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A robust Gaussian approximate fixed-interval

smoother for nonlinear systems with heavy-tailed

process and measurement noises
Yulong Huang, Yonggang Zhang, Member, IEEE, Ning Li, Jonathon Chambers, Fellow, IEEE

Abstract—In this letter, a robust Gaussian approximate fixed-
interval smoother for nonlinear systems with heavy-tailed process
and measurement noises is proposed. The process and measure-
ment noises are modelled as stationary Student’s t distributions
and the state trajectory and noise parameters are inferred
approximately based on the variational Bayesian approach.
Simulation results show the efficiency and superiority of the
proposed smoother as compared with existing smoothers.

Index Terms—Gaussian approximate smoother, Student’s t
distribution, variational Bayesian, heavy-tailed noise

I. INTRODUCTION

THE standard Gaussian approximate (GA) fixed-interval

smoothers introduced in [1]–[3] are sensitive to heavy-

tailed measurement noises induced by measurement outliers

from unreliable sensors [4]. To solve the state estimation

problem with heavy-tailed measurement noises, many robust

state estimators have therefore been derived [4]–[10]. How-

ever, these robust estimators may show poor performance for

heavy-tailed process noise [11].

To solve the filtering problem of linear systems with heavy-

tailed process and measurement noises, Roth et al. proposed

a robust Student’s t filter by approximating the posterior

probability density function (PDF) as Student’s t [11]. How-

ever, this filter requires the growth of the degree of freedom

(dof) parameters to be prevented and thereby maintain the

assumption that the estimated state and process/measurement

noise are jointly Student’s t with a common dof parameter

in the filter recursion [12]. An adaptive smoother based on a

variational Bayesian (VB) approach for a linear state space

model with Gaussian noises and unknown noise covariances

was proposed in [13], [14], but it is sensitive to heavy-tailed

process and measurement noises, as will be confirmed in

Section IV. An approach to estimate the unknown parameters

of a Student’s t distribution for an autoregressive model was

proposed in [15], however, this approach is not suitable for

the state space model in this work.
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In this letter, a robust GA fixed-interval smoother for a

nonlinear state space model with heavy-tailed process and

measurement noises is proposed, where the process and

measurement noises are modelled as stationary Student’s t

distributions and the state and noise parameters are inferred

approximately by using a VB approach. Simulation results

show the proposed smoother outperforms existing smoothers

for heavy-tailed process and measurement noises.

II. PROBLEM FORMULATION

Consider the following discrete-time nonlinear system
{

xk = fk−1(xk−1) +wk−1

zk = hk(xk) + vk
(1)

where k is the discrete time index, fk−1(·) and hk(·) are

known process and measurement functions, x0:T , {xk ∈
R

n|0 ≤ k ≤ T} is the set of state vectors, and z1:T , {zk ∈
R

m|1 ≤ k ≤ T} is the set of measurement vectors. The sets

{wk ∈ R
n|0 ≤ k ≤ T − 1} and {vk ∈ R

m|1 ≤ k ≤ T}
contain respectively heavy-tailed process and measurement

noise vectors, and they are modelled as stationary Student’s t

distributions as follows














p(wk) = St(wk;0,Q, ω)

=
∫ +∞

0
N(wk;0,Q/ξk)G(ξk;

ω
2 ,

ω
2 )dξk

p(vk) = St(vk;0,R, ν)

=
∫ +∞

0
N(vk;0,R/λk)G(λk;

ν
2 ,

ν
2 )dλk

(2)

where St(wk;0,Q, ω) and St(vk;0,R, ν) denote the Studen-

t’s t PDFs of wk and vk with mean vector 0, scale matrices

Q and R, and dof parameters ω and ν respectively, and

N(·;µ,Σ) denotes the Gaussian PDF with mean vector µ and

covariance matrix Σ, and G(·;α, β) denotes the Gamma PDF

with shape parameter α and rate parameter β, and ξk and λk
are auxiliary random variables. The initial state vector x0, wk

and vk are assumed to be mutually independent, and the initial

joint PDF p(x0,Q, ω,R, ν) is given as follows,

p(x0,Q, ω,R, ν) = N(x0; x̂0|0,P0|0)IW(Q; t0,T0)×

G(ω; c0, d0)IW(R;u0,U0)G(ν; a0, b0) (3)

where IW(·; l0,L0) denotes the inverse Wishart PDF with dof

parameter l0 and inverse scale matrix L0, and x̂0|0 and P0|0

denote respectively the initial state estimation and correspond-

ing estimation error covariance matrix, and t0, T0, c0, d0,

u0, U0, a0 and b0 denote respectively the prior distribution

parameters of Q, ω,R and ν.
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III. ROBUST GA FIXED-INTERVAL SMOOTHER

To estimate the state trajectory x0:T of a system formulated

as in (1)-(2), we need to compute the joint posterior PDF

p(x0:T ,Q, ξ0:T−1, ω, R, λ1:T , ν|z1:T ), where ξ0:T−1 , {ξk ∈
R|0 ≤ k ≤ T − 1} and λ1:T , {λk ∈ R|1 ≤ k ≤ T}. For a

general nonlinear system, there is not an analytical solution for

this posterior PDF. Thus, to obtain an approximate solution,

the VB approach [16] is used to look for a free form factored

approximate PDF for p(x0:T ,Q, ξ0:T−1, ω,R, λ1:T , ν|z1:T ),
i.e.

p(x0:T ,Q, ξ0:T−1, ω,R, λ1:T , ν|z1:T ) ≈ q(x0:T )q(Q)×

q(ξ0:T−1)q(ω)q(R)q(λ1:T )q(ν) (4)

where q(·) is the approximate posterior PDF. Accord-

ing to the VB approach, these approximate posteri-

or PDFs can be obtained by minimizing the Kullback-

Leibler divergence between the approximate posterior PDF

q(x0:T )q(Q)q(ξ0:T−1)q(ω)q(R)q(λ1:T )q(ν) and the true pos-

terior PDF p(x0:T ,Q, ξ0:T−1, ω,R, λ1:T , ν|z1:T ) [17], [18],

and the optimal solution satisfies the following equations

log q(φ) = EΘ(φ) [log p(Θ, z1:T )] + cφ (5)

Θ , {x0:T ,Q, ξ0:T−1, ω,R, λ1:T , ν} (6)

where φ is an arbitrary element of Θ, and Θ(φ) is the set

of all elements in Θ except for φ, and E[·] denotes the

expectation operation, and cφ denotes the constant with respect

to variable φ. Since the variational parameters of q(x0:T ),
q(Q), q(ξ0:T−1), q(ω), q(R), q(λ1:T ) and q(ν) are coupled,

we need to utilize fixed-point iterations to solve equation (5),

where only one factor in (4) is updated while keeping other

factors fixed [17].

A. Computations of approximate posterior PDFs

Using the conditional independence properties of the model

(1)-(3), the joint PDF p(Θ, z1:T ) can be factored as

p(Θ, z1:T ) = N(x0; x̂0|0,P0|0)IW(Q; t0,T0)G(ω; c0, d0)

IW(R;u0,U0)G(ν; a0, b0)
T
∏

k=1

[N(xk; fk−1(xk−1),Q/ξk−1)

×N(zk;hk(xk),R/λk)G(ξk−1;
ω

2
,
ω

2
)G(λk;

ν

2
,
ν

2
)] (7)

Let φ = x0:T and using (7) in (5), we can obtain

log q(i+1)(x0:T ) = logN(x0; x̂0|0,P0|0)− 0.5
T
∑

k=1

{[xk − fk−1(xk−1)]
TE(i)[Q−1]E(i)[ξk−1][xk − fk−1(xk−1)]

+[zk − hk(xk)]
TE(i)[R−1]E(i)[λk][zk − hk(xk)]}+ cx (8)

where (·)T denotes the transpose operation, and q(i+1)(·) is

the approximation of PDF q(·) at the i + 1th iteration, and

E(i)[ρ] is the expectation of variable ρ at the ith iteration.

Define the modified noise covariance matrices Q̃
(i)
k−1 and R̃

(i)
k

as follows

Q̃
(i)
k−1 =

{E(i)[Q−1]}−1

E(i)[ξk−1]
R̃

(i)
k =

{E(i)[R−1]}−1

E(i)[λk]
(9)

Algorithm 1: Standard GA fixed-interval smoother with modified
transition and likelihood PDFs [2]

Inputs: z1:T , x̂0|0, P0|0, Q̃
(i)
k−1, R̃

(i)
k

Initialization: x̂
(i+1)
0|0

← x̂0|0, P
(i+1)
0|0

← P0|0

Forward pass:
for k = 1 : T
x̂
(i+1)
k|k−1

=
∫
fk−1(xk−1)N(xk−1; x̂

(i+1)
k−1|k−1

,P
(i+1)
k−1|k−1

)dxk−1

P
(i+1)
k|k−1

=
∫
fk−1(xk−1)f

T
k−1(xk−1)N(xk−1; x̂

(i+1)
k−1|k−1

,P
(i+1)
k−1|k−1

)

dxk−1 − x̂
(i+1)
k|k−1

(x̂
(i+1)
k|k−1

)T + Q̃
(i)
k−1

P
(i+1)
k−1,k|k−1

=
∫
xk−1f

T
k−1(xk−1)N(xk−1; x̂

(i+1)
k−1|k−1

,P
(i+1)
k−1|k−1

)

dxk−1 − x̂
(i+1)
k−1|k−1

(x̂
(i+1)
k|k−1

)T

ẑ
(i+1)
k|k−1

=
∫
hk(xk)N(xk; x̂

(i+1)
k|k−1

,P
(i+1)
k|k−1

)dxk

P
(i+1)
zz,k|k−1

=
∫
hk(xk)h

T
k
(xk)N(xk; x̂

(i+1)
k|k−1

,P
(i+1)
k|k−1

)dxk−

ẑ
(i+1)
k|k−1

(ẑ
(i+1)
k|k−1

)T + R̃
(i)
k

P
(i+1)
xz,k|k−1

=
∫
xkh

T
k
(xk)N(xk; x̂

(i+1)
k|k−1

,P
(i+1)
k|k−1

)dxk−

x̂
(i+1)
k|k−1

(ẑ
(i+1)
k|k−1

)T

x̂
(i+1)
k|k

= x̂
(i+1)
k|k−1

+P
(i+1)
xz,k|k−1

[P
(i+1)
zz,k|k−1

]−1[zk − ẑ
(i+1)
k|k−1

]

P
(i+1)
k|k

= P
(i+1)
k|k−1

−P
(i+1)
xz,k|k−1

(P
(i+1)
zz,k|k−1

)−1(P
(i+1)
xz,k|k−1

)T

end for
Backward pass:
for k = T : 1
G

(i+1)
k−1 = P

(i+1)
k−1,k|k−1

[P
(i+1)
k|k−1

]−1

x̂
(i+1)
k−1|T

= x̂
(i+1)
k−1|k−1

+G
(i+1)
k−1 [x̂

(i+1)
k|T

− x̂
(i+1)
k|k−1

]

P
(i+1)
k−1|T

= P
(i+1)
k−1|k−1

+G
(i+1)
k−1 [P

(i+1)
k|T

−P
(i+1)
k|k−1

](G
(i+1)
k−1 )T

end for
Outputs: {x̂

(i+1)
k|T

,P
(i+1)
k|T

|0 ≤ k ≤ T}

Exploiting (8)-(9), q(i+1)(x0:T ) can be computed as

q(i+1)(x0:T ) ∝ N(x0; x̂0|0,P0|0)×
T
∏

k=1

[N(xk; fk−1(xk−1), Q̃
(i)
k−1)N(zk;hk(xk), R̃

(i)
k )] (10)

It can be seen from (10) that q(i+1)(x0:T ) has the same form as

the posterior PDF of the state in a standard nonlinear system

with modified transition PDF N(xk; fk−1(xk−1), Q̃
(i)
k−1) and

likelihood PDF N(zk;hk(xk), R̃
(i)
k ). Thus, q(i+1)(x0:T ) can

be approximated as a Gaussian PDF by using the standard GA

smoother [2]. The details of the standard GA fixed-interval

smoother with modified transition and likelihood PDFs are

summarized in Algorithm 1 [2].

Let φ = ξ0:T−1 and using (7) in (5), we have

log q(i+1)(ξ0:T−1) =
T
∑

k=1

{(
n+ E(i)[ω]

2
− 1) log ξk−1 −

0.5[E(i)[ω] + tr(D
(i+1)
k E(i)[Q−1])]ξk−1}+ cξ (11)

where tr(·) denotes the trace operation and D
(i+1)
k is given

by

D
(i+1)
k = E(i+1){[xk − fk−1(xk−1)][xk − fk−1(xk−1)]

T}
(12)

Employing (11), q(i+1)(ξk−1) can be updated as

q(i+1)(ξk−1) = G(ξk−1; η
(i+1)
k−1 , θ

(i+1)
k−1 ) (13)

where η
(i+1)
k−1 and θ

(i+1)
k−1 are given by

{

η
(i+1)
k−1 = 0.5(n+ E(i)[ω])

θ
(i+1)
k−1 = 0.5{E(i)[ω] + tr(D

(i+1)
k E(i)[Q−1])}

(14)
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Let φ = Q and using (7) in (5), log q(i+1)(Q) obeys

log q(i+1)(Q) = −0.5(t0 + T + n+ 1) log |Q| − 0.5tr[(T0

+
T
∑

k=1

E(i+1)[ξk−1]D
(i+1)
k )Q−1] + cQ (15)

Using (15), q(i+1)(Q) can be updated as

q(i+1)(Q) = IW(Q; t̂(i+1), T̂(i+1)) (16)

where t̂(i+1) and T̂(i+1) are given by

t̂(i+1) = t0 + T T̂(i+1) = T0 +
T
∑

k=1

E(i+1)[ξk−1]D
(i+1)
k

(17)

Let φ = ω and using (7) in (5), log q(i+1)(ω) is updated as

log q(i+1)(ω) = (c0 − 1) logω − d0ω +
T
∑

k=1

{0.5ω log(0.5ω)

− log Γ(0.5ω) + (0.5ω − 1)E(i+1)[log ξk−1]−

0.5ωE(i+1)[ξk−1]}+ cω (18)

where Γ(·) is the Gamma function. Using Stirling’s approxi-

mation: log Γ(0.5ω) ≈ (0.5ω − 0.5) log(0.5ω)− 0.5ω in (18)

[7], [15], log q(i+1)(ω) obeys

log q(i+1)(ω) = (c0 + 0.5T − 1) logω − {d0 − 0.5T −

0.5
T
∑

k=1

(E(i+1)[log ξk−1]− E(i+1)[ξk−1])}ω (19)

According to (19), q(i+1)(ω) can be updated as

q(i+1)(ω) = G(ω; ĉ(i+1), d̂(i+1)) (20)

where ĉ(i+1) and d̂(i+1) are given by






ĉ(i+1) = c0 + 0.5T d̂(i+1) = d0 − 0.5T − 0.5
T
∑

k=1

{

E(i+1)[log ξk−1]− E(i+1)[ξk−1]}
(21)

Similar to the computation of q(i+1)(ξk−1), let φ = λ1:T
and using (7) in (5), q(i+1)(λk) can be updated as

q(i+1)(λk) = G(λk;α
(i+1)
k , β

(i+1)
k ) (22)

where α
(i+1)
k and β

(i+1)
k are given by

{

α
(i+1)
k = 0.5(m+ E(i)[ν])

β
(i+1)
k = 0.5{E(i)[ν] + tr(E

(i+1)
k E(i)[R−1])}

(23)

where E
(i+1)
k is given by

E
(i+1)
k = E(i+1){[zk − hk(xk)][zk − hk(xk)]

T} (24)

Similar to the computation of q(i+1)(Q), let φ = R and

using (7) in (5), q(i+1)(R) can be updated as

q(i+1)(R) = IW(R; û(i+1), Û(i+1)) (25)

where û(i+1) and Û(i+1) are given by

û(i+1) = u0 + T Û(i+1) = U0 +
T
∑

k=1

E(i+1)[λk]E
(i+1)
k

(26)

Likewise, for the computation of q(i+1)(ν), let φ = ν and

using (7) in (5), q(i+1)(ν) can be updated as

q(i+1)(ν) = G(ν; â(i+1), b̂(i+1)) (27)

where â(i+1) and b̂(i+1) are given by






â(i+1) = a0 + 0.5T

b̂(i+1) = b0 − 0.5T − 0.5
T
∑

k=1

{E(i+1)[log λk]− E(i+1)[λk]}

(28)

B. Computation of expectations

Using (13), (16), (20), (22), (25) and (27), we can compute

the required expectations as follows.


































E(i+1)[Q−1] = (t̂(i+1) − n− 1)(T̂(i+1))−1

E(i+1)[ξk−1] = η
(i+1)
k−1 /θ

(i+1)
k−1 E(i+1)[ω] = ĉ(i+1)/d̂(i+1)

E(i+1)[log ξk−1] = ψ(η
(i+1)
k−1 )− log θ

(i+1)
k−1

E(i+1)[R−1] = (û(i+1) −m− 1)(Û(i+1))−1

E(i+1)[λk] = α
(i+1)
k /β

(i+1)
k E(i+1)[ν] = â(i+1)/b̂(i+1)

E(i+1)[log λk] = ψ(α
(i+1)
k )− log β

(i+1)
k

(29)






























D
(i+1)
k =

∫ ∫

[xk − fk−1(xk−1)][xk − fk−1(xk−1)]
TN(

[

xk−1

xk

]

;

[

x̂
(i+1)
k−1|T

x̂
(i+1)
k|T

]

,

[

P
(i+1)
k−1|T P

(i+1)
k−1,k|T

(P
(i+1)
k−1,k|T )

T P
(i+1)
k|T

]

)dxk−1dxk

E
(i+1)
k =

∫

[zk − hk(xk)][zk − hk(xk)]
TN(xk; x̂

(i+1)
k|T ,

P
(i+1)
k|T )dxk

(30)

where ψ(·) denotes the digamma function [10] and P
(i+1)
k−1,k|T

is given by [19]

P
(i+1)
k−1,k|T = G

(i+1)
k−1 P

(i+1)
k|T (31)

where G
(i+1)
k−1 denotes the smoothing gain at the i + 1th

iteration and it is given in the fifth line from the bottom

of Algorithm 1. The Gaussian weighted integrals formulated

in (30) can be approximated using a sigma-point scheme,

such as the third-degree spherical radial cubature rule [3].

The implementation pseudocode for the proposed robust GA

fixed-interval smoother is shown in Algorithm 2, where 1T×1

denotes the T dimensional column vector of ones.

IV. SIMULATION

In this section, the proposed smoother is applied to the

problem of tracking an agile target which is observed by

radar in clutter. The process and measurement outliers may

be induced respectively by rapid motion and unreliable radar

in clutter. The state-space model can be formulated as [20]

xk =

[

I2 ∆tI2
0 I2

]

xk−1 +wk−1 (32)

zk =

[ √

x2k + y2k
atan2(yk, xk)

]

+ vk (33)

where xk = [xk yk ẋk ẏk], and xk, yk, ẋk and ẏk denote

the cartesian coordinates and corresponding velocities. The

parameter ∆t = 0.5 is the sampling interval and I2 is the two
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Algorithm 2
Inputs: z1:T , x̂0|0, P0|0, t0, T0, c0, d0, u0, U0, a0, b0, N

1. Initialization: t̂(0) ← t0, T̂(0) ← T0, ĉ(0) ← c0, d̂(0) ← d0
û(0) ← u0, Û(0) ← U0, â(0) ← a0, b̂(0) ← b0, η

(0)
0:T−1 ← 1T×1,

θ
(0)
0:T−1 ← 1T×1, α

(0)
1:T ← 1T×1, β

(0)
1:T ← 1T×1

2. Compute initial expectations using (29).
for i = 0 : N − 1
3. Compute Q̃

(i)
k−1 and R̃

(i)
k

using (9).

4. Run standard GA fixed-interval smoother with modified noise
covariance matrices Q̃

(i)
k−1 and R̃

(i)
k

in Algorithm 1.

5. Compute D
(i+1)
k

and E
(i+1)
k

using (30)–(31)

6. Compute η
(i+1)
k−1 , θ

(i+1)
k−1 , α

(i+1)
k

, β
(i+1)
k

using (14) and (23).

7. Compute expectations E(i+1)[log ξk−1], E
(i+1)[ξk−1],

E(i+1)[log λk], E
(i+1)[λk] using (29).

8. Compute t̂(i+1), T̂(i+1), ĉ(i+1), d̂(i+1), û(i+1), Û(i+1),

â(i+1), b̂(i+1) using (17), (21), (26), (28)
9. Compute expectations E(i+1)[Q−1], E(i+1)[ω], E(i+1)[R−1],
E(i+1)[ν] using (29).
end for
10. {x̂k|T ← x̂

(N)
k|T

,Pk|T ← P
(N)
k|T
|0 ≤ k ≤ T}

Outputs: {x̂k|T ,Pk|T |0 ≤ k ≤ T}

dimensional identity matrix and atan2 is the four-quadrant

inverse tangent function. Similar to [11], outlier corrupted

process and measurement noises are generated according to














wk ∼

{

N(0,Σw) w.p. 0.8
N(0, 1000Σw) w.p. 0.2

vk ∼

{

N(0,Σv) w.p. 0.8
N(0, 100Σv) w.p. 0.2

(34)

where w.p. denotes “with probability” and Σw and Σv are

nominal process and measurement noise covariance matrices

Σw =

[

∆t3

3 I2
∆t2

2 I2
∆t2

2 I2 ∆tI2

]

Σv =

[

100m2 0

0 16mrad2

]

(35)

In this simulation, the standard cubature Kalman smoother

(CKS) [2], outlier robust CKS [4], CKS with unknown noise

covariances (CKSWUNC) [13], [14], the proposed robust CKS

with fixed noise parameters (the proposed CKS-fixed), the

proposed robust CKS with estimated Q and R and fixed ω
and ν (the proposed CKS-QR), the proposed robust CKS with

estimated ω and ν and fixed Q and R (the proposed CKS-ων),

and the proposed robust CKS with estimated Q, R, ω and ν
(the proposed CKS-QRων) are tested. Note that CKSWUNC

is obtained by using the Rauch-Tung-Striebel smoother in

[13] combined with the third degree spherical radial cubature

rule [3] based statistical linearization of the nonlinear system.

The scale matrix and dof parameter of the existing outlier

robust CKS are set as Σv and 5. The parameters of existing

CKSWUNC are set as: ν0 = 6, V0 = Σw, µ0 = 4,

M0 = Σv . In the proposed robust CKS, the initial parameters

of estimated noise parameters are set as: t0 = 6, T0 = Σw,

u0 = 4, U0 = Σv , a0 = c0 = 5, b0 = d0 = 1, and

the fixed noise parameters Q, R, ω and ν are respective-

ly set as Σw, Σv , 5, and 5. The initial true state vector

x0 = [10000, 1000, 300,−40]T , and the initial estimation

error covariance matrix P0|0 = diag([100 100 100 100]),
and the initial state estimation x̂0|0 is chosen randomly from

N(x0,P0|0). The number of measurements is chosen as

T = 200, and the number of variational iteration is chosen

as N = 10, and 1000 independent Monte Carlo runs are
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performed. The root-mean square errors (RMSEs) of position

and velocity are chosen as performance metrics, which are

defined as

RMSEpos =

√

√

√

√

1

M

M
∑

s=1

[(xsk − x̂s
k|k)

2 + (ysk − ŷs
k|k)

2] (36)

where (xsk, y
s
k) and (x̂s

k|k, ŷ
s
k|k) are the true and estimated

positions at the s-th Monte Carlo run and M denotes the

number of Monte Carlo runs. Similar to the RMSE in position,

we can also write formula for the RMSE in velocity.

Fig.1-Fig. 2 respectively show the RMSEs of position and

velocity from the proposed CKSs and existing CKSs. It can be

seen from Fig.1-Fig. 2 that RMSEs from the proposed CKSs

are smaller than that from existing CKSs. We can also see from

Fig.1-Fig. 2 that both the proposed CKS-QR and the proposed

CKS-ων have smaller RMSEs than the proposed CKS-fixed,

and the proposed CKS-QRων has the smallest RMSEs. Thus,

the estimation accuracy of the proposed smoother is further

improved by learning noise parameters adaptively from data.

V. CONCLUSION

In this letter, a robust GA fixed-interval smoother for

nonlinear systems with heavy-tailed process and measurement

noises was derived based on the VB approach. The simulation

results of radar tracking with process and measurement outliers

showed the proposed smoother has better estimation accuracy

than existing GA fixed-interval smoothers.
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