bilistic way. The P-Cascade can give chance to each image
patch contributing to the final result, regardless the patch
is accepted or rejected by the cascade. Second, we propose
two extensions to further improve the robustness and preci-
sion in the P-Cascade framework. There are: (1) extend-
ing feature set, and (2) stacking two classifiers in multiple
scales. Extensive experiments on JAFFE, BioID, LFW and
a self-collected video surveillance database show that our
method is comparable to state-of-the-art methods on high
quality images and can work well on low quality images.
This work supplies a solid base for face recognition appli-
cations under unconstrained or surveillance environments.

1. Introduction

In most face recognition systems, face images should
be aligned based on the coordinates of eyes, e.g. aligning
two eyes to some fixed coordinates by a similarity trans-
form. Therefore, eye localization is an important part in
face recognition systems, and its precision will closely af-
fect the performance of face recognition [12, 18]. Fig. 1
shows some face images aligned by the eye coordinates and
their corresponding similarity score matrix. We can see that
small disturbance of eye coordinates leads to small variation
in the appearance of aligned face images, but it reduces the
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Figure 1. The influence of mis-alignment on the similarity ma-
trix of face matching. Left: Face matching with manually labeled
eye coordinates. Right: Face matching after the eye coordinates
disturbed by a small noise (subject to [−0.1, 0.1]× eye-distance
uniform distribution). The similarity matrix is generated by a Ga-
bor+LDA face recognition algorithm [10].

discriminant of the similarity score matrix. As discussed in
[18, 19], this influence generally exists in almost all face
recognition systems, no matter which are based on holistic
or local methods.

Although, many good results [12, 21, 16, 8, 9] of eye
localization were reported , they were usually obtained in
some high quality face databases, such as, JAFFE, BioID
and etc. When these methods are used under unconstrained
[20] or surveillance environments, they may not work well
due to the low quality of face images and large noise. Here,
low quality denotes those face images affected by out-of-
focus, motion, pose, illumination, expression and other fac-
tors. This paper focuses on this problem, and the objective
is to propose a low quality robust eye localization method.
The proposed method should have high detection rate and
localization precision.

Recently, the leading methods in eye localization are al-
most based on Boosting classification, regression, Boost-
ing+Cascade, Boosting+SVM, and other variants. Con-
sidering precision and computation complexity, we pro-
pose a new method for low quality images based on
LBP+Boosting+Cascade [1, 23]. For two-class problem,
Boosting can select the most effective subset from an over-
complete feature set. Also cascade can reject irrelevant
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samples in each stage to obtain drastic speedup according
to some thresholds, hence Boosting+Cascade is very appro-
priate for real-time detection task. However, in eye localiza-
tion, the boundary between the positive and negative sam-
ples is ambiguous, especially in low quality images. There-
fore, in eye localization task, the thresholds in the cascade
don’t have clear semantics. Those positive samples with
low quality are easily rejected by the thresholds, and fail
to contribute to the final result. To achieve high detection
rate, we introduce a quality adaptive cascade that work in
a probabilistic framework (P-Cascade). In the P-Cascade
framework, each image patch can get a probability whether
it’s rejected or accepted by the cascade. In other words, all
image patches have chance to contribute to the final result,
and their contributions are determined by their correspond-
ing probability. In this way, P-Cascade can adapt to face
images with any quality.

In low quality face images, there are two main factors
to affect the localization precision: noise and eye-like pat-
terns, such as eyebrow, glasses frame, shadow and so on.
To achieve high precision, we propose two extensions: (1)
extending LBP feature set to improve the discriminant abil-
ity of Boosting classifier, and (2) stacking two classifiers in
different scales to find a trade-off between the robustness
and precision. Extensive experiments on two challenging
databases show that our method can work well on low qual-
ity face images and the proposed extensions can further im-
prove the precision.

To conclude, this paper focuses on the eye localization
problem in low quality face images, and has the following
contributions:

1. Discusses a challenging problem: eye localization in
low quality face images, and proposes an effective
method to deal with it;

2. Proposes a P-Cascade framework to weaken the influ-
ence of quality on the thresholds in traditional cascade;

3. In the P-Cascade framework, we propose a more dis-
criminative LBP operator, and a stacked classifier in
multiple scales to improve the eye localization preci-
sion;

4. Advances the standardization of eye localization test-
ing, and publishes a low quality data set of face images
captured under surveillance environment.

This paper is organized as follows. Section 2 intro-
duces a probabilistic way to use cascade classifier, called
P-Cascade. In section 3, we propose two extensions to en-
hance the discriminant and robustness of the P-Cascade.
Section 4 conducts some experiments on high and low qual-
ity databases to illustrate the superiorities of the proposed
method. Section 5 concludes the paper.

2. Eye Localization Framework

As reviewed above, Boosting+Cascade is one of the
best methods among all existing eye localization meth-
ods. For high precision and low computation complex-
ity, this section builds the P-Cascade framework based on
Boosting+Cascade. Compared with the traditional Boost-
ing+Cascade, P-Cascade has an attractive advantage: every
image patch evaluated by P-Cascade has a probability be-
longing to positive class, and the probability will contribute
to the final localization result.

2.1. Probabilistic Cascade

As we know, cascade works in an asymmetric way,
which is composed of many rejecting stages. The task of
each stage is to reject the most probable negative samples
according to some thresholds. The asymmetric rejecting
strategy can obtain a good trade-off between precision and
efficiency under normal conditions, but its performance will
decline in low quality images. With the variation of qual-
ity, the output scores of each stage will change. Therefore,
those thresholds in cascade can not adapt all situations and
would cause low detection rate in low quality images. To
solve this problem, we reformulate the cascade classifier in
a probabilistic way (P-Cascade), in which we give every
patches chances to contribute to the localization task, in-
cluding those rejected patches. Compared to the traditional
cascade, the P-Cascade use more complete information of
the evaluated patches and can achieve higher performance.

In P-Cascade, the thresholds of each stage work in the
same way to reject irrelevant samples. The biggest differ-
ence is that, for each sample, we can get its probability be-
longing to the positive class (i.e. eye), whether it’s rejected
or accepted by any stage. When a sample x is accepted by
the (𝑡 − 1)th stage and rejected by the 𝑡th stage, the prob-
ability of x belonging to positive class could be evaluated
by the 𝑡th stage. 𝑡 is called the “rejecting stage” of the sam-
ple x, short for r-stage. Stage classifier in the cascade can
be learned by many Boosting algorithms. Here, we take
Gentle-Boost [3] as an example to provide the specific form
of the probability.

As discussed in [3], Gentle-Boost can be seen as logistic
regression with generalized additive models, thus the rela-
tionship between the probabilities and the output of Gentle-
Boost can be written as

𝑝𝑡(x)(𝑐 = 1∣x) = 𝑒𝐹 (x)

𝑒𝐹 (x) + 𝑒−𝐹 (x)
, (1)

where 𝑡(x) is the r-stage of the sample x, 𝐹 (x) =
∑𝑑

𝑖 𝑓𝑖(x)
is the 𝑡th strong classifier, 𝑓𝑖(x) is weak classifier. Fig. 2
shows a face image, the output values of a stage in cascade
around the left eye, and their corresponding probabilities
calculated by Equ.(1). From that we can see the probability
map is more discriminative than the raw output of Boosting.
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Figure 2. A face image, output scores of Boosting and their corre-
sponding probabilities around the left eye, where the green cross
is the true eye coordinate

In testing process, each sample x is evaluated by a
trained P-Cascade and its corresponding 𝑡(x) and 𝑝𝑡(x)(𝑐 =
1∣x) are recorded. However, we notice that the probabilities
of those samples with different r-stage are not comparable.
Because different features are evaluated in different stages,
the relationship between the stages can not be built easily.
Next, we will discuss how to merge these probabilities with
different r-stage to get the final position of eye.

2.2. Robust Probability Estimation

Given the r-stage and probabilities of every point on a
face image, the most likely position of eye is the point with
maximum r-stage and probability. The max rule is good but
unstable to noise and outliers.

To obtain more accurate results, we use a three-step pro-
cess to locate eye, which includes initialization, local search
and merge. Firstly, we choose an initial point according to
the face rectangle. Because the geometric relationship be-
tween eye position and face rectangle is known in the train-
ing set of face detector, the coarse positions of the left and
right eyes can be predicted. For efficiency, next we only
evaluate the probabilities of the points around the initial po-
sition in a 𝑛 × 𝑛 mesh grid. Finally, we get the location of
eye by merging the first 𝑚 points with largest r-stages and
probabilities. The merge strategy is as follows,

e∗ =

∑
e𝑖∈{e𝑟𝑎𝑛𝑘−𝑚} 𝑝(𝑐 = 1∣x(e𝑖))e𝑖

∑
e𝑖∈{e𝑟𝑎𝑛𝑘−𝑚} 𝑝(𝑐 = 1∣x(e𝑖)) , (2)

where where e is a point in face image, x(e) is a image
patch centering at e, {e𝑟𝑎𝑛𝑘−𝑚} are the first 𝑚 points with
largest r-stages and probabilities, 𝑝(𝑐 = 1∣x(e𝑖)) is the
probability calibrated by another monolithic Boosting clas-
sifier (only containing one stage). This calibration is a key
ingredient of our method, since it can remove the r-stage
variable in Equ.(1) and build the connection between the
points with different r-stages. Because the calibration only
apply on the first 𝑚 points, it nearly doesn’t bring any extra
computation.

The training process of P-Cascade is the same as tradi-
tional cascade, so we don’t introduce it here. One can re-
fer [22] for detail. We outline the testing process in Algo-
rithm 1.

Algorithm 1 Eye localization using P-Cascade.

Input: A face image 𝐼(e), the rectangle of the face Ω in the
face image, a trained P-Cascade model and a monolithic
Boosting model;
1. Choose an initial point based on Ω according to the
known geometric relationship between the face rectangle
and eye coordinates;
2. Evaluate the probabilities 𝑝𝑡(x)(x(e𝑖)), 𝑖 ∈ [1, 𝑛2] on
𝑛 × 𝑛 mesh grid using Equ.(1) in the left-top (or right-top)
quadrant of Ω;
3. Get {e𝑟𝑎𝑛𝑘−𝑚} by sorting all points according to proba-
bility and r-stage in descending order;
4. Calibrate the probabilities of {e𝑟𝑎𝑛𝑘−𝑚} by the mono-
lithic Boosting model;
Output: The final eye coordinate is calculated by merging
the points in {e𝑟𝑎𝑛𝑘−𝑚} using Equ.(2).
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Figure 3. An LBP operator and two E-LBP operators with ellipti-
cal shape and rotation.

3. Extensions for Low Quality Images

P-Cascade is adaptive for the quality of face images, be-
cause it weaken the shortcoming of the thresholds in cas-
cade and use the information of those rejected samples as
much as possible. In this section, we propose two exten-
sions to further improve the precision and robustness of P-
Cascade from the following aspects: (1) Extending LBP
feature set to enhance the discriminant of basic features; (2)
Choosing the size of receptive field and stacking classifiers
in multiple scales to find a trade-off between robustness and
efficiency.

3.1. Extending LBP Feature Set

LBP [1] and MB-LBP have been proved more effective
than Haar in face detection [23], hence we use MB-LBP as
baseline in this paper for comparison. In low quality face
images, classifier is easily disturbed by noise and eye-like
pattern. To reject these false positives, we add two extra
parameters into the original LBP operator to construct a new
operator, called “Extended LBP” or E-LBP. Compared to
LBP, E-LBP has two radiuses and an angle, which makes
the shape of E-LBP a rotated ellipse. Their differences are
shown in Fig. 3.

Given a 20×20 image, the size of LBP and MB-LBP fea-
ture set are 1140 and 3969. Using E-LBP operator, we can
get more numerous features, which contains 34472 features
when using 4 orientations. In section 4, we will see E-LBP
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Figure 4. The scale and geometry of training samples for two level
stacked classifiers. In the first scale, the ground truth position is
set at the lower part of the samples to overcome the disturbance
of eyebrow. The second scale is as same as ones in most exist-
ing methods, and the ground truth position is at the center of the
samples.

has better performance than MB-LBP in all experiments.
The improvements are benefit from the larger feature set of
E-LBP.

3.2. Stacking Classifiers

[2] discussed many aspects about the influence of the
training samples on eye localization including size, geome-
try and the position of ground truth in the training samples.
They derived a useful conclusion, that larger scale training
samples would lead to more robust classifier, but smaller
scale samples could have more accurate localization preci-
sion. In [12], a big receptive field containing two eyes is
used for eye-pair verification, which has been proven being
robust to noise and outliers.

In most existing works, the size and geometry of the eye
training samples agree with the standard in [24], as shown in
the right of Fig. 4. These standard eye samples only contain
the eye itself but exclude the eyebrow, nose and others. In
ordinary face images, this size can work well, but in poor
face images, the eye is easily confused with those eye-like
patterns, especially the eyebrow.

To weaken the interference of eyebrow on eye localiza-
tion, we choose a geometry with bigger receptive than [24],
which includes both eye and eyebrow information. The new
geometry of eye training samples is shown in the left of
Fig. 4. The size of receptive filed is about 1/4 of the face.
Experiments on low quality databases in section 4 illustrate
the superiority of this setting.

For low quality face images, robustness is the most con-
cern, meanwhile, we don’t want to loss precision yet. To
this end, we propose a “coarse to fine” stacked classifiers,
which includes two classifiers in multiple scales. Actually,
this kind of multi-scale methods were popular in many ap-
plications, such as ASM [14]. As shown in Fig. 4, the first
coarse one is trained on the samples with large receptive
field described above. Using the coarse classifier, we ex-

clude those eye-like negative patterns. The second one is
trained on the samples with ordinary geometry [24], which
just cover the eye region. With the help of the coarse classi-
fier, the second one can achieve high localization precision
while keeping the robustness. For simplicity, we denote the
coarse scale and the fine scale by S1 and S2.

When the stacked classifiers are ready, we predict the
position of eyes by two steps: coarse prediction and refine-
ment. To avoid local minima, the search region in the sec-
ond step is smaller than that in the first step. The advantages
of the stacked classifier will be illustrated in the following
experiments.

4. Experimental Results

To illustrate the performance of the proposed method,
we conduct some experiments in two scenarios, one for or-
dinary quality, the other for low quality. The testing process
is that, given a face image and the rectangle coordinate of
the face in the image, we need locate the positions of eyes in
the face. The normalized error [24] is used to evaluate the
error between the localized eye positions and the ground
truth.

𝑒𝑟𝑟 =
𝑚𝑎𝑥(∣∣𝑙 − 𝑙𝑔∣∣, ∣∣𝑟 − 𝑟𝑔∣∣)

∣∣𝑙𝑔 − 𝑟𝑔∣∣ , (3)

where, 𝑙𝑔 and 𝑟𝑔 are the ground truth positions (labeled by
manual work) of the left and right eye respectively; 𝑙 and 𝑟
are the eye positions localized by an algorithm.

In experiments, the proposed method is compared with
several state-of-the-art methods: MB-LBP + Boosting [23],
[12], [21] , [16] and [8], among which MB-LBP is trained
and tested on the same data with the proposed method, the
results of the other methods are taken from the original pa-
pers directly. Due to the different experimental settings,
these methods are not completely comparable, but they are
still list for reference. For making the results reproducible,
the training and testing set are published in our web site1,
with rectangle of faces and ground truth eye positions.

4.1. Databases

To train a general eye detector, we construct the train-
ing set from various databases including FRGC [17], CAS-
PERL [4], AR [13], PF01 [6] and a private database built
by our lab. The training set contains 20612 face images,
thus we can get 41224 eye samples. The test sets are di-
vided into two categories: ordinary quality and low qual-
ity. JAFFE [11] and BioID [7] are used for ordinary quality
evaluation, and LFW [5] and a self-collected video surveil-
lance (VS) database are used for low quality evaluation. The
quality of these databases assessed by BIQI [15] are shown
in Table 1 for reference.

1http://www.cbsr.ia.ac.cn/users/dyi/eyelocalization.htm.

http://www.cbsr.ia.ac.cn/users/dyi/eyelocalization.htm


Table 1. The quality of JAFFE, BioID, LFW and VS assessed by
BIQI (The scores are between 0 and 100, from good to bad qual-
ity).

JAFFE BioID LFW VS
Mean 27.31 28.53 32.95 40.44

Deviation 2.69 6.78 7.06 7.55
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Figure 5. Cumulative error curves for eye localization on JAFFE
and BioID.

Table 2. Comparison of eye localization methods on JAFFE and
BioID.

JAFFE (err < 0.1) BioID (err < 0.1)
S1+S2 E-LBP 100% 99.01%

P-Cascade
[12] 98.6% -
[21] 99.53% 91.782%
[16] 100% 93.0%
[8] 100% 96.4%

4.2. Evaluation on Ordinary Images

The cumulative error curves on JAFFE and BioID are
shown in Fig. 5, in which 5 methods are compared: MB-
LBP Cascade on fine scale (S2 MB-LBP Cascade), MB-
LBP P-Cascade on fine scale (S2 MB-LBP P-Cascade),
MB-LBP P-Cascade on coarse scale (S1 MB-LBP P-
Cascade), E-LBP P-Cascade on coarse scale (S1 E-LBP
P-Cascade), E-LBP stacked P-Cascade (S1+S2 E-LBP P-
Cascade). Due to the good quality of JAFFE, the perfor-
mances of all methods are very similar. From the results on
BioID we can see two obvious phenomena : (1) E-LBP is
always better than MB-LBP; (2) S2 has better precision in
small error range, but poorer precision in large error range,
which proves the conclusion described in section 3. The re-
sults in other papers on JAFFE and BioID are list in Table 2
for reference. Although [8] achieves very high precision, its
training set and testing set are not fully independent. There-
fore, the proposed method has better generalizability than
[8].

4.3. Evaluation on Low Quality Images

Overall, the performances of eye localization on ordi-
nary face images are relatively high and can satisfy the re-
quirement of face recognition. But for face images with
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Figure 6. Cumulative error curves for eye localization on LFW and
the VS.

low quality, the performance will drop drastically, and these
cases often appear in unconstrained face recognition appli-
cations, e.g. video surveillance. To illustrate the superiority
of the proposed methods under these circumstances, we test
them on LFW and a self-collected video surveillance (VS)
database. The 4064 face images in the VS database were
captured by a practical surveillance system in one month.

Fig. 6 shows the cumulative error curves of the five meth-
ods. On LFW, “S1+S2 E-LBP P-Cascade” obtains the best
precision, but on the VS database, only using S1 (coarse
scale) is better than the others. This suggests that the op-
timal size of receptive field is closely related to the quality
of face images. Generally, small receptive field suits for
high quality face images, while large one suits for low qual-
ity face images. The proposed stacking strategy initially
use this property, and “S1+S2 E-LBP P-Cascade” almost
obtains the best performance in all cases. How to make
the size of receptive field adapt to the quality of face im-
ages automatically is an interesting question. While the dif-
ferences between P-Cascade and Cascade are not obvious
on JAFFE and BioID, P-Cascade based methods are sig-
nificantly better than traditional Cascade on these two low
quality databases.

5. Conclusion

This paper focuses on the eye localization problem in
low quality face images, and proposes an effective P-
Cascade framework to solve it. Different from the tradi-
tional cascade classifier, all input examples in P-Cascade
can get a probability whether it’s accepted or rejected. In
other words, all samples are treated as equal and have
chance to contribute to the final result. Thanks to this prop-
erty, P-Cascade can adapt to images with various quality
well. In the P-Cascade framework, we propose two exten-
sions to further improve the robustness and precision. Fi-
nally, extensive experiments are conducted to verify the su-
periority of the proposed methods. The results show that
the proposed “S1+S2 E-LBP P-Cascade” method obtains
the highest precision in terms of normalized error. As ori-
ented to practical applications, the training and testing set
are completely independent and will be published in our



web site.
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