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Abstract— This paper extends very recent results on discrete-
time nonlinear fault detection and isolation to the case of
discrete-time nonlinear systems with unstructured modeling
uncertainty and partial state measurement. The fault diagnosis
architecture consists of a fault detection and approximation
estimator and a bank of fault isolation estimators, each corre-
sponding to a particular type of fault. A time-varying threshold
that guarantees no false-positive alarms and fault detectability
conditions are derived analytically. For the fault isolation
scheme, we design adaptive residual thresholds associated with
each isolation estimator and obtain sufficient conditions for

fault isolability. To illustrate the theoretical results, a simulation
example based on a input-output discrete-time version of the
three-tank benchmark problem is presented.

I. INTRODUCTION

The design and analysis of fault detection and isolation

(FDI) architectures for linear and nonlinear systems using the

model-based analytical redundancy approach have received

significant attention in the literature [6], [7], [10], [2], [8],

[3]. Recently there has been a lot of research activity on

fault detection and isolation of uncertain nonlinear systems.

Several of the techniques developed for nonlinear systems

are extension of methods that were originally developed for

linear systems, such as the unknown input observer approach,

parity relations, etc. Another significant approach is based

on adaptive approximation techniques for nonlinear fault

diagnosis [15], [16], [18].

In the very recent paper [5], the FDI methodology con-

sidered in [18] has been tailored to address the discrete-

time case. In the present paper, the results reported in

[5] will be extended to a class of input-output nonlinear

uncertain discrete-time systems (see [19] for the input-output

continuous-time case). More specifically, the unstructured

uncertainty may affect either the discrete-time state or output

equation and the considered class of faults is allowed to have

a nonlinear structure with respect to the state (or the output)

and input, and includes both abrupt and incipient faults.

Analogously with [5], the FDI scheme consists of a bank

of nonlinear discrete-time adaptive estimators. One of them is

the fault detection and approximation estimator, whereas the
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others are used for fault isolation (each associated with a spe-

cific type of fault). Under normal operating conditions, only

the detection and approximation estimator is used to monitor

the process for any fault. Once a fault is detected, the fault

isolation estimators are activated, and the fault detection and

approximation estimator adopts the mode of approximating

the fault, by using online approximation methods.

The main contributions of this paper are the design of

a fault isolation scheme in a input-output discrete-time

framework and the derivation of rigorous analytical results

for the detectability and isolability properties. The residual of

each fault isolation estimator is associated with an adaptive

threshold, which can be implemented in real-time.

The paper is organized as follows. Section II formulates

the problem that will be addressed. A fault detection and

isolation architecture is presented in Section III. In the

same section, we also present the analytical results regarding

the fault detectability and fault isolability. Finally, the FDI

scheme design and the analytical results are illustrated by a

simulation example in Section IV, and Section V contains

some concluding remarks.

II. PROBLEM FORMULATION

In this paper a class of multi–input, multi–output uncertain

nonlinear systems described by the following discrete–time

dynamic equations will be considered:










x(k + 1) = Ax(k) + f(x(k), u(k)) + β(k − k0)×

φ(y(k), u(k)) + ηx(x(k), u(k), k)

y(k) = C x(k) + ηy(x(k), u(k), k)

(1)

for k = 0, 1, . . . , where x ∈ Rn, u ∈ Rm, y ∈ Rp denote

the state, the control input and the measured output vectors,

respectively; the matrix A ∈ Rn×n and the vector field f :
Rn × Rm 7→ Rn represent the nominal healthy dynamics1,

C ∈ Rp×n represents the nominal output equation while

ηx : Rn × Rm ×N 7→ Rn and ηy : Rn × Rm × N 7→ Rp are

the uncertainties in the state and output equations which may

be caused by several factors such as, for instance, external

disturbances, the possible discretization error and so on.

The term β(k − k0)φ(y(k), u(k)) denotes the changes

in the system dynamics due to the occurrence of a fault.

More specifically, the vector φ(y(k), u(k)) represents the

functional structure of the deviation in the state equation due

to the fault and the function β(k−k0) characterizes the time

profile of the fault, where k0 is the unknown index of the

1Of course, given a nonlinear system there are infinite ways of decom-
posing its dynamic equation into a linear and a nonlinear term.
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fault occurrence time. In this paper, we shall consider either

abrupt faults characterized by a “step-like” time-profile

β(k − k0) =

{

0 if k < k0

1 if k ≥ k0

, (2)

or incipient faults characterized by an “exponential-like” one

β(k − k0) =

{

0 if k < k0

1 − b−(k−k0) if k ≥ k0

. (3)

where b > 1 denotes the unknown fault-evolution rate.

For isolation purposes, we assume that there are N types

of possible nonlinear fault functions; specifically, φ(y, u)
belongs to a finite set of functions given by

F , {φ1(y, u), . . . , φN (y, u)} .

Each fault function in F is assumed to be in the form

φl(y(k), u(k)) = [(ϑl
1)

⊤gl
1(y(k), u(k)), . . . ,

(ϑl
n)⊤gl

n(y(k), u(k))]⊤ , (4)

where, for i ∈ {1, . . . , n}, l ∈ {1, . . . , N}, the known

functions gl
i(y(k), u(k)) : Rp × Rm 7→ Rql

i describe the

“structure” of the fault, and the unknown parameter vectors

ϑl
i ∈ Θl

i ⊂ Rql

i provide its “magnitude”. In this paper, for

the sake of simplicity and without much loss of generality,

the parameter domains Θl
i are assumed to be origin–centered

hyper–spheres. The following assumptions are needed.

Assumption 1: At time k = 0 no faults act on the system.

Moreover, A is chosen so that (A, C) is an observable

pair, and the state variables x(k) and control variables u(k)
remain bounded before and after the occurrence of a fault,

i.e., there exist some stability regions R = Rx × Ru ⊂
Rn × Rm, such that (x(k), u(k)) ∈ Rx ×Ru, ∀ k. �

Assumption 2: The modeling uncertainty represented by

the vectors ηx and ηy in (1) are unstructured and possibly

unknown nonlinear functions of x, u, and k, but are bounded

by some known functions η̄x and η̄y , i.e.,

‖ηx(x(k), u(k), k)‖ ≤ η̄x(x(k), u(k), k),

|ηy,(i)(x(k), u(k), k)| ≤ η̄y,(i)(x(k), u(k), k) ,

where by x(i) we mean the i–th component of a vector and,

for each i = 1, . . . , n , the bounding functions η̄x,(i) and

η̄y,(i) are positive, known and bounded for all (x, u) ∈ R
and for all k. �

Assumption 3: The time profile parameter b is unknown

but it is lower bounded by a known constant b̄. �

As this paper considers only the fault diagnosis problem

and not the fault accommodation one, Ass. 1 is required for

well–posedness. Ass. 2 and 3 are required for the analysis

but, in practical situations, if some a-priori knowledge on

healthy and faulty modes of behavior is available, are not a

significant limitation.
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Fig. 1. A scheme of the proposed FDI architecture.

III. FAULT DETECTION AND ISOLATION ARCHITECTURE

In this section a discrete–time Fault Detection and Iso-

lation (FDI) architecture, to some extent analogous to the

continuous-time ones in [18], [19], will be proposed. A bank

of N +1 nonlinear adaptive estimators is employed (Fig. 1),

each one yielding an output estimate ŷj ∈ Rp , where N
is the number of nonlinear faults of the fault class F . The

fault detection and approximation estimator (FDAE) detects

faults and approximate possibly unknown faults, while the

fault isolation estimators (FIEs), corresponding to the faults

in F , are used for isolation purposes only after detection.

The output estimation error

ǫj
y(k) , y(k) − ŷj(k) , j = 0, . . . , N

can be defined for each estimator and is associated to a given

fault hypothesis. A fault hypothesis will be rejected by the

detection and isolation logic if the absolute value of at least

one component ǫj

y,(i)(k) of the corresponding error will cross

a suitable time-varying threshold ǭj

y,(i)(k).
The FDAE error is associated to the healthy mode of

behavior, which is rejected at the detection time kd:

Definition 3.1: The fault detection time kd is defined as

kd , min{k : ∃ i, i ∈ {1, . . . , n}, |ǫ0y,(i)(k)| > ǭ0y,(i)(k)}. �

At time k = kd , the N FIEs are activated to implement a

kind of Generalized Observer Scheme [13], [18]. The l–th

FIE is associated to the “l–th fault has occurred” hypothesis

and its threshold ǭl
y is designed in order not to be crossed if

that fault actually occurred. The isolation logic is based on

excluding every but one hypothesis, as defined here:

Definition 3.2: The l–th fault exclusion time kl
e is defined

as kl
e , min{k : ∃ i, i ∈ {1, . . . , n}, |ǫl

y,(i)(k)| > ǭl
y,(i)(k)}.

�

Definition 3.3: A fault φs ∈ F is isolated at time k iff

∀l, l ∈ {1, . . . , N}\s , kl
e ≤ k and ∄ ks

e . Furthermore ks
isol ,

max{kl
e, l ∈ {1, . . . , N} \ s} is the fault isolation time. �
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Remark 3.1: To conclude that an isolated fault actually

occurred, it must be assumed that only faults in F are

possible. Otherwise, it must be said that it is not impossible

that it occurred. If every fault in F is rejected, then it will

be said that the proposed FDI architecture has isolated an

unknown fault. In order to gain knowledge about it and

possibly extend F , an on–line approximator capable of

learning any fault that can reasonably occur is embedded

in the FDAE and started at k = kd.

A. FDAE Estimator and Fault Detection

Before the detection of a fault, for 0 ≤ k < kd, the

dynamics of the FDAE estimator can be written as
{

x̂0(k + 1) = A x̂0(k) + f(x̂0(k), u(k)) + L (y(k) − ŷ0(k))

ŷ0(k) = C x̂0(k)
(5)

where the output error gain matrix L ∈ Rn×p is chosen

such that A0 , A − LC is a Hurwitz matrix2. Before the

occurrence of a fault, for 0 ≤ k ≤ k0, the dynamics of the

state estimation error ǫ0x(k) , x(k) − x̂0(k) are3

ǫ0x(k+1) = A0ǫ0x(k)+f(x(k), u(k))−f(x̂0(k), u(k))+ηx(k) ,
(6)

so that the output estimation error i–th component is

ǫ0y,(i)(k) = Ci

{k−1
∑

h=0

(A0)k−1−h[∆f(x(h), x̂0(h), u(h))

+ ηx(h)] + (A0)kǫ0x(0)

}

+ ηy,(i)(k) ,

where Ci is the i–th row of C and

∆f(x(k), x̂0(k), u(k)) , f(x(k), u(k)) − f(x̂0(k), u(k)) .

Recalling Assumption 2 and by defining

∆̄f(x̂0(k), u(k)) , max
x∈Rx

{‖∆f(x, x̂0(k), u(k))‖}

we can bound |ǫ0
y,(i)(k)| by the following threshold

ǭ0y,(i)(k) ,

k−1
∑

h=0

αiδ
k−1−h
i [∆̄f(h) + η̄x(h)] + αiδ

k
i ǭ0x(0)

+ η̄y,(i)(k) , (7)

where αi and δi, analogously to [19], are two constants such

that ‖Ci(A
0)k‖ ≤ αiδ

k
i ≤ ‖Ci‖ ‖A

0‖k, αi > 0, 0 < δi ≤ 1.

Furthermore,

ǭ0x(k) , max
x∈Rx

{‖x − x̂0(k)‖} , i = 1, . . . , n .

The threshold in (7) guarantees that no false–positive

alarms will be issued until k0 because of the uncertainties ηx

and ηy . This, of course, comes at the cost of the impossibility

2This condition can alway be satisfied when Assumption 1 holds or when
A is a Hurwitz matrix itself.

3In the paper, when there is no risk of ambiguity and for the sake of
simplicity, a compact notation like, for instance, η(k) ≡ η(x(k), u(k), k),
will be used.

of detecting faults “hidden by the uncertanties in the system

dynamics”. This is formalized by the following

Theorem 3.1 (Fault Detectability): If there exists a time

index k2 > k0 such that the fault φ fulfills the following

inequality for at least one component i ∈ {1, . . . , n}

∣

∣

∣

∣

∣

k2−1
∑

h=k0

Ci(A
0)k2−1−h(1 − b−(h−k0))φ(h)

∣

∣

∣

∣

∣

> 2η̄y,(i)(k2) + δk2−k0

i [αiǭ
0
x(k0) + ǭ0y,(i)(k0)]

+

k2−1
∑

h=k0

2αiδ
k2−1−h
i [∆̄f(h) + η̄x(h)] (8)

then it will be detected at time k = k2, that is |ǫ0
y,(i)(k2)| >

ǭ0
y,(i)(k2). �

Proof: At the time index k2 > k0 the i–th component

of the output estimation error is

ǫ0y,(i)(k2) = Ci

{

(A0)k2−k0ǫ0x(k0) +

k2−1
∑

h=k0

(A0)k2−1−h×

[ηx(h) + ∆f(h) + (1 − b−(h−k0))φ(h)]
}

+ ηy,(i)(k2)

By the triangle inequality it follows that

|ǫ0y,(i)(k2)| ≥ −

k2−1
∑

h=k0

‖Ci(A
0)k2−1−h‖ ‖ηx(h) + ∆f(h)‖

+

∣

∣

∣

∣

∣

k2−1
∑

h=k0

Ci(A
0)k2−1−h(1 − b−(h−k0))φ(h)

∣

∣

∣

∣

∣

− ‖Ci(A
0)k2−k0‖ ‖ǫ0x(k0)‖ − |ηy,(i)(k2)| .

By recalling Assumption 2 and the definition of ǭ0x, it holds

|ǫ0y,(i)(k2)| ≥ −

k2−1
∑

h=k0

‖Ci(A
0)k2−1−h‖[η̄x(h) + ∆̄f(h)]

+

∣

∣

∣

∣

∣

k2−1
∑

h=k0

Ci(A
0)k2−1−h(1 − b−(h−k0))φ(h)

∣

∣

∣

∣

∣

− ‖Ci(A
0)k2−k0‖ǭ0x(k0) − η̄y,(i)(k2) .

Therefore, a sufficient condition for detecting the fault is

∣

∣

∣

∣

∣

k2−1
∑

h=k0

Ci(A
0)k2−1−h(1 − b−(h−k0))φ(h)

∣

∣

∣

∣

∣

> ǭ0y,(i)(k2)

+

k2−1
∑

h=k0

‖Ci(A
0)k2−1−h‖[η̄x(h) + ∆̄f(h)]

+ ‖Ci(A
0)k2−k0‖ǭ0x(k0) + η̄y,(i)(k2) .

As we can write

ǭ0y,(i)(k2) =

k2−1
∑

h=k0

αiδ
k2−1−h
i [∆̄f(h) + η̄x(h)]

+ δk2−k0

i ǭ0y,(i)(k0) + η̄y,(i)(k2) ,
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if φ is such that the inequality in the hypothesis holds, then

|ǫ0
y,(i)(k2)| > ǭ0

y,(i)(k2) and a fault will be detected.

Remark 3.2: We assumed in equation (1) that the fault

function φ depends upon y and u, in order to make possible

the approximation and the isolation and estimation tasks.

Anyway, the detectability theorem given here will apply also

to fault functions φ that may depend upon the full state x.

After the detection of a fault at time k = kd, the FDAE

approximator is turned on and the dynamics (5) becomes










x̂0(k + 1) = A x̂0(k) + f(x̂0(k), u(k))+

L (y(k) − ŷ0(k)) + φ̂0(y(k), u(k), ϑ̂0(k))

ŷ0(k) = C x̂0(k)
(9)

where φ̂0 is an adaptive approximator, which can be any

nonlinear multivariable approximation model with adjustable

parameters, contained in the vector ϑ̂0(k) ∈ Θ̂0 ⊂ Rq0

.

Again, for the sake of simplicity, Θ̂0 is assumed to be an

origin–centered hyper–sphere with radius MΘ̂0 .

In order for φ̂0 to learn the fault function φ, its parameters

vector is updated according to the following learning law:

ϑ̂0(k + 1) = PΘ̂0(ϑ̂
0(k) + γ0(k)Z⊤(k)C⊤ǫ0y(k + 1)) ,

where Z(k) , ∂φ̂0(y(k), u(k), ϑ̂0(k))/∂ϑ̂0 ∈ Rn×q0

is the

gradient matrix of the on–line approximator wrt its adjustable

parameters and PΘ̂0 is a projection operator [14]

PΘ̂0(ϑ̂0) ,

{

ϑ̂0 if |ϑ̂0| ≤ MΘ̂0

M
Θ̂0

|ϑ̂0|
ϑ̂0 if |ϑ̂0| > MΘ̂0

,

The learning rate γ0(k) is computed at each time-step as

γ0(k) ,
µ0

ε0 + ‖Z⊤(k)C⊤‖2
F

, ε0 > 0, 0 < µ0 < 2

where ‖ · ‖F is the Frobenius norm and ε0, µ0 guarantee the

stability of the learning law [14], [11], [1], [12], [9].

B. FIE Estimators and Isolation Scheme

After a fault has been detected at time k = kd, the bank

of N FIEs is activated in order to possibly isolate it. The

dynamics of the l–th FIE estimator, with l ∈ {1, . . . , N}, is










x̂l(k + 1) = A x̂l(k) + f(x̂l(k), u(k))+

L (y(k) − ŷl(k)) + φ̂l(y(k), u(k), ϑ̂l(k))

ŷl(k) = C x̂l(k)
(10)

where φ̂l
(i)(y(k), u(k), ϑ̂l(k)) , (ϑ̂l

i)
⊤gl

i(y(k), u(k)) is a

linearly-parameterized function matching the structure of

φl
(i), with ϑ̂l

i ∈ Θl
i and ϑ̂l , col(ϑ̂l

i, i = 1, . . . , n).

The learning law for ϑ̂l
i is analogous to the FDAE one:

ϑ̂l
i(k + 1) = PΘl

i

(ϑ̂l
i(k) + γl

i(k)gl
i(k)C⊤

i ǫl
y(k + 1)) ,

where C⊤
i is the i–th row of C⊤, PΘl

i

is the projection

operator on Θl
i and γl

i(k) is

γl
i(k) ,

µl
i

εl
i + ‖gl

i(k)C⊤
i ‖2

F

, εl
i > 0, 0 < µl

i < 2 .

Remark 3.3: In spite of their similarity, the FDAE on–line

approximator must be complex enough to approximate any

reasonable unknown fault, while the FIE ones are designed

to match a single fault function in F . And although it is

possible for a FIE to exactly match a fault function φl if

ϑ̂l
i(k) = ϑl

i, ∀i ∈ {1, . . . , n}, there is no guarantee that ϑ̂l
i(k)

will converge to the true value ϑl
i, as persistency of excitation

is not assumed in this paper.

Assuming a matched fault, that is φ = φl, the state

estimation error dynamics equation is

ǫl
x(k + 1) = A0ǫl

x(k) + ∆f(x(k), x̂l(k), u(k))+

(1 − b−(k−k0))gl(k)ϑ̃l(k)− b−(k−k0)gl(k)ϑ̂l(k) + ηx(k) ,

where gl is the following diagonal block matrix

gl ,















(gl
1)

⊤ Ø

Ø (gl
2)

⊤ Ø
. . .

Ø (gl
n−1)

⊤ Ø

Ø (gl
n)⊤















∈ Rn×ql

,

ql ,
∑n

i=1 ql
i and ϑ̃l(k) , ϑl − ϑ̂l(k) is the parameter

estimation error, with ϑl , col(ϑl
i, i = 1, . . . , n) ∈ Θl

and Θl ,
∏n

i=1 Θl
i ⊂ Rql

. Then the i–th component of

the output estimation error is

ǫl
y,(i)(k) = Ci

{ k−1
∑

h=kd

(A0)k−1−h[∆f(h)+ηx(h)]+gl(h)×

[ϑ̃l(h)(1−b−(h−k0))+ϑ̂l(h)b−(h−k0)]+(A0)k−kdǫ0x(kd)

}

,

Owing to Ass. 2 and Ass. 3, and by using the same reasoning

as in Section (III-A), the output estimation error absolute

value for a matched fault can be upper bounded by

ǭl
y,(i)(k) = η̄y,(i)(k)+αi

{ k−1
∑

h=kd

δk−1−h
i [∆̄f(h)+ η̄x(h)]+

‖gl(h)‖[κl(h) + ‖ϑ̂l(h)‖b̄−(h−kd)] + δk−kd

i ǭl
x(kd)

}

, (11)

where we let

ǭl
x(k) , max

x∈Rx

{‖x − x̂l(k)‖} .

In order to make ǭl
x computable, we introduced the following

function that depends on the geometry of Θl and bounds the

norm of the parameter estimation error

κl(k) , max
ϑl∈Θl

{‖ϑl − ϑ̂l(k)‖} .

The threshold in (11) guarantees that if the fault φl ∈ F

occurs it will not be rejected by its FIE. But, because of

the uncertainties ηx and ηy and of the parameter estimation

error, there is no assurance that others FIEs will reject the

fault φl so that it may be isolated. A sufficient condition for

a succesfull isolation decision is given in the following:
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1 3 2

A AA

u(1) u(2)

x(1) x(3) x(2)

Fig. 2. Structure of the three–tanks system under consideration.

Theorem 3.2 (Fault Isolability): Given a fault φs ∈ F , if

for each l ∈ {1, . . . , N} \ s there exists some time instant

kl > kd and some il ∈ {1, . . . , n} such that

∣

∣

∣

∣

∣

Cil

kl−1
∑

h=kd

(A0)kl−1−hξs,l(h)

∣

∣

∣

∣

∣

> αil

{

2δkl−kd

il
ǭl
x(kd)

+

kl−1
∑

h=kd

δkl−1−h
il

[

2∆̄f(x̂l(h), u(h)) + ‖gl(h)‖
(

κl(h)

+ b̄−(kl−kd)‖ϑ̂l(h)‖
)

+ 2η̄x(h)
]}

+ 2η̄y,(il)(kl) (12)

where

ξs,l(k) , (1 − b−(k−k0))gs(k)ϑs − gl(k)ϑ̂l(k),

∀l, s ∈ {1, . . . , N}, l 6= s

is the fault mismatch function. Then, the s–th fault will be

isolated at time max
l∈{1,...,N}\s

(kl). �

Proof: Omitted because of space constraints.

Remark 3.4: It is worth noting that Theorems 3.1 and 3.2

provide a sufficient conditions that may result to be quite

conservative in practice, depending on the accuracy of the a-

priori available knowledge. For a given fault, its detectability

and isolability can be checked by conditions (8) and (12),

so that the classes of detectable and isolable faults can be

approximately determined by a suitable numerical algorithm.

IV. SIMULATION RESULTS

A simple example is presented to illustrate the effec-

tiveness of the proposed FDI scheme, based on the well-

known three-tank problem (see Fig. 2). Nominally, the tanks

cross-section are Ai = 1 m2, and the pipes have cross-

section Ap
j = 0.01 m2 and unitary outflow coefficient cj ,

i, j = 1, . . . , 3. These values will be used to compute the

nominal term f(k) in the FDAE and FIEs’ estimators, but

when simulating the actual system we will add an uncertainty

term ηx accounting for a 7%, 10% and 15% inaccuracy in A,

Ap and c, respectively. The measurement uncertainty ηy will

be a random noise bounded by η̄y,(i) = 0.01, i = 1, . . . , 3.

The tank discrete-time model will be obtained from the

continuous-time version [18] by employing a simple forward

Euler discretization with Ts = 0.1, so that A turns out to be

a 3 × 3 identity matrix. The output error gain matrix is

L =





0.5 0
0 0.5
0 0



 ,

while the FDAE on–line approximator φ̂0 will consist of a 5–

input, 3–output RBF neural network with one hidden layer

of 35 fixed neurons equally spaced in the hyper–rectangle

[0, 10]3 × [0, 1]2 ⊂ R5, covering all the admissible values

for state and input variables. ϑ̂0 will have 3 · 35 components

containing the weights by which the hidden layer outputs are

linearly combined in order to compute the network output.

Three FIEs will be employed, in order to match the

following faults:

1) Actuator fault in pump 1

2) Leakage in tank 1

3) Actuator fault in pump 2

For both the FDAE and the FIEs the learning rate is

µj
i = 0.01. After suitable offline simulations all the param-

eter domains were chosen to be hyper–spheres with unitary

radius. The bound on the state uncertainty function was set

to the constant value η̄i = Ts · 0.05, i = 1, . . . , 3, while the

bound on the time profile parameter was set to b̄ = 1.01.

Fig. 3 shows the results of a simulation where at T0 = 15 s

a leak of section 0.2 m2 is introduced into the first tank, with

a time profile described by b = 1.05. In Fig. 3(a) it can be

seen that the fault is detected about 1.5 s later, and then it

takes about 1.5 seconds more to isolate it (Fig. 3(b)-(d)).

Because of space constraints the behaviour of the estimation

error ǫ2
y,(2) is not reported, but anyway it is clear that it do

not cross its corresponding thresholds as the fault function

considered do not affect the dynamics of x(2) and, thus, of

y(2). In Fig. 3(e)-(f) the approximated fault function φ̂2
(1)

and the corresponding parameter ϑ̂2
1 are plotted: it can be

seen that the second FIE correctly estimate the actual fault

function φ2
(1).

The inflows were u1(k) = 0.3−0.25 ·cos(0.05 · kTs) and

u2(k) = 0.1 · cos (0.5 · kTs) + 0.15; the nominal tank initial

levels were 1, 2.5 and 2 m and were used for initialising the

FDAE estimator, while the actual one were 20% off.

V. CONCLUDING REMARKS

In this paper a robust FDI scheme for a class of input–

output non–linear discrete-time uncertain was proposed, that

relies on a bank of non–linear estimators based on a nominal

model of the healthy system dynamics. Both abrupt and

incipient kinds of faults were addressed and theoretical

results characterizing the ability of the FDI scheme to detect

and to isolate a given fault were derived. Furthermore, simu-

lations results about the well-known three-tanks benchmark

illustrated in practice its effectiveness.

Future developments will include a larger class of discrete-

time nonlinear systems, the effects of delays in the measure-

ments, and possibly a more general fault model. Another

important issue is the combination of the proposed FDI

scheme with fault tolerant control design, therefore providing

a unified architecture for fault detection, isolation and accom-

modation (as done in [17] for continuous time). Finally, the

FDI scheme may be extended to accomodate recent advances

about the FDI problem for large–scale, distributed systems.

2808



0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time [s]

[m
]

FDAE , component #1

 

 

Residual

Threshold

16 16.5 17 17.5 18
0.08

0.09

0.1

0.11

0.12

0.13

0.14

 

 

detection

(a)

15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

[m
]

FIE #1, component #1

 

 

Residual

Threshold

17 17.5 18 18.5 19
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

exclusion

(b)

15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

[m
]

FIE #2, component #1

 

 

Residual

Threshold

(c)

15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

[m
]

FIE #3, component #1

 

 

Residual

Threshold

17 17.5 18 18.5 19

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

0.05

exclusion

(d)

0 10 20 30 40 50 60
−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

Time [s]

[m
]

Actual and approximated fault function, FIE #, 2, component # 1

 

 

Approximated

Actual

(e)

15 20 25 30 35 40 45 50 55 60
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time [s]

FIE #2, approximated parameter #1

(f)

Fig. 3. Time-behaviours of signals related to tank n.1 when an incipient leak in tank 1 is introduced at time 15 s.
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