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A ROBUST FINITE ELEMENT METHOD
FOR NONHOMOGENEOUS DIRICHLET PROBLEMS

IN DOMAINS WITH CURVED BOUNDARIES

JAMES H. BRAMBLE AND J. THOMAS KING

Abstract. In this paper we consider a simple finite element method on an
approximate polygonal domain using linear elements. The Dirichlet data are
transferred in a natural way and the resulting linear system can be solved using
multigrid techniques. Our analysis takes into account the change in domain and
data transfer, and optimal-error estimates are obtained that are robust in the
regularity of the boundary data provided they are at least square integrable. It
is proved that the natural extension of our finite element approximation to the
original domain is optimal-order accurate.

1. Introduction

During the past twenty years there has been considerable interest in finite
element methods wherein a given elliptic problem on a domain Q c R2 is solved
approximately on a convenient nearby domain. In most cases the approximate
domain is taken to be a piecewise smooth domain whose boundary is made
up of polynomial curved segments. The simplest and, in many ways, the most
convenient case is to replace Q by a polygonal domain. In any event it is then
necessary to estimate the effect of domain perturbation. Such estimates were
obtained in the early seventies by Strang [23], Strang and Berger [24], Berger,
Scott, and Strang [2], Blair [3], and Thomée [25, 26] in the case of homogeneous
Dirichlet data.

For nonhomogeneous Dirichlet boundary data there has been little work us-
ing standard finite elements. Bramble, Dupont, and Thomée [5] investigated
a method on approximating polygonal domains using subspaces of piecewise
polynomials of degree greater than two in a modified Nitsche [21] method. The
results in [5] are optimal for smooth solutions but no estimates are obtained for
rough data. Moreover, the method in [5] is somewhat difficult to implement.
More recently, Choudury and Lasiecka [10] show that the standard Nitsche
method is robust on a domain with smooth boundary.
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2 J. H. BRAMBLE AND J. T. KING

In the special case where fi is a convex polygon (and hence fi = fiA ) our
method coincides with the method introduced by Fix, Gunzburger, and Peterson
[15]. The results in [15], for the boundary data g £ Hr~xl2(Y) with 1 < r,
provide optimal L2 but suboptimal Hx error estimates. Subsequently, French
and King [16, 17] obtained optimal-order error estimates ( L2 and Hx ) for this
method, and in particular the method is shown to be robust in the regularity of
the boundary data. By this we mean that the best possible order of accuracy is
attained for rough as well as for smooth boundary data.

For other methods dealing with approximation of the domain by use of
curved elements we refer the reader to Ciarlet [11], Ciarlet and Raviart [12],
Scott [22], Zlámal [29, 30], Zenisek [28], and the references contained therein.

In this paper we consider a simple finite element method on an approximate
polygonal domain using linear elements. The Dirichlet data are transferred in
a natural way and the resulting linear system can be solved using multigrid
techniques (cf. [4]). Our analysis takes into account the change in domain and
data transfer, and the optimal-order error estimates which are obtained show
that the method is robust in the regularity of the boundary data. This aspect is
significant for boundary control problems in which rough boundary data may
arise (cf. Lasiecka [19]).

Suppose ficR2 is a bounded domain whose boundary Y is smooth, say
of class C°° . (We will remark at the end on the piecewise smooth case.) Let
x'1), ... , xW* denote N quasiuniformly spaced points on T with x^N+x) =
x(1). Let fi/, be the polygonal domain with vertices x(1), ... , x(JV) and T^
the "half open" edges from x(j) up to x(;+1). Similarly, r^> denotes that part
of T between x(7) and x^+1). Here, h denotes an upper bound for the length
of the longest edge, and N = A7/, is the number of boundary edges. For h
sufficiently small the maximum distance between T and T/,, the boundary of
fi/,, satisfies

d(T,Th)<Ch2,
where d(T, rn) = maxxerA{|x + tv\ : x + W £ Y} and v denotes the unit
outward normal to TA . We assume that the length h¡ of rj^ satisfies tch <
hj < h, where k is independent of h .

Consider the Dirichlet problem on fi :

(1.1) Au = f in £1,    u = gonT,

where A is the uniformly positive definite second-order elliptic operator

with smooth coefficients a¡j £ C2(fi') with fi c fi'. For this problem we
consider a finite element method in which the domain fi is replaced by fi/, c
fi', the Dirichlet data g are transferred as gf¡ to r¿ by some means, and /
is taken to be zero outside of fi. We determine an approximation Uf¡ to u
obtained by a simple finite element method, using linear elements, applied to
the perturbed problem

AU = f in £lh,    U = ghonrn.
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In this paper we examine a natural choice of gn and derive error estimates
in ( L2-based) Sobolev spaces. We summarize our main results in the following.

Theorem 1. Let «/, be the finite element approximation defined by (3.1). There
exists C, independent of h, such that

\\u - uh\\0iQ < C(A2||/||o,ß + h'+l'2\g\s>r),       0<s<3/2,
and

II" - «tlli.Q < C(A||/||o,n + A'-1/2l*|,,r),        1/2 < s < 3/2,
where the above norms are defined in §2.

Remark. It should be noted that all computations in our method are carried out
on an approximate polygonal domain, fiA , and the natural extension to fi of
our approximate solution satisfies the optimal error estimate given in Theorem
1. At the end of the paper we briefly discuss how the fast multigrid techniques
of [6] can be applied to solve the system of linear equations resulting from our
method.   G

Throughout this paper, C will denote a generic constant which will always be
independent of the mesh parameter h and the functions involved. Sometimes
we specifically mention this independence for emphasis.

We now give a brief outline of the paper. In §2 the relevant function spaces
are introduced and some perturbation estimates are proved. The approximate
problem is defined in §3, and the main results are proved there.

2. Function spaces and preliminary estimates

For a domain D in R2 we denote by Hk(D) the usual Sobolev space of
integer order k > 0 with norm || • \\kD and seminorm \*\k,D involving only
the highest derivatives. The inner products on L2(fi) = H°(Q.) and L2(fi/¡) =
H°(Qh) are given by

(v , w) = / v(x)w(x)dx    and    (v,w)/,= /   v(x)w(x)dx.
Ja Jah

Let Hk(T) denote the Sobolev space of integer order k > 0 on T with norm
denoted by |-|*:,r- The inner products on L2(Y) and L2(Fh) are given by

(v, w) = / vw ds    and     (v, w)¡, = /   vw ds.
Jv Jrh

For real r>0, the spaces i/r(fi) and Hr(T) are defined by interpolation (cf.
Lions and Magenes [20]). As usual, H¿(Q) and H¿(£ln) denote the Sobolev
spaces of order one whose elements have zero trace on T and T^ , respectively.
We define the space H-XI2(Y) as the dual of HXI2(T). The norm on H~XI2(T)
is given by

,  , (v > ¥)
M_i/2,r=    sup

<i/zwn(T) liHi/2,r
Associated with the elliptic operator A is the bilinear form

22

i(v,w)= Y j aiJ^dx~ldx^dx'        v,w£Hx(£l),
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4 J. H. BRAMBLE AND J. T. KING

and «/,(•, •) denotes the corresponding form on fi/,. Note that if fi is convex,
then fiA c fi, but in general fiA £ fi. For / € L2(fi) and g £ Hr~x/2(T)
with 1 < r < 2 the solution u of ( 1.1 ) is defined in the usual way by
(2.1) a(u,<p) = (f,4>),        4>£H¿(Q)    and     u = g on T.
It is well known (cf. Lions and Magenes [20]) that u £ Hr(Q) and the following
elliptic estimate holds:
(2.2) ||M||r>n <C{||/||o,n + |*|,-i/2.r},    0 < r < 2.
For / £ L2(fi) and g £ Hr~xl2(Y), with 0 < r < 1, a generalized (very weak)
solution of (1.1) is defined by approximation using (2.2). More precisely, let
{gn} be a sequence of smooth functions converging to g in Hr~xl2{T) and let
{u„} denote the corresponding sequence of solutions. Because of (2.2), {«„}
is a Cauchy sequence. Its limit, u £ Hr(Q), is defined to be the weak solution
of (1.1).

We want to estimate the effect of domain perturbation and data transfer on
our finite element approximation. We begin by defining a natural means of
transferring Dirichlet data on r to T/,. Denote the unit outward normal to
T//' by i/tfl and let xn(t) be the parametrization of T^' by arc length. This
induces the following parametrization on T(;) :
(2.3) Xn(t) = xh(t) + ôXh{l)v^,

where \SXhit)\ is the distance between x/,(r) and Y along v^ . We assume that
h is small enough that Xh(t) is well defined. Then define, for a given function
g on r,
(2.4) g(xh(t)) = g(Xh(t)),    xh(t)€Tf,
and note that g(x) = g(x) for x = x(;) or x = x(j+1). The inverse mapping
is also well defined. Indeed, there are constants c and C, independent of h ,
such that

(2.5) c\g\o,r<\g\o,rh<C\g\o,r.
In several places in the analysis in this paper we need to use a bounded

linear extension operator (cf. Lions and Magenes [20] and Grisvard [18]) E :
Hr(Q) h-* Hr(R2), with 0 < r < 2, satisfying Etp^ = <f> for cb £ /7r(fi) and

(2.6) H^llr.tf < CU\\r,a.
For an arbitrary function w £ Hr(Çl), with 0 < r < 2, we shall make the

convention that w has been extended to all of R2 by E and, with a slight
abuse of notation, we also call the extended function w .

We shall need some estimates for functions on the region between fi and
fi/,.

Let fij/' be a typical region bounded by T{J) and rj^ . Without loss of
generality we may assume that T^' has its left endpoint at the origin and is
given by rjj° = {(x, y)\y = 0, 0 < x < Cxh} and r<» = {(x, y)\y = Sx >
0, 0 < x < Cih} . Now ôx < C2h2 and \ô'x\ < C^h . It is easy to see, using the
divergence theorem that

(2.7) /    f2(\ + (ô'x)2rxl2ds- í    tp2dx = 2¡    9d-g-dxdy
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and

(2.8) /    <p2dxdy=¡   y<p2(\ + (ô'x)2)-x/2ds-2 [   ytp^-dxdy.
n ft

It follows from the Cauchy-Schwarz inequality that

(2.9)

(2.10)

and

(2.11)

\\<P\\2Q n<„ <C\h
'     h

2|„|2 ,1.40, TO ) + n
dtp

oa,<CU2H2     )+A<

0y

9<9
9j;

o.oi",

o,n«'

klo n/i ̂  c/*2
ôy
9y o,^»

if   ^ = 0   on   r1■U)

We can now prove some lemmas which will be used later.

Lemma 1. Suppose w £ Hr(Q) (extended by E) with r > 1 and yw = g
denotes the trace of w on T. Then there is a constant C, independent of h
and w , such that
(2.12) \w-g\o,rh  <CAr||to||,,o,     1 < r < 2.
Proof. We consider fi^ and apply (2.11) with y/ = w(x, y) - w(x, 0) to
obtain

(2.13) |u/-#|2     ,= f    W\2dx<C\V\2TU)<Ch2
dw
dy o,n¡"

Applying (2.9) to f-^ , we see that

\w -è\l^<c A4dw
dy + h6\\w\\2

o,ru) 2, nv-

Summing over j and using the trace inequality
2

(2.14) £lâWôx'lo,r<c:|Mlia
i=i

yields the lemma for r = 2. Similarly, summing over j in (2.13) proves the
lemma for r = 1, and the result follows by interpolation.   D

The next two lemmas follow immediately from (2.9) and (2.10), summing
over the appropriate indices j.

Lemma 2. Suppose that w £ //'(fi) (extended by E). Then there is a constant
C, independent of h and w , such that

(2.15) l|w|lu,(nAn)u(n\QA) < C(h2\w\2s + /i4M2,n).
Lemma 3. Suppose that w £ //'(fi/,). Then there is a constant C, independent
of h and w , such that

(2.16) \\w\\l,Qh\a<Cih2\<,rk + h4\™\],Qk)-
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6 J. H. BRAMBLE AND J. T. KING

For the purpose of defining and analyzing our finite element method we now
define certain spaces of piecewise polynomial functions on T and Th. Let
Sh(Th) consist of piecewise linear functions of t on Yn, continuous on Yn
and linear on each edge YÍ¿]. The space Sh(Y) is defined to be all functions of
the form

X(Xh(t)) = x(xh(t)),
where x € Sn(Tn). We define the orthogonal projectors Qh : L2(Fh) i-» Sn(rn)
and Qh : L2(Y) ►-» Sh(T) as follows:

(Qhg,X)h = (g,X)h   for all   x^Sh(Th)

and
(Qhg, X) = (g, X)   for all   XtSh(r).

Now Sn(T) is the space of continuous piecewise linear (with respect to the
parameter i) functions on Y. That is, cp £ S^T) if <p is continuous and on
each arc, T^ , is a polynomial of degree less than or equal to one in t. The
space S/,(r) satisfies the following approximation property. For q £ Hr(r)

(2.17) inf (\q-<p\o,r + h\q-<p\ur)<Chr\q\r,r,     l<r<2.
<?€Sh{r)

From (2.17) we get

(2.18) |(/-<2*)0|o,r=   inf   k-^|o,r<CA2|i|2,r.
<?esh(r)

We also have the trivial estimate

(2.19) \(I-Qh)Q\o,r<\Q\o,r-
It follows, by interpolation between (2.18) and (2.19), that

(2.20) \(I-Qh)Q\o,T<Chs\q\sS,        0 < s < 2.
It also follows from (2.17) that

(2.21) inf  (\q-<p\o,r + hx/2\q-<p\i/2,r)<Chr\q\r,r,     1 < r < 2.
f£Sh(V)

The inverse property

Mi,r<CA-1Mo,r,    <peSk(T),
is standard. It follows by interpolation that, for 0 < s < 1,

(2.22) W,,r<CA->|o,r,    <pzSh(T).
Finally, using (2.20), (2.21), and (2.22), we can easily show that

(2.23) |(/-âk)ff|i/2,r<CA'-1'2|fl|f,r,        \/2<s<2,

and, using the definition of H~X/2(F), that

(2.24) \(I-Qh)q\-M2,T<Chs+xl2\q\sS,        0 < 5 < 2.

The following perturbation estimate will be of importance in our analysis.
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Lemma 4. Let g £ L2(T). Then

\QhÉ-Qhg\o,rh <CA2|#|o,r,
where C is independent of h.
Proof. With t the arc length parameter on Yh and J(t) the Jacobian of the
piecewise smooth parametrization t h-> Xf,(t), we have, for <p on F,

tpds = j
Jt Jrh

<p~J dt.

Note that J(t) is smooth except at the nodes. Also, it is easy to see that if
tp £ Sn(r), then <p £ Sf,(rh), and if 4> £ Sh(Tn), then there is a function
X £ Sn(Y) such that <p = % • Now let X = Qhë ~ Qhg ■ Then, since x e Sh(T),

\Qhg-Qhg\lJh= Í (Qh~g-Qhg)xdt= [ gxdt- Í Qngxdt

(2.25) = I gxds- Í QhgXds+ [ (g- Qhg)x(l-J)dt

= I (g-&g)x(l-J)dt.
Jrh

Using (2.25) and the Cauchy-Schwarz inequality, we get

\Qhg-Qhg\l,rk ^c( max |i - J(t)\) \g-Qhg\o,Th\Qh~g-Qhg\o,vh,

where //, is the length of Th . It follows easily from the definition of Th that
max/e[0 ¡h] |1 - /(/)| < Ch2 . Hence we obtain

\Qhg - Qhg\o,Ti, < Ch2\g - ß/,g|o,r.-
Using (2.5), we have

\Qh~g - Qhg\o,rh < Ch2\g - ß/,£lo,r < Ch2\g\0¡r,
which is Lemma 4.   □

We will also need to introduce another boundary space for our analysis. Let
Sl(T) be the space of functions which are cubic polynomials with respect to
arc length on each F^ and which are continuously differentiable. Define the
orthogonal projector Qxh : L2(F) t-» S^ÇT) as follows:

(Qlhg,X) = (g,X)   for all   xeSxh(r).
It is well known that 5¿(T) is a subspace of H2(T) and that the following
inverse, approximation, and boundedness properties are satisfied. For 0 < s < 2
and <p£Sxh(r),

\<p\s,r<Ch-s\(p\0,r,        <P£Sxh(r),
\(I - 0¿)í|-i/2,r + A'/2|(/ - Qxh)q\o,r < Chs+xl2\q\sJ

and
\QU\s,T<C\q\sS.

These inequalities are easy generalizations of results in [9].
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8 j. h. bramble and j. t. king

3. The finite element method

We define the approximate boundary data on Yh by

gh = Qhë-

We assume the family of polygonal domains, {fi/,}, and corresponding fam-
ily of triangulations, {^}, satisfy the usual sort of quasiuniformity condition.
The only vertices on Yf¡ of a triangle xn £ ^ are vertices of Yn , and every
triangle rn £ ^ is affine equivalent to a reference triangle. Define the space
Vh to consist of continuous piecewise linear functions relative to the triangula-
tion !Th. The boundary space Vh(Th) denotes the restriction of Vh to Yn and
coincides with Sh(Yh).

The Approximate Problem. The approximate solution wA € //'(fi) of (1.1)
is defined as follows: In fiA let un £ Vh be the solution of

(3.1) ah(uh,(p) = (f,(p)h,        <f>eVh0,     and    uh = gh on Yh,

where Vh° = VnnH0x(ilh) and /=0 outside fi. Further define «/, in fi\fi/,
as follows: In fi^ (jL fiA with tJ¡" the triangle in fiA having Y^ as one of its
sides, un is the linear extension from t¿   to Q.hJ'.

Note that this definition of uh outside the region fiA is the most natural one
and Uh is thus defined in all of fi.

As a consequence of the quasiuniformity assumptions, the space Vh has the
following simultaneous approximation property. For w £ Hr(Qh), 1 < r < 2,
there is a function wn £ Vn such that

(3.2) \\w - wn\\o,aii + h\\w - wh\\i Mh < CAr||u/||r;i2y, ,

where C is independent of h and w . This property can be established using
a trianglewise argument that is given in Bramble and Xu [9].

The following result will be needed in our analysis.

Lemma 5. Let w £ //2(fi) and <f>h £ Vh. Then

inf {\\w-<ph-x\\o,cih+h\\w-4>h-xh,ah} < C(/z2||u/||2;£i/i+A1/2|u;-^/,|o,rJ-
x€Vo

Proof. Let wn £ Vh satisfy (3.2).  Choose x £ ^/¡° equal to wh - </>/, at the
interior nodes of fi/,. Then, a straightforward calculation yields

i 1/2

IK - h - X\\o,ah + h\\w„ -4>h-Xh,ah<Ch\Y K(*0)) - MxU))\2

<Chxl2\wh-<ph\0,rh.

The last inequality follows since w^ - 4>n £ Sf,(Yf,) and on Sn(Yf,) the norms
on the right above are equivalent. Thus, using the triangle inequality, we have

inf {||u; - cbh - x\\o,nh + h\\w - cbh - x\\i,ah}
(3.3) *ev?

< \\w - wh\\0,çih + h\\w - wh\\itçih + Chx/2\wh - (t>h\o,rh
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A FINITE ELEMENT METHOD FOR NONHOMOGENEOUS DIRICHLET PROBLEMS 9

Moreover (see Dupont [14]), for v £ //'(fiA), the following estimate holds

Mo.r»  <CNIo,nJMIi,£V
where C is independent of h . Consequently, taking v = w - wh , we get

A'/2|u; - wn\ojh  < C(\\w - wh\\0Mh + h\\w - wh\\i >nJ.
Hence, using (3.3), the triangle inequality and this inequality, we obtain

inf' {||iu - 4>h - x\\o,ah + h\\w -tf>h- ^||i ,nj
xev°

< \\w - WhWo,^ + h\\w - wh\\i^h + Chx/2\w - 4>n\o,rh-
The lemma now follows from this and (3.2).   D

We will need to know that functions in H0X (fi) can be approximated well by
functions in Vh°. This is provided in the following lemma.

Lemma 6. Let w £ //2(fi) n//0'(fi) (extended by E). Then

infill«; - x\\o,ah + A||«; - xWi.a,} < CA2|M|2,íí.xev°
Proof. Take </>/, = 0 and w 6 //0'(fi) in Lemma 5. Then

infn{||io - x\\o,cih + h\\w - xh,ah} < C(h2\\w\\2ia + /i1/2|w|0,rj-
X€V°

It follows from Lemma 1 that

Mo,rA < CA2|M|2i£2.
Combining the last two inequalities proves Lemma 6.   D

Our goal is to prove Theorem 1 with u^ defined by (3.1). To this end, we
will consider separately the cases / = 0 and g - 0, and let M/,0 be defined
analogously to un in (3.1) but with gh = 0. Define uq to be the solution of

Auo = f in £1,     «o = 0 on T.
We now prove the following.

Proposition 1. There exists a constant C, independent of h, such that

(3.4) \\uo-uh^\ltah<Ch2-\\f\\Q^,     / = 0,1.
Proof. Without loss, because of ellipticity, we may take the seminorm to be
|.|U=*a(-,-). Forjen,
(3.5) |"o-ma,oIÎ,q, =ah(uo-uht0, u0 - x) + ah(u0 - «/,,0, X ~ "a,o)-

Now, since z-U/,,0 £ Vh°,

ah(uo - uh,0,X - «a.o) = (^"o, X - «a.o)a -(/»*- uh,o)h

= I      Auoix~uh^)dx
JClh\Cl

< C||Mo||2,n||z - uh,olio,ah\a-
By (2.2) and Lemma 3,

flAÍKo-MA.O.Z-WA.o) < CA2||/ï|o,nlX - M/,,o|l ,ilh-
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10 J. H. BRAMBLE AND J. T. KING

This inequality, together with (3.5) and the Cauchy-Schwarz inequality, yield
for any x G vn0

|«o-"A,oli,n* < C(l"o-*li,n* + A2||/||o,n).
Using Lemma 6 and (2.2), we obtain

(3.6) l"o-"A,oli,n» <CA||/||o,n.
We next estimate ||un - «/,,ollo,nA by using a duality argument. To this end,

let (p £ Cfi°(Qh) and define w e //2(fi) n //0'(fi) to be the solution of
(3.7) Aw = tp in fi,    w = 0 on Y
and extended by E. Then for ^e FÄ°

("o- "a,o, <P)h = (uo-uh¡0,Aw)h + (uo-uht0, <p-Aw)h
(3.8) = ah(uo - uhtQ,w-x) + ah(uo - w/,,0, x)

-(uo,dw/duh)h + (uo-uh!o, (p-Aw)n,

where dw/dv^ is the outward conormal derivative defined almost everywhere
on Yf,. Now we have

ah(m - ma.o. w -X) + ah(uo - w/,,0, x)
< |«o - «A.oli,n*l«> ~ *li,n* + iAuo - f> X)h
< |«o- «A.oli.njw -*Ii,q» + C||/||o,oll^llo,n4\n
<(l«o-w/,,oli,iiÄ + ^2ll/llo,n)|^-^li,i2, + CÄ2||/||0jn||u;||i>i2,

where the last inequality follows by the triangle inequality and Lemma 3. Using
Lemma 6 (with % taken to be the minimizing function) and (2.2), we get

a*("o -uhi0,w-x) + ahiu0 -uh>0, X)

< C(h\u0- u„, oli, nh+h2\\fh, o)||^||o.n*-
We also have, using Lemma 1 and (2.2),

(u0,dw/dvh)h < |Molo,r*|öu7/oi/A|o,r»

(3.10) < CA2||Mo||2,nlMl2,n
< CA2||/||0>n||ç»||o,nr

Here we used the inequality (see Lemma 8 of [5])

(3.11) |ö«;/ai/A|o,rA < C||«;||2,n,
with C independent of h . This inequality is also easily derived using (2.7),
(2.8), and (2.14). Finally, using the definition of w and the Cauchy-Schwarz
inequality, we obtain

("o - «a,o» <P - Aw)h < C\\uo - MMllo,n»\n(l|ti>ll2,Rî + IMknJ-
By Lemma 3,

(«o - «a,o» <P - Aw)h < C(A|«o|o,r* + A2|«o - "A,oli,nJII?»llo,n»-
Thus, by Lemma 1 and (2.2),

(3.12) (ko-ka,o, 9~¿w)h <C(A3||/||o,n + /22|Mo-"A,oli,oJIIC'llo,nA-
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Combining (3.8), (3.9), (3.10), and (3.12), we have

(mo-«a,o> 9)h
\\<P\\0,Sïh

Thus, using (3.6), we have

<C(A|m0-«a,oIi,o» +A2||/||o,£j).

IN,        „       II o„„       iU°~ Uh,0, <P)h  ^ rulwfUIN-M/i.ollo.n* =     »up    -¡j-ip-< Chl\\f\\o,a.

This proves Proposition 1.   D

We now consider the case / = 0. We handle this case by an indirect analysis
where we introduce another finite element approximation, t//,. Specifically, let
vh be defined as in (3.1) but with / = 0 and vh = Qhg on Yn . We further
define uh and uh to be the ^-harmonic functions satisfying

ûh = Qhg,    uh = Q\g,    on   T.

Then, since Q\g £ H3'2(Y), it follows from (2.2) that uh £ //2(fi). This, as
we will see, is the reason for introducing Shx(Y) c H2(Y). We prove that t//, is
an optimal approximation to u - Uo ■ First we need the following estimate.

Proposition 2. There exists a constant C, independent of h, such that

(3.13) ||û* - vjfcllo.Q, < CA^-^I^U.r,       0<s<3/2,
and

(3.14) ||Ä*-«A||,I<il<CAr--1'2|*|r,r,        l/2<r<3/2,

where we recall that, by convention, uh is defined in fi/, by Euh .
Proof. The analysis in what follows is similar to that of Proposition 1, however
the differences are significant. We first note that it suffices to prove (3.14) with
ûh replaced by uh since, by (2.6), (2.2), and properties of Qxh and Q/,,

\\Ûh - Uh\\uíih < \\E(ûh - Uh)\\i,R2 < C\\ûh - Uh\\iM < h"Xl2\g\rj

for 1/2 < r < 3/2. We first consider the seminorm. Then, for /e^0,

(3.15) \uk~vh\2l>aii =ah(uh-vh, uh-vh-x) + ah(uh-vh,x).

Now, since x € Vjf ,

ah(uh-vh,x) = (Auh,x)h= í     ^^^<C||MA||2,n||^||o,£iA£i-
jQh\a

By (2.2) and Lemma 3,

ak(uh-vh,x)<Ch2\QJ,g\y2,r\x\i,ah
< CA2|ô^|3/2,r(l"A -Vh- xUa + \uh - vhU,nh).

This inequality, together with (3.15) and the Cauchy-Schwarz inequality, yield
for any x 6 ^°

\uh -vh\it0t< C(\uh -vh-x\i,ah + h2\Qxhg\y2,r).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 J. H. BRAMBLE AND J. T. KING

Using Lemma 5 and (2.2), we obtain

\uh - vh\i ,nA < C(h\Qxhg\y2,r + h~xl2\uh - i>A|0>rJ-

But, from the definitions of uh and i>/,,

\uh - vh\o,vk < \uh - Qxhg\o,Th + \Qxhg - Qhg\o,rh-
Using Lemma 1, (2.2), and (2.5), we conclude that

(3.16) \uh -vh\uilh< C(h\Qxhg\V2,r + h-xl2\Q\g - Qhg\o,r).

From the properties of Q\ and Ôa we obtain

\ü" - üaIi.q» < Chr-xl2\g\r,T,        1/2 < r < 3/2.
This proves (3.14) for the seminorm.

We next estimate \\uh - i>/,||o,o,, by using a duality argument. This time, we
estimate ûh - vh directly, but, even so, uh plays a role in the analysis. To this
end, let tp £ C0°°(fi/,) and define w £ //2(fi) n //0'(fi) as in (3.7). Then for

(ûh - vh , tp)h = (ûh - vh , Aw)h + (ûh - vh, <p - Aw)h

(3.17) = ah(ùh -vh,w-x) + ah(ûh -vh,x)
- (uh - vh, dw/dvh)h + (ûh - vh , (p - Aw)h.

Now
(3.18)

ah(ûh -vh,w-x) + ah(ûh -vh,x)

< \uh - vh\i tçih\w - x\i,ü„ + (Auh , X)h + ah(ûh -uh,x)

< \uh - vn\itiih\w - x\i ,ij, + C||K*||2,nll*llo,n»\n + ah(ûh - uh , x)

<(l"A-VAli,QA + CA2|ßA1g|3/2,r)l^-Xli,nA
+ CA2|ô^|3/2,rlNlli ,íi + ah(uh - uh , /).

In order to estimate the last term in (3.18), recalling that w £ //0'(fi), let w
denote w extended by zero outside of fi. Similarly, extend x by zero outside
fi/,. We then write
(3.19) ah(ûh -uh,x) = ah(uh - uh , x - w) + ah(ûh - uh , w).

Then, since uh - uh is ^-harmonic, a(uh - uh , w) = 0 and hence

ah(ûh -uh,w)< C\E(ûh - w'')li>R2|tD|1,n\£i/i.

Now from the definitions of w and w
ah(uh -uh,x-w)< C\E(uh - M*)|,iR2|tD - x\\ ,ounA

< C\E(uh - uh)\i^2(\w-x\\,ah + |w|i,(nAO)u(n\n»))-
Combining the last two inequalities with (3.19), we conclude that

ah(ûh -uh,x)< C\\ûh - uh\\\,çi(\w - x\i,çih + |tü|i,(nA\0)u(n\n»)).

Using Lemma 2, (2.2), and (2.14), we have

(3.20) ah(ûh -uh,x)< C\Qhg - Qxhg\u2J(\w -x\\,a„ + A|M|2)n).
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Combining (3.18) and (3.20) gives
«a("A -vn,w-x) + ah(uh -vh,x)

< i\uh - üA|i,nt + Ch2\Qxhg\3/2,r + \Qhg - Qlhg\i/2,r)\w - x\i,a„

+ Cih2\Qxhg\V2,r + h\Qng - 0¿g|„2,r)IMl2,n.
Taking x to be the minimizing function in Lemma 6 and using (2.2), we have

(3 2n     ahiûh-vn,w-x) + ah(ûh-vh,x)
< mh -vh\ltak + Ch2\Qxhg\3/2,r + h\Qhg - ßJs|i/2,r)lkllo,n.

We also have, using Lemma 1 (twice), (3.11) and (2.2),

(Û* - vh , dw/dvh)h < \uh - vh\0jh\dw/dvh\0yTh

<C\ûh -YÛh\o,rh\\w\\2,si

(3.22) < C(\(ûh - uh) - y(ß*^«*)|0lr» + I"* - Ä,rJNIo,n
<C(A||ûA-«*||1(n-rA2||M*||2>a)|p||0>Q

< C(A|ß*S - Qlg\n2,r + A2|o¿g|3/2,r)llc»llo,n.
Finally, we estimate the last term in (3.17). Since Aw = <p in fi,

(ûh - vh, (p - Aw)h < C\\ûh - vh\\otQk\a\\ip\\o,a.
Analogously to (3.22), it follows that

(3.23) (uh - vh , <p - Aw)h < C(h\Qhg - Q¿*li/2,r + Ä2|ß^b/2,r)l|c'llo,fi.
Combining (3.17), (3.21), (3.22), and (3.23), we conclude that

M-A           il                                   (Ûh-Vh,<p)h
\\U *-Va||o,Q* =       SUP      -¡r-jj-

< C(A|(2a^ - Qlg\i/2,T + h2\Qxhg\V2,r)
<Chr+x/2\g\r,r,       0<r<3/2.

This completes the proof of Proposition 2.    D

We next prove the following

Proposition 3. Let Uh be the A-harmonic function equal to g on Y.   Then
there exists a constant C, independent of h, such that

\\uH - vh\\o,ah < Chs+xl2\g\sJ,       0 < s < 3/2,
and

||"/r-t>Alli,n, <CA,-,/2|*|i,r,        l/2<5<3/2,
where we recall that uH is extended to fi/, by Euh ■
Proof. It is clear from Proposition 2 that we only need to estimate \\uH-ûh\\itah
for i = 0 and 1. But, from (2.2), we have

\\UH - Uh\\0,ilh < C\\E(U„ - i}A)||o,R2 < C||wH - MA||o,£i

< Qg - Qhg\-i/2,r < Chs+X'2\g\s,r,       0<s<3/2,
with the analogous inequality when / = 1 . This, together with Proposition 2,
proves Proposition 3.   D

We now can prove an estimate for u - un.
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Proposition 4. There exists a constant C, independent of h, such that

II« - «Allo.n» < C(A2||/||o,n + Ai+1/2|skr),        0 < s < 3/2,
and

\\u - «fclh.Q, < C(A||/||o,n + A*-I/2|iU.r).        I/2 < s < 3A
Proo/. Set «a,h = "a - "a,o • Because of Proposition 1, it remains to estimate
Uh -Uh,H ■ For / = 0   or   1,

(3.24) \\UH-UhtH\\i,ak < \\UH-Vkh,Qh + Ph-*k,Hh,Qh'
By Lemma 2.7 of Dupont [14] we have , for some constant C, independent of
h,
(3.25) ||ua - MA./rlli.n* < C(\vh - uh<H\uslh + \vh - uhtH\o,rh).
Since vn- UhH is discrete ^-harmonic, it follows that

\Vh-Uh,H\i,nh < \Vh-Uh,H-X\i,a„

for any x € Vh° . Applying Lemma 5 with <ph = un- Vf¡ and w = 0 shows that

(3.26) \vh-uh<H\Kah < inf\vh-uh,H-x\\,nh<Ch-xl2\vh-uh,H\o,Th.
xev?

Thus, using (3.25) and (3.26), we get

(3.27) l|fA-"A,fflli,n» < Ch-l/2\vh-uh>H\o,rh-

By the definition of uhH and vh , we have unH-vh = Qng-Qhg on Yn.

Also, QhQhg = Qhg = QhQhg ■ Hence, setting G = g- Qhg and using Lemma
4, we obtain

(3.28) \uhtH - UaIo.i» = \QhG - Ûh~G\o,rh < Ch2\G\0,r = Ch2\(I - Qh)g\o,r-
Combining (3.27), (3.28), and (2.20), we see that

(3.29) K-"A,//lli,QA<C/ii+3/2|^,r   for   0 < 5 < 3/2.
This estimate, (3.24) and Proposition 3 together prove Proposition 4.   D

We now prove Theorem 1. For í = 0   or   1,

(3.30) ||m - uh\\i>Q < \\u - uh\\iiQh + \\u - «All/,n\n»-
Because of Proposition 4, it is sufficient to estimate ||w - MAlli,n\n* • To do this,
we set wh = uo + uh and note that wh £ //2(fi). Recall that, according to our
convention, wh also denotes the extension by E to R2 . Now

(3.31) ||w - MAlli,û\nt < II" - w*||/,n + \\wh - «All,,n\nr
Since A(u - wh) = 0, we have from (2.2) and the properties of Q\ ,

(3.32) |«-tö*|i,o<CÄ'-I%|J,r,        l/2<5<3/2
and

(3.33) \\u-wh\\vM<Chs+xl2\g\sS,        0<5<3/2.
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Therefore, it remains to estimate \\wh -Uf,\\i,a\ah, and we do this as follows.
Apply (2.10) to the derivatives of wh -uh and note that u„ is linear on fi¿  ,
so that its second derivatives vanish there. Then it follows that

(3.34) \wh -uh\] qU) < C \h2Y\d/dXi(wh-uh)\l pü) +h4\\wh\\22 au) ■
' h \    ¡=i ' * ' * /

It is easy to show from the divergence theorem that

(3.35) hMl^KCmil^+hM]^).
Applying (3.35) to the derivatives of wh - «/, in (3.34), we obtain

\wh - uh\]   {J) < C(h\wh - uh\2  „, + h3\\wh\\2 Qü)   U)).

Summing over the appropriate indices j, we have

(3.36) \wh - uh\x<a\ah < C(hx'2\wh - uh\i^h +h^2\\wh\\2tS1).

Similarly, apply (2.10) to wh -un, use (3.35) with v = wh -Uh and sum over
the appropriate indices j to obtain

(3.37) \\wh - MAllo,n\n* < C(hx'2\\wh - uh\\0^h + h^2\wh - «aIi.OuoJ-
Combining (3.37) and (3.36), we have

(3.38) ||ur*-«/,llo,n\nA < C(AI/2||ti/*-MA||0)o»+A3/2|M;A-MA|1(fit+A3||«;A||2>n).
Consequently, applying the triangle inequality in (3.36) and using Proposition
4 and (3.32) , we conclude that

\wh - «ili.ovo, < CÄ'/2(A||/||0>o + V-l/2\g\s,r).        1/2 < s < 3/2.

We also used here (2.2) and the properties of Q\ . Using (3.31), (3.32) and this
inequality gives

(3.39) |«-«*|i,o^<C(A||/||0,o + A*-I/2likr).        l/2<*<3/2.
In order to estimate \\wh - «/,||o,n\o.A, we use (3.38). From Proposition 4 and
(3.33) we see that

(3.40) hx'2\\wh - uh\\o,ail < CA'/2(A2||/||0,ri + /ii+1/2|^|s,r),        0 < s < 3/2.

By using (2.2) and the properties of Q\ , we have

(3.41) A3||w*||2>n<CA(A2||/||o)n + Aí+1/2|^,r),       0<i<3/2.
In order to estimate the second term on the right of (3.38), we write wh -Uh =
("o - "a,o) + ("A - ^a) + (Vh - "a,//) • Applying Proposition 1 to (u0 - uh<0) >
(3.16) to (uh - vn), and (3.29) to (vh - uhtH), we conclude that

(3.42) tfl2\wh - «*|, >Q| < CA'/2(A2||/||o,o + hs+x'2\g\sJ),       0<s< 3/2.

Hence, combining (3.40), (3.41) and (3.42), we get

(3.43) \\wh - KaIIo.íAO, < CA'/2(A2||/||0,Q + Aí+1/2|¿f|í>r),        0 < s < 3/2.
Using (3.31), (3.33) and (3.43) gives
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16 J. H. BRAMBLE AND J. T. KING

(3.44)        ||M-MAllo,n\oA<C(A2||/||o,íí + /zí+1/2|g|í,r),        0 < s < 3/2.

Theorem 1 now follows from (3.44), (3.39) and Proposition 4.   D

Remark. There is no difficulty extending all of the above to the case in which
the boundary is piecewise smooth, provided that there are a finite number of
corner points with interior angles less than or equal to n. In such a case we
require that the corner points be contained in the set of points {x^'}. The
requisite regularity results may be found in [13].

Remark. The system of linear equations which arises from our approximate
method is not adversely affected by the inhomogeneous boundary data. This
simply changes the right-hand side in the matrix equation. In order to apply
multigrid techniques, we can develop a set of nested spaces as is done in [6].
One starts with a coarse grid of the type described here and successively re-
fines the mesh, using a halving strategy. New triangles are introduced near the
boundary by halving the boundary arcs with respect to the parameter t. This
process is continued until a sufficiently fine mesh is reached. The space Vn is
then defined relative to the fine mesh. The set of nested subspaces, for the
purpose of defining an efficient multigrid algorithm, is defined as in [6] by tak-
ing subspaces of the succesively coarser spaces with elements that vanish on all
triangles having vertices on the boundary. The resulting multigrid algorithm is
uniformly convergent, independent of the mesh parameter h .   D

We note that our method has the following features: It ( 1 ) is relatively simple
to implement, (2) is robust in the regularity of the boundary data, (3) provides
an optimal-order approximate solution on all of fi, and (4) the resulting ap-
proximate solution is computable using fast multigrid techniques.
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