
I. J. Computer Network and Information Security, 2013, 6, 49-55 
Published Online May 2013 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijcnis.2013.06.07 

Copyright © 2013 MECS                                                I.J. Computer Network and Information Security, 2013, 6, 49-55 

A Robust Fault Detection Scheme for the 

Advanced Encryption Standard 

 
Hassen Mestiri, Noura Benhadjyoussef, Mohsen Machhout and Rached Tourki 

Electronics and Micro-Electronics Laboratory (E. µ. E. L) 

Faculty of Sciences of Monastir, Tunisia 
hassen.mestiri@yahoo.fr 

 

 

Abstract — Fault attacks are powerful and efficient 

cryptanalysis techniques to find the secret key of the 

Advanced Encryption Standard (AES) algorithm. These 

attacks are based on injecting faults into the structure of 

the AES to obtain the confidential information. To protect 

the AES implementation against these attacks, a number 

of countermeasures have been proposed. 

In this paper, we propose a fault detection scheme for 

the Advanced Encryption Standard. We present its details 
implementation in each transformation of the AES. The 

simulation results show that the fault coverage achieves 

99.999% for the proposed scheme. Moreover, the 

proposed fault detection scheme has been implemented 

on Xilinx Virtex-5 FPGA. Its area overhead and 

frequency degradation have been compared and it is 

shown that the proposed scheme achieves a good 

performance in terms of area and frequency. 

 

Index Terms — Security, Fault Attacks, Fault Detection 

Scheme, Countermeasure, Advanced Encryption 

Standard (AES) 
 

I.  INTRODUCTION 

In October 2000, The Advanced Encryption Standard 

was finalized by the National Institute of Standards and 

Technology (NIST), when the Rijndael algorithm was 

adopted [1]. The AES algorithm replaced the data 

encryption standard (DES), which had been in use since 

1976. Until now, many architectures, for efficient VLSI 

realization of AES algorithm, have been proposed and 

their performance have been evaluated by using ASIC 
libraries and FPGA [2-5]. Cryptographic algorithm AES 

is currently used in a very large variety of scenarios. The 

most common examples: e-commerce and financial 

transactions, which have strong security requirements [6]. 

Therefore, it is necessity to protect the AES 

implementation against the fault attacks, such as the 

Differential Fault Analysis (DFA) [7-12] and the Simple 

Fault Analysis (SFA) [13]. 

The fault attacks are based on injecting faults into the 

structure of the AES to obtain the secret cryptographic 

keys. The cryptanalyst injects faults during the execution 

of the processing algorithm. This disturbs the normal 
execution behavior and results in creating faulty 

ciphertext. Therefore, the cryptanalyst can guess secret 

key after certain number of the fault injections and 

analyzing faulty ciphertexts. 

To make a robust implementation against fault attacks, 

several countermeasures have been proposed [14-21]. 

In [14], Karri et al proposed an error detection method, 
called concurrent error detection (CED). This fault 

detection model exploits the inverse relationship between 

encryption and decryption to detect the fault at the 

operation level, the round level and the algorithm level. 

Yen et al proposed in [15] a fault detection based on 

the cyclic redundancy check (CRC). This approach uses 

an (n+1, n) CRC to detect the faults, where n (4, 8, 16) 
and the parity of the output of each transformation is 

predicted. The CRC fault detection can also be 

implemented in the operation level, round level and 

algorithm level. 

In [16], Natal et al proposed an error detection method 

based on hardware redundancy. They used four S-Box for 

the implementation of the SubBytes transformation. They 
used one additional S-Box to check the result of every 

four S-Box. 

Rajendran et al proposed in [17] a new CED 

mechanism based on the slide attack. This mechanism is 

independent of the implementation scheme of the S-Box. 

It can be applicable to all the symmetric block ciphers. It 
is applicable to both the encryption and decryption 

mechanisms. 

In [18], Chu et al proposed new error detection method 

using the polynomial residue number systems (PRNS) to 

protect the AES implementation. 

In this paper, in order to improve the security of the 

AES, we propose a fault detection scheme against the 

Differential Fault Analysis. This method combines 

several countermeasures presented in the literature. 

The organization of this paper is as follows. The basic 

structure of AES is given in section II. In section III, 

several architectural solutions for fault detection in 

cryptographic systems are presented and categorized 

according to the type of the redundancy scheme. In 

section IV, we present the proposed a fault detection 

scheme for the AES. In section V, The fault coverage of 

the proposed fault detection scheme is obtained. In 

section VI, the implementation results and the 



50 A Robust Fault Detection Scheme for the Advanced Encryption Standard 

Copyright © 2013 MECS                                                I.J. Computer Network and Information Security, 2013, 6, 49-55 

performances report of the proposed fault detection 

scheme are discussed and compared in terms of area, 

frequency and fault coverage. Section VII concludes the 

paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  AES algorithm: Encryption structure 

 

II. AES ALGORITHM 

AES is a symmetric-key block cipher with a data block 

length of 128 bits, which supports different key lengths of 

128, 192 or 256 bits. The AES is a round-based 

encryption algorithm. The number of rounds, Nr, is 10, 

12, or 14, when the key length is 128, 192 or 256 bits, 

respectively. 

In the encryption of the AES algorithm, each round, 

except the final round, performs four transformations: 

SubBytes, ShiftRows, MixColumns and AddRoundKey, 
while the final round does not have the MixColumns 

transformation. The key used in each round, called the 

round key, which is generated from the initial key by a 

separate key scheduling module. 

The SubBytes transformation is a non-linear byte 

substitution that operates independently on each byte of 

the state using a substitution table (S-Box). This S-Box, 

which is invertible, is constructed by composing two 

transformations: 

 Take the multiplicative inverse in the finite field 

GF(2
8
), the element {00} is mapped to itself. 

 Apply the following affine transformation (over 

GF(2)). 

'
( 4)mod8 ( 5)mod8 ( 6)mod8 ( 7)mod8 (1)i i i i i i ib b b b b b c        

 

for 0 ≤ i < 8, where bi is the i
th

 bit of the byte, and ci is the 

i
th

 bit of a byte c with the value {63h}. 

The ShiftRows transformation is a circular shifting 

operation on the rows of the state with different numbers 

of bytes. As shown in (2), the first row of the state is kept 

as it is, while the second, third and fourth rows cyclically 

shifted by one byte, two bytes and three bytes to the left, 

respectively. 
 

   
   
   
   
   
      

0 4 8 12 0 4 8 12

1 5 9 13 5 9 13 1

2 6 10 14 10 14 2 6

3 7 11 15 15 3 7 11

ShiftRows

s s s s s s s s

s s s s s s s s

s s s s s s s s

s s s s s s s s

         (2) 

 

The MixColumns transformation operates on the state 

column by column, treating each column as a four term 

polynomial. The columns are considered as polynomials 

SubBytes 

ShiftRows 

MixColumns 

SubBytes 

ShiftRows 

Ciphertext (128 bits) 

Plaintext (128 bits) Key 

Key Expansion 



 A Robust Fault Detection Scheme for the Advanced Encryption Standard 51 

Copyright © 2013 MECS                                                I.J. Computer Network and Information Security, 2013, 6, 49-55 

over GF(2
8
) and multiplied x

4
 + 1 with a fixed 

polynomial a(x) given by: 

a(x) = {03}x
3
 + {01}x

2
 + {01}x + {02}                   (3) 

 

In matrix form, the MixColumns transformation can be 

expressed as: 

 

    
    
        
    
       

0, 0,

1, 1,

2, 2,

3, 3,

' 02 03 01 01

' 01 02 03 01

' 01 01 02 03

03 01 01 02'

j j

j j

j j

j j

s s

s s

s s

s s

                          (4) 

0 ≤ j ≤ 3, 

 

The AddRoundKey is a XOR operation that adds a 

round key (K) to the state in each iteration, where the 

round keys are generated during the key expansion phase. 

 

 'C S K                                                                  (5) 

 

where C={ci,j 0 ≤ i,j ≤ 3} is the round output. 

The AES algorithm takes the cipher key and performs 

a Key Expansion routine to generate a key schedule. The 

key expansion generates a total Nb(Nr + 1) words, where 

Nb = 4. 

Block diagram of the AES encryption is shown in   Fig. 

1. 

The transformations in the decryption process perform 

the inverse of the corresponding transformations in the 
encryption process. In the AES decryption rounds, four 

transformations are used:  InvShiftRows, InvSubBytes, 

AddRoundKey, and InvMixColumns. The AddRoundKey 

is the same for both encryption and decryption 

In this paper, we consider the implementation of the 

128-bit key system only, as this is the most commonly 

implemented form of AES. 

 

III. COUNTERMEASURES AGAINST FAULT ATTACKS 

In the literature, a large number of countermeasures 

proposed against fault attacks are based on some sort of 

redundancy: temporal redundancy, hardware redundancy 
and information redundancy. 

A. Temporal Redundancy 

In temporal redundancy, the same hardware is used to 

repeat the same process twice using the same input data. 

This technique uses minimum hardware overhead. Yet, it 

entails 100% time overhead. 

B. Hardware Redundancy 

In hardware redundancy, two copies of the hardware 

are used concurrently to perform the same computation 

on the same data. After each computation, the results are 

compared and every difference is reported as a fault. The 

advantage of this technique is that it can detect both 
transient and permanent faults. However, it requires at 

least 100% hardware overhead. 

C. Information Redundancy 

According to [22], the Information redundancy can be 
classified into three categories: parity-1, parity-16 and 

nonlinear robust codes. 

The parity-1 uses only single bit parity for the entire 

128-bit output and the fault is detected by comparing the 

predicted parity with the calculated parity at the end of 

each round. 

In Parity-16, one parity bit is generated for each byte 

of the input and the fault is detected in the same way in 

Parity-1. While gaining higher fault coverage, the area 

overhead of Parity-16 is more than Parity-1. 

The nonlinear robust codes based on the addition of 

two cubic networks. It allows to produce r-bit signatures 

to detect fault. This method offers good fault coverage. 

Yet, its hardware overhead is comparable to the hardware 

redundancy. 

 

IV. THE PROPOSED FAULT DETECTION SCHEME 

In this section, we present the proposed fault detection 

scheme to protect the AES 128-bit implementations 

against fault attacks. It is noted that this scheme can also 

be applied to AES-192 and AES-256. 

The proposed fault detection scheme structure for the 

AES is shown in Fig. 2. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.  The proposed fault detection scheme structure for the 

AES 

A. In SubBytes 

SubBytes, which is the only non-linear transformation 

in the AES, consists of 16 S-Box. Using the technique of 

parity to make the prediction parity for the SubBytes is 

complex due to nonlinearity of this transformation. 

To protect the SubBytes, our method uses the hardware 

redundancy method. We implement two SubBytes 

transformations in parallel. At the end of SubBytes 

SubBytes 

ShiftRows 

(Mixing) 

 

MixColumns 

AddRoundKey Key 

Plaintext (128 bits) 

CRC checking 

CRC checking 

Ciphertext (128 bits) 

Comparison 



52 A Robust Fault Detection Scheme for the Advanced Encryption Standard  

Copyright © 2013 MECS                                                I.J. Computer Network and Information Security, 2013, 6, 49-55 

computation, the results are compared and every 

discrepancy is considered as a fault. 

The same method can be applied in the decryption 

process by using two InvSubBytes transformation in 
parallel. 

B. In ShiftRows 

The output of the SubBytes transformation acts as the 

input to ShiftRows. As seen in (2), the output state of 

ShiftRows is obtained by shifting the matrix state. To 

secure the ShiftRows transformation, we used the 

scrambling method proposed in [19]. This method 
consists in scrambling the output of ShiftRows as 

presented in Fig. 3. 

 

                       Data path A 

00 44 88 CC  00 44 88 CC 

11 55 99 DD  55 99 DD 11 

22 66 AA EE  AA EE 22 66 

33 77 BB FF  FF 33 77 BB 

    

 

    

00 44 88 CC  00 44 88 CC 

11 55 99 DD  55 99 DD 11 

22 66 AA EE  AA EE 22 66 

33 77 BB FF  FF 33 77 BB 

                        Data path B 

Figure 3.  Scrambling bytes in ShiftRows [19] 

 

To improve the security of our AES implementation, 
the scrambling method can be applied at the bit level. 

 
Data path A  Data path B 

b7 b6 b5 b4 b3 b2 b1 b0   b7 b6 b5 b4 b3 b2 b1 b0 

                

                

                

b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 

 
 

 

Figure 4.  Bit-level scrambling in ShiftRows 

 
The bit level scrambling approach leads to a more 

robust implementation. Further, from a hardware 

viewpoint, it is easy to implement and does not increase 

the complexity. 

The scrambling method can also be applied to the 

InvShiftRows transformation. 

C. In MixColumns 

The MixColumns is protected by using the cyclic 

redundancy check (CRC) [15]. According to (4), after 

adding the columns of S’, one reaches the following: 





    

     

    

     





3

,0 0,0 1,0 2,0 3,0

0

0,0 1,0 2,0 3,0

3

,1 0,1 1,1 2,1 3,1

0

0,1 1,1 2,1 3,1

' ' ' ' '

(02 03 01 01)( ) (6)

' ' ' ' '

(02 03 01 01)( ) (7)

i

i

i

i

s s s s s

s s s s

s s s s s

s s s s

 





    

     

    

     





3

,2 0,2 1,2 2,2 3,2

0

0,2 1,2 2,2 3,2

3

,3 0,3 1,3 2,3 3,3

0

0,3 1,3 2,3 3,3

' ' ' ' '

(02 03 01 01)( ) (8)

' ' ' ' '

(02 03 01 01)( ) (9)

i

i

i

i

s s s s s

s s s s

s s s s s

s s s s

 

Considering the fact that 01  02 = 03, we have 02  

03  01  01 = 01. Equations (6), (7), (8) and (9) can be 
rewritten as follows: 

 

 

 

 

 









 

 

 

 

3 3

,0 ,0

0 0

3 3

,1 ,1

0 0

3 3

,2 ,2

0 0

3 3

,3 ,3

0 0

' (10)

' (11)

' (12)

' (13)

i i

i i

i i

i i

i i

i i

i i

i i

s s

s s

s s

s s

 

where 




3

,

0

'i j
i

s  and 




3

,

0

i j

i

s  are the addition of the column 

elements of the MixColumns state, and the ShiftRows 
state, respectively (0 ≤ j ≤ 3).  

According to (10), (11), (12) and (13), the addition of 

the column elements of ShiftRows are equal to that of the 

corresponding column of MixColumns. At the end of the 

MixColumns computation, (10), (11), (12) and (13) are 

verified and every difference is reported as a fault. 

The coefficients of InvMixColumns transformation are 

09, 0B, 0D, 0E. The summation of the four coefficients 

used in decryption process, is also 1. Therefore, the CRC 

can be applied to the InvMixColumns transformation. 

D. In AddRoundKey 

The AddRoundKey operation adds the input state 
(output of the MixColumns) with round key 

K={k0,0,k1,0,….,k3,3} to obtain the output of the round. 

We apply the cyclic redundancy check (CRC) to (5) to 

obtain: 

ShiftRows 

& Mixing 

ShiftRows 

bit from data path A 

bit from data path B 



 A Robust Fault Detection Scheme for the Advanced Encryption Standard 53 

Copyright © 2013 MECS                                                I.J. Computer Network and Information Security, 2013, 6, 49-55 

  

  

  

 

 

 

  

  

  

3 3 3

,0 ,0 ,0

0 0 0

3 3 3

,1 ,1 ,1

0 0 0

3 3 3

,2 ,2 ,2

0 0 0

' (14)

' (15)

' (16)

i i i

i i i

i i i

i i i

i i i

i i i

c s k

c s k

c s k

 

  

   
3 3 3

,3 ,3 ,3

0 0 0

' (17)i i i

i i i

c s k

 

where 




3

,

0

i j

i

c , 




3

,

0

'i j
i

s and 




3

,

0

i j

i

k are the addition of the 

column elements of the round output, the MixColumns 

state and the round key, respectively (0 ≤ j ≤ 3). 

At the end of AddRoundKey computation, (14), (15), 

(16) and (17) are verified and every discrepancy is 

considered as a fault. 

 

V. FAULT DETECTION 

In this section, we describe the results of the 

simulation experiments which were carried out to 

evaluate the fault coverage of the proposed fault detection 

scheme for the encryption process. We injected random 

faults affecting any of the 128-bit state, with the number 

of faulty bits ranging from 1 to 20. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.  Simulation model 

 

The simulation model is shown in Fig. 5. The fault 

detection scheme is simulated by 21 tests distinguished 

by the number of faulty bits in 128-bit AES state. The last 

test in table 1, labeled as random, used fault patterns with 

random faulty bit number. Each fault pattern has 2000000 

blocks. Faults have been randomly injected, and the 

faulty operations and the faulty rounds were also 

randomly chosen. Simulation results are presented in 

table 1. 

As seen in table 1, the percentage of the undetected 

faults dropped dramatically as the faulty bit number 

increased. For the random test, the percentage is about 

0.001%. That means that the fault coverage achieves 

99.999% for the proposed fault detection scheme. 
 

Table 1.  Detection Capabilities of the Proposed Fault Detection 

Scheme 

Number of faulty bits Percentage of the undetected faults 

1 0% 

2 1.1847% 

3 0% 

4 0.0851% 

5 0% 

6 0.0093% 

7 0% 

8 0.0013% 

9 0% 

10 0.0003% 

11 0% 

12 0.0002% 

13 0% 

14 0.00003% 

15 0% 

16 0.00003% 

17 0% 

18 0.00001% 

19 0% 

20 0.00001% 

Random 0.001% 

 

VI. FPGA IMPELENTATION AND COMPARISON  

The original AES algorithm design and the proposed 

secured AES have been described using VHDL, 

simulated by ModelSim 6.6 and synthesized with Xilinx 

ISE 10.1.03. The FPGA target was XC5VFX70T from 

Xilinx Virtex-5 family. 

As seen in table 2, the fault Coverage (FC), the number 

of occupied slices, the frequency (in megahertz), the 

throughput (in megabits per second), the area overhead 

and the frequency degradation for the original and 
secured AES implementation are presented. 

Round 0 

Round 10 

 

R
an

d
o
m

 F
au

lts 

Plaintext 

Ciphertext 

2.10
6
 fault 

blocks 

(1-bit fault) 

2.10
6
 fault 

blocks 

(2-bit fault) 

2.10
6
 fault 

blocks 

(20-bit fault) 

2.10
6
 fault 

blocks 

(Rand-bit fault) 

Round 9 

 

Round 1 

 



54 A Robust Fault Detection Scheme for the Advanced Encryption Standard  

Copyright © 2013 MECS                                                I.J. Computer Network and Information Security, 2013, 6, 49-55 

Table 2.  FPGA Implementation of the Proposed Fault 

Detection Scheme for the AES 

AES 
Design 

FC (%) 
Area (slice) 

(Overhead) 

Freq. (MHz) 

(Degradation) 

Throu. 

(Mbps) 

Original 

AES  
- 342 263.92 

2815.1

5 

Protected 

AES 
99.999 

419 

(22.51%) 

227.33 

(13.86%) 

2424.8

6 

 

The implementation of our original AES takes 342 

slices for 263.92 MHz Frequency. The protected AES 

occupies 22.51% more slices and the frequency decreases 

by 13.86% than the original AES. 
We also compared our proposed method with some 

previous work for FPGA implementation and the results 

are shown in table 3. 

 
Table 3.  Fault Detection Schemes: Comparison 

Fault Detection Schemes FC (%) Area 

Overhead 

(%) 

Frequency 

Degradation 

(%) 

Algorithm-level [21] * 100 97.6 23.48 

Hardware Redundancy * 100 56.7  0 

Structure-Independent [20] 99.996 26.9  0 

Proposed Method 99.999 22.51 13.86 

* The percentage are obtained from [20]  

 

Compared to other works, our proposed method has 

the minimum area overhead and requires less frequency 

degradation than [21]. From a security viewpoint, the 

results show that the fault coverage achieves 99.999 % 
for the proposed scheme. 

Therefore, these results show that our work achieves 

compromise between the implementation cost and the 

security of the AES. 

 

VII. CONCLUSION  

In this paper, in order to improve the security of the 

AES, we propose a fault detection scheme against the 

fault attacks. This method combines several 

countermeasures presented in the literature. 

The proposed method has been implemented on Xilinx 

Virtex-5 FPGA. Its fault coverage, area overhead and 
frequency degradation have been obtained and compared. 

Compared to some previous works, our proposed 

method has less area overhead and its fault coverage 

achieves 99.999%. Therefore the proposed fault detection 

scheme allows a trade-off between the security and the 

implementation cost of the AES. 

 

REFERENCES 

[1] National Institute of Standards and Technology 

(NIST), “Advanced Encryption Standard (AES),” 

FIPS Publication 197, 

http://csrc.nist.gov/publications/fips/fips197/fips-

197.pdf, 2001. 

[2] H. Mestiri, M. Machhout, R. Tourki, “Performances 

of the AES design in 0.18µm CMOS technology,” 

IEEE, 7th International Conference on Design & 

Technology of Integrated Systems in Nanoscale Era 

(DTIS), 2012. 

[3] L. Lan, “The AES encryption and decryption 

realization based on FPGA,” Seventh International 
Conference on Computational Intelligence and 

Security (CIS 2011), pp. 603-607, 2011. 

[4] A. Moh'd, Y. Jararweh and L. Tawalbeh, “AES-512: 

512-bit Advanced Encryption Standard algorithm 

design and evaluation,” 7th International Conference 

on Information Assurance and Security (IAS 2011), 

pp. 292-297, 2011. 

[5] C. Qingfu, L. Shuguo, “A high-throughput cost-

effective ASIC implementation of the AES 

algorithm,” 8th International Conference on ASIC 

(ASICON 2009), pp. 805-808, 2009. 

[6] H. Mestiri, N. Benhadjyoussef, M. Machhout and R. 
Tourki, “A Comparative Study of Power 

Consumption Models for CPA Attack,” International 

Journal of Computer Network and Information 

Security, Vol. 5, No. 3, pp. 25-31, 2013. 

[7] C. Giraud, “DFA on AES,” In H. Dobbertin, V. 

Rijmen, A. Sowa (Eds.): AES 2004, Lecture Notes in 

Computer Science, Vol. 3373, pp. 27–41, 2005. 

[8] G.Piret and, J.J. Quisquater, “A Differential Fault 

Attack Technique against SPN Structures, with 

Application to the AES and Khazad,” In 

Cryptographic Hardware and Embedded Systmes - 

CHES 2003, Lecture Notes in Computer Science Vol. 
2779, pp.77-88, 2003. 

[9] P. Dusart, G. Letourneux, and O. Vivolo, 

“Differential Fault Analysis on A.E.S,” ACNS 2003, 

Lecture Notes in Computer Science Vol. 2846, pp. 

293–306, 2003. 

[10] A. Moradi, M.T. Manzuri Shalmani, and M. 

Salmasizadeh, “A Generalized Method of 

Differential FaultAttack Against AES 

Cryptosystem,” CHES 2006, Lecture Notes in 

Computer Science Vol.  4249, pp. 91–100, 2006. 

[11] J. Takahashi, T. Fukunaga, K. Yamakoshi, “DFA 

Mechanism on the AES Key Schedule” In IEEE 
computer society, editor, Workshop on Fault 

Diagnosis and Tolerance in Cryptography, pp. 62 – 

74, FDTC  2007. 

[12] M. Tunstall, D. Mukhopadhyay, and S. Ali, 

“Differential Fault Analysis of the Advanced 

Encryption Standard using a Single Fault,” Available 

from: http://eprint.iacr.org/2009/575.pdf, 2009. 

[13] D. Boneh, R.A. DeMillo, R.J. Lipton, “On the 

importance of checking cryptographic protocols for 

faults,” EUROCRYPT 1997, Lecture Notes in 

Computer Science, vol. 1233, pp. 37-51, 1997. 

[14] R. Karri, K. Wu, P. Mishra, and Y. Kim, 
“Concurrent Error Detection Schemes of Fault Based 

Side-Channel Cryptanalysis of Symmetric Block 



 A Robust Fault Detection Scheme for the Advanced Encryption Standard 55 

Copyright © 2013 MECS                                                I.J. Computer Network and Information Security, 2013, 6, 49-55 

Ciphers,” IEEE Transactions on Computer-Aided 

Design, Vol 21, N°12, Dec 2002. 

[15] C. Yen, and B. Wu, “Simple error detection methods 

for hardware implementation of Advanced 

Encryption Standard,”   IEEE Transactions on 

Computers, Vol. 55, N°. 6, June 2006. 

[16] G.D. Natale, M.L. Flottes, B. Rouzeyre, “On-Line 

Self-Test of AES Hardware Implementations,” 

DSN'07, Workshop on Dependable and Secure 
Nanocomputing, Edinburgh, Royaume-Uni, 2007. 

[17] J. Rajendran, H. Borad, S. Mantravadi, R. Karri, 

“SLICED: Slide-based concurrent error detection 

technique for symmetric block ciphers,”IEEE 

International Symposium on Hardware-Oriented 

Security and Trust, pp. 70-75, 2010. 

[18] J. Chu, M. Benaissa, “Error Detecting AES using 

Polynomial Residue Number Systems,” 

Microprocessors and Microsystems,  Elsevier, 2012. 

[19] M. Joye, P. Manet, and J.B. Rigaud, , “Strengthening 

hardware AES implementations against fault 

attacks,” IET Information Security, pp. 106-110, 
Sept, 2007. 

[20] M. Mozaffari-Kermani, and A. Reyhani-Masoleh, 

“Concurrent structure-independent fault detection 

schemes for the advanced encryption standard,” 

IEEE Transactions on Computers, Vol. 59, pp.  608-

622, 2010. 

[21] R. Karri, K. Wu, P. Mishra, and K. Yongkook, 

“Fault-Based Side Channel Cryptanalysis Tolerant 

Rijndael Symmetric Block Cipher Architecture,” 

Proceedings. IEEE International Symposium on 

Defect and Fault Tolerance in VLSI Systems, 

pp.427-435, 2001. 
[22] X. Guo, D. Mukhopadhyay, and R. Karri, “Provably 

Secure Concurrent Error Detection Against 

Differential Fault Analysis,” IACR Cryptology 

ePrint Archive, Available 

from:eprint.iacr.org/2012/552.pdf, 2012. 
 
 
 
Hassen. Mestiri received his M.S. degree in 

Microelectronic Systems from the Faculty of Sciences of 

Monastir, Tunisia, in 2011. Currently, he is a PhD student. 

His research interests include implementation of standard 

cryptography algorithm and security of embedded system.  

 
Noura. Benhadjyoussef received MS in Electronic 

Engineering from National Engineering School of Sousse, 

Tunisia, in 2010. Currently, she is a PhD student. Her 

research interests include implementation of 

cryptography algorithm on FPGA and ASIC, security of 
smart card and embedded system with ressource 

contraints. 

 
Mohsen. Machhout was born in Jerba, on January 31 

1966. He received MS and PhD degrees in electrical 

engineering from University of Tunis II, Tunisia, in 1994 

and 2000 respectively. Dr Machhout is currently 

Assistant Professor at University of Monastir, Tunisia. 

His research interests include implementation of standard 

cryptography algorithm, key stream generator and 

electronic signature on FPGA. 

 
Rached. Tourki was born in Tunis, on May 13 1948. He 

received the B.S. degree in Physics (Electronics option) 

from Tunis University, in 1970; the M.S. and the 

Doctorat de 3eme cycle in Electronics from Institut 

d'Electronique d'Orsay, Paris south University in 1971 

and 1973 respectively. From 1973 to 1974 he served as 
microelectronics engineer in Thomson CSF. He received 

the Doctorat d'etat in Physics from Nice University in 

1979. Since this date he has been professor in 

Microelectronics and Microprocessors with the physics 

department, Faculty of Sciences of Monastir. His current 

research interests include: Digital signal processing and 

hardware software codesign for rapid prototyping in 

telecommunications. 


