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Abstract

Let f be a continuous function on R
n, and suppose f is continu-

ously differentiable on an open dense subset. Such functions arise in
many applications, and very often minimizers are points at which f

is not differentiable. Of particular interest is the case where f is not
convex, and perhaps not even locally Lipschitz, but whose gradient
is easily computed where it is defined. We present a practical, ro-
bust algorithm to locally minimize such functions, based on gradient

sampling. No subgradient information is required by the algorithm.
When f is locally Lipschitz and has bounded level sets, and the

sampling radius ǫ is fixed, we show that, with probability one, the
algorithm generates a sequence with a cluster point that is Clarke
ǫ-stationary. Furthermore, we show that if f has a unique Clarke
stationary point x̄, then the set of all cluster points generated by the
algorithm converges to x̄ as ǫ is reduced to zero.
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Numerical results are presented demonstrating the robustness of
the algorithm and its applicability in a wide variety of contexts, in-
cluding cases where f is not locally Lipschitz at minimizers. We report
approximate local minimizers for functions in the applications liter-
ature which have not, to our knowledge, been obtained previously.
When the termination criteria of the algorithm are satisfied, a pre-
cise statement about nearness to Clarke ǫ-stationarity is available. A
matlab implementation of the algorithm is posted on the Web.

1 Introduction

The analysis of nonsmooth, nonconvex functions has been a rich area of
mathematical research for three decades. Clarke introduced the notion of
generalized gradient in [Cla73, Cla83]; comprehensive studies of more recent
developments may be found in [CLSW98, RW98]. The generalized gradient
of a function f at a point x reduces to the gradient if f is smooth at x
and to the subdifferential if f is convex; hence, we follow common usage
in referring to the generalized gradient as the (Clarke) subdifferential, or
set of (Clarke) subgradients. Its use in optimization algorithms began soon
after its appearance in the literature. In particular, the concept of the ǫ-
steepest descent direction for locally Lipschitz functions was introduced by
Goldstein in [Gol77]; another early paper is [CG78]. It is well known that
the ordinary steepest descent algorithm typically fails by converging to a
non-optimal point when applied to nonsmooth functions, whether convex or
not. The fundamental difficulty is that most interesting nonsmooth objective
functions have minimizers where the gradient is not defined.

An extensive discussion of several classes of algorithms for the mini-
mization of nonsmooth, nonconvex, locally Lipschitz functions, complete
with convergence analysis, may be found in Kiwiel’s book [Kiw85]. What
these algorithms have in common is that, at each iteration, they require
the computation of a single subgradient (not the entire subdifferential set)
in addition to the value of the function. The algorithms then build up in-
formation about the subdifferential properties of the function using ideas
known as bundling and aggregation. Such “bundle” algorithms, as they
are generally known, are especially effective for nonsmooth, convex opti-
mization because of the global nature of convexity, and the ideas in this
case trace back to [Lem75, Wol75]; for a comprehensive discussion of the
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convex case, see [HUL93]. However, for nonconvex functions, subgradient
information is meaningful only locally, and must be discounted when no
longer relevant. The consequence is that bundle algorithms are necessarily
much more complicated in the nonconvex case. Other contributions to non-
convex bundle methods since Kiwiel’s book was published in 1985 include
[FGG02, Gro02, LSB91, LV98, MN92, OKZ98, SZ92]. Despite this activity
in the field, the only publicly available nonconvex bundle software of which
we are aware are the Bundle Trust (BT) fortran code dating from 1991
[SZ92] and some more recent fortran codes of [LV98].

In addition to this body of work on general nonsmooth, nonconvex opti-
mization, there is a large literature on more specialized problems, including
nonconvex polyhedral functions [Osb85], compositions of convex and smooth
functions [Bur85, Fle87], and quasidifferentiable functions [DR95].

There are many reasons why most algorithms for nonsmooth optimization
do not ask the user to provide a description of the entire subdifferential set
at each iterate. One is that this would demand a great deal of the user in all
but the simplest applications. More fundamentally, it is not clear how one
would represent such a set in general since it is already a formidable task in
the polyhedral setting [Osb85]. Even if this were resolved, implementation
would be difficult for the user given the inherent complexity of the continuity
properties of these set-valued mappings. Asking the user to provide only one
subgradient at a point resolves these difficulties.

In virtually all interesting applications, the function being minimized is
continuously differentiable almost everywhere, although it is often not dif-
ferentiable at minimizers. Under this assumption, when a user is asked to
provide a subgradient at a randomly selected point, with probability one
the subgradient is unique, namely, the gradient. This observation led us to
consider a simple gradient sampling algorithm, first presented without any
analysis in [BLO02b]. At a given iterate, we compute the gradient of the
objective function on a set of randomly generated nearby points, and use
this information to construct a local search direction that may be viewed
as an approximate ǫ-steepest descent direction, where ǫ is the sampling ra-
dius. As is standard for algorithms based on subgradients, we obtain the
descent direction by solving a quadratic program. Gradient information is
not saved from one iteration to the next, but discarded once a lower point is
obtained from a line search. A key motivating factor is that, in many appli-
cations, computing the gradient when it exists is little additional work once
the function value is computed. Often, well-known formulas for the gradient
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are available; alternatively, automatic differentiation might be used. No sub-
gradient information is required from the user. We have found the gradient
sampling algorithm to be very effective for approximating local minimizers of
a wide variety of nonsmooth, nonconvex functions, including non-Lipschitz
functions.

In a separate work [BLO02a], we analyzed the extent to which the Clarke
subdifferential at a point can be approximated by random sampling of gradi-
ents at nearby points, justifying the notion that the convex hull of the latter
set can serve as a surrogate for the former.

This paper is organized as follows. The gradient sampling (GS) algorithm
is presented in Section 2. The sampling radius ǫ may be fixed for all iterates
or may be reduced dynamically; this is controlled by the choice of parameters
defining the algorithm.

A convergence analysis is given in Section 3, making the assumption that
the function f : Rn → R is locally Lipschitz, has bounded level sets, and,
in addition, is continuously differentiable on an open dense subset of Rn.
Our first convergence result analyzes the GS algorithm with fixed ǫ, and
establishes that, with probability one, it generates a sequence with a cluster
point that is Clarke ǫ-stationary, in a sense that will be made precise. A
corollary shows that if f has a unique Clarke stationary point x̄, then the
sets of all cluster points generated by the GS algorithm converge to x̄ as ǫ
is reduced to zero. These results are then strengthened for the case where
f is either convex or smooth. In all cases, when the termination criteria of
the GS algorithm are satisfied, a precise statement about nearness to Clarke
ǫ-stationarity is available.

We should emphasize that although Clarke stationarity is a first-order
optimality condition, there are two considerations that allow us to expect
that, in practice, cluster points of the GS algorithm are more than just ap-
proximate stationary points, but are in fact approximate local minimizers.
The first consideration is a very practical one: the line search enforces a
descent property for the sequence of iterates. The second consideration is
more theoretical: we are generally interested in applying the algorithm to
a nonsmooth function that, although not convex, is subdifferentially regular
[RW98] (equivalently, its epigraph is regular in the sense of Clarke [Cla83]).
Clarke stationarity at a point of subdifferential regularity implies the non-
negativity of the usual directional derivative in all directions. This is much
stronger than Clarke stationarity in the absence of regularity. For example,
0 is a Clarke stationary point of the function f(x) = −|x|, but f is not
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subdifferentially regular at 0.
In Section 4, we present numerical results that demonstrate the effective-

ness and robustness of the GS algorithm and its applicability in a variety
of contexts. We set the parameters defining the GS algorithm so that the
sampling radius ǫ is reduced dynamically. We begin with a classical prob-
lem: Chebyshev exponential approximation. Our second example involves
minimizing a product of eigenvalues of a symmetric matrix; it arises in an
environmental data analysis application. We then turn to some important
functions arising in nonsymmetric matrix analysis and robust control, in-
cluding non-Lipschitz spectral functions, pseudospectral functions, and the
distance to instability. We conclude with a challenging stabilization problem
for a model of a Boeing 767 at a flutter condition. As far as we know, none
of the problems that we present have been solved previously by any method.

Finally, we make some concluding remarks in Section 5. Our matlab

implementation of the GS algorithm is freely available on the web.

2 The Gradient Sampling Algorithm

The gradient sampling algorithm is conceptually very simple. Basically, it is a
stabilized steepest descent algorithm. At each iteration, a descent direction is
obtained by evaluating the gradient at the current iterate and at additional
nearby points and then computing the vector in the convex hull of these
gradients with smallest norm. A standard line search is then used to obtain
a lower point. Thus, stabilization is controlled by the sampling radius used
to sample the gradients. In practice, we begin with a large sampling radius
and then reduce this according to rules that are set out in Section 4, where
we show, using various examples, how well the algorithm works.

Despite the simplicity and power of the algorithm, its analysis is not so
simple. One difficulty is that it is inherently probabilistic, since the gradient
is not defined on the whole space. Another is that analyzing its convergence
for a fixed sampling radius is already challenging, and extending our results
in that case to a version of the algorithm that reduces the sampling radius
dynamically presents additional difficulties. In order to take care of both fixed
and dynamically changing sampling radius, the statement of the algorithm
becomes a little more complicated. We set out the algorithmic details in this
section, and present the convergence analysis in the next section.

The algorithm may be applied to any function f : Rn → R that is
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continuous on Rn and differentiable almost everywhere. However, all our
theoretical results assume that f is locally Lipschitz continuous and con-
tinuously differentiable on an open dense subset D of Rn. In addition, we
assume that there is a point x̃ ∈ Rn for which the set L = {x | f(x) ≤ f(x̃)}
is compact.

The local Lipschitz hypothesis allows us to approximate the Clarke sub-
differential [Cla83] as follows. For each ǫ > 0, define the multifunction
Gǫ : Rn

⇉ Rn by

Gǫ(x) = cl conv∇f((x + ǫIB) ∩ D)

where IB = {x | ‖x‖ ≤ 1} is the closed unit ball. The sets Gǫ(x) can be used
to give the following representation of the Clarke subdifferential of f at a
point x:

∂̄f(x) =
⋂

ǫ>0

Gǫ(x). (1)

We also make use of the ǫ-subdifferential introduced by Goldstein [Gol77].
For each ǫ > 0, the Clarke ǫ-subdifferential is given by

∂̄ǫf(x) = cl conv ∂̄f(x + ǫIB).

Clearly, Gǫ(x) ⊂ ∂̄ǫf(x), and for 0 < ǫ1 < ǫ2 we have ∂̄ǫ1f(x) ⊂ Gǫ2(x). In
addition, it is easily shown that the multifunction ∂̄ǫf has closed graph.

We say that a point x is a Clarke ǫ-stationary point for f if 0 ∈ ∂̄ǫf(x).
This notion of ǫ-stationarity is key to our approach. Indeed, the algorithm
described below is designed to locate Clarke ǫ-stationary points. For this
reason we introduce the following scalar measure of proximity to Clarke ǫ-
stationarity:

ρǫ(x) = dist (0 |Gǫ(x)) . (2)

We now state the gradient sampling algorithm (GS algorithm). Scalar
parameters are denoted by lower case Greek letters. A superscript on a
scalar parameter indicates taking that scalar to the power of the superscript.

In order to facilitate the reading and analysis of the algorithm we provide
a partial glossary of the notation used in its statement.
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Glossary of Notation

k: Iteration counter. µ: Sampling radius reduction factor.
xk: Current iterate. θ: Optimality tolerance reduction factor.
D: Points of differentiability. m: Sample size.
γ: Backtracking reduction factor. xkj : Sampling points.
β: Armijo parameter. gk: Shortest approximate subgradient.
ǫk: Sampling radius. dk: Search direction.
νk: Optimality tolerance. tk: Step length.

The GS algorithm

Step 0: (Initialization)

Let x0 ∈ L ∩ D, γ ∈ (0, 1), β ∈ (0, 1), ǫ0 > 0, ν0 ≥ 0, µ ∈ (0, 1],
θ ∈ (0, 1], k = 0, and m ∈ {n + 1, n + 2, . . . }.

Step 1: (Approximate the Clarke ǫ-subdifferential by Gradient Sampling)

Let uk1, . . . , ukm be sampled independently and uniformly from IB, and
set

xk0 = xk and xkj = xk + ǫku
kj, j = 1, . . . , m.

If for some j = 1, . . . , m the point xkj /∈ D, then STOP; otherwise, set

Gk = conv {∇f(xk0),∇f(xk1), . . . ,∇f(xkm)},

and go to Step 2.

Step 2: (Compute a Search Direction)

Let gk ∈ Gk solve the quadratic program ming∈Gk
‖g‖2, i.e.

∥

∥gk
∥

∥ = dist (0 |Gk ) and gk ∈ Gk. (3)

If νk =
∥

∥gk
∥

∥ = 0, STOP. If
∥

∥gk
∥

∥ ≤ νk, set tk = 0, νk+1 = θνk, and
ǫk+1 = µǫk, and go to Step 4; otherwise, set νk+1 = νk, ǫk+1 = ǫk, and
dk = −gk/

∥

∥gk
∥

∥, and go to Step 3.
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Step 3: (Compute a Step Length)

Set
tk = max γs

subject to s ∈ {0, 1, 2, . . .} and
f(xk + γsdk) < f(xk) − βγs

∥

∥gk
∥

∥ ,

and go to Step 4.

Step 4: (Update)

If xk + tkd
k ∈ D, set xk+1 = xk + tkd

k, k = k + 1, and go to Step 1. If
xk + tkd

k /∈ D, let x̂k be any point in xk + ǫkIB satisfying x̂k + tkd
k ∈ D

and

f(x̂k + tkd
k) < f(xk) − βtk

∥

∥gk
∥

∥ (4)

(such an x̂k exists due to the continuity of f). Then set xk+1 = x̂k+tkd
k,

k = k + 1, and go to Step 1.

The algorithm is designed so that every iterate xk is an element of the set
L ∩D. We now show that the line search defined in Step 3 of the algorithm
is well defined in the sense that the value of tk can be determined by a finite
process. Recall from convex analysis that gk solves infg∈Gk

‖g‖ if and only
if −gk ∈ NGk

(gk), that is,
〈

g − gk ,−gk
〉

≤ 0 for all g ∈ Gk. Therefore, if
∥

∥gk
∥

∥ = dist (0 |Gk ) 6= 0, then

∇f(xk)Tdk ≤ sup
g∈Gk

〈

g , dk
〉

≤ −
∥

∥gk
∥

∥ .

Since xk ∈ D, we have f ′(xk; dk) = ∇f(xk)T dk. Hence, there is a t̄ > 0 such
that

f(xk + tdk) ≤ f(xk) + tβ∇f(xk)T dk ≤ f(xk) − tβ
∥

∥gk
∥

∥ ∀ t ∈ (0, t̄).

The choice of search direction used in the GS algorithm is motivated by
the direction of steepest descent in nonsmooth optimization. Recall that
the Clarke directional derivative for f at a point x is given by the support
functional for the Clarke subdifferential at x:

f ◦(x; d) = max
z∈∂̄f(x)

〈z , d〉 .
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Therefore, the direction of steepest decent is obtained by solving the problem

min
‖x‖≤1

f ◦(x; d) = min
‖x‖≤1

max
z∈∂̄f(x)

〈z , d〉 .

The next lemma, which is essentially well known, shows that the search
direction in the GS algorithm is an approximate direction of steepest decent.

Lemma 2.1 Let G be any compact convex subset of Rn, then

−dist (0 |G) = min
‖d‖≤1

max
g∈G

〈g , d〉 . (5)

Moreover, if ḡ ∈ G satisfies ‖ḡ‖ = dist (0 |G), then d̄ = −ḡ/ ‖ḡ‖ solves the
problem on the right hand side of (5).

Proof The result is an elementary consequence of the von Neumann mini-
max theorem. Indeed, one has

−dist (0 |Gk ) = − min
g∈Gk

‖g‖

= − min
g∈Gk

max
‖d‖≤1

〈g , d〉

= − max
‖d‖≤1

min
g∈Gk

〈g , d〉

= − max
‖d‖≤1

min
g∈Gk

〈g ,−d〉

= min
‖d‖≤1

max
g∈Gk

〈g , d〉 ,

from which it easily follows that dk = −gk/
∥

∥gk
∥

∥ solves the problem

inf
‖d‖≤1

sup
g∈Gk

〈g , d〉 .

By setting G equal to the sets Gk in the GS algorithm, we obtain the
approximate steepest descent property:

−dist (0 |Gk ) = min
‖d‖≤1

max
g∈Gk

〈g , d〉 .

The case xk +tkd
k /∈ D in Step 4 of the algorithm seems unlikely to occur,

and we do not correct for this possiblity in our numerical implementation.
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Nonetheless, we need to compensate for it in our theoretical analysis since
we have not been able to show that it is a zero probability event. The GS
algorithm is a non-deterministic algorithm, and in this spirit Step 4 is easily
implemented in a non-deterministic fashion as follows. At step ω = 1, 2, . . . ,
sample x̂ from a uniform distribution on xk + (ǫk/ω)IB and check to see if
x̂+ tkd

k ∈ D and the inequality (4) with x̂k = x̂ is satisfied. If so, set x̂k = x̂,
xk+1 = x̂k + tkd

k, k = k + 1, and return to Step 1; otherwise, increase ω and
repeat. With probability 1 this procedure terminates finitely.

The GS algorithm can be run with ν0 = 0 and µ = 1, so that νk = 0 and
ǫk = ǫ0 for all k. This instance of the algorithm plays a prominent role in
our convergence analysis. Indeed, all of our theoretical convergence results
follow from the analysis in this case. In practice however, the algorithm is
best implemented with µ < 1 and ν0 positive. When ν0 = 0, the algorithm
terminates at iteration k0 if either xk0j /∈ D for some j = 1, . . . , m or

∥

∥gk0

∥

∥ =
0. The probability that xk0j /∈ D for some j = 1, . . . , m is zero, while
∥

∥gk0

∥

∥ = 0 is equivalent to ρǫk0
(xk0) = 0.

Before proceeding to the convergence analysis, we make a final observa-
tion concerning the stochastic structure of the algorithm, as it plays a key role
in our analysis. Although the algorithm specifies that the points uk1, . . . , ukm

are sampled from IB at each iteration, we may think of this sequence as a re-
alization of a stochastic process {(uk1, . . . ,ukm)} where the realization occurs
before the initiation of the algorithm. In this regard, we only consider those
realizations that are ergodic with respect to IBm. Specifically, we only con-
sider those processes that hit every positive measure subset of IBm infinitely
often. We define this subset of events as E and note that with probability 1
the realization {(uk1, . . . , ukm)} is in E .

3 Convergence Analysis

Throughout this section it is assumed that the function f : Rn → R is locally
Lipschitz continuous on Rn and continuously differentiable on an open dense
subset D of Rn. We begin with two technical lemmas.

Lemma 3.1 Let v ∈ C, where C is a non-empty closed convex subset of Rn

that does not contain the origin. If δ > 0, η > 0, and u, ū ∈ C are such that
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η ≤ ‖ū‖ = dist (0 |C ) and ‖u‖ ≤ ‖ū‖ + δ, then
〈

v − u ,
−u

‖u‖

〉

≤
[

‖v‖
√

2

η
+

√

[2 ‖ū‖ + δ]

]√
δ. (6)

Proof Since ‖ū‖ = dist (0 |C ), we have −ū ∈ NC(ū), and so for all h ∈ C

〈h − ū ,−ū〉 ≤ 0,

or equivalently,

‖ū‖2 ≤ 〈h , ū〉 . (7)

Therefore,

1 −
〈

u

‖u‖ ,
ū

‖ū‖

〉

≤ 1 − ‖ū‖2

‖u‖ ‖ū‖ =
1

‖u‖ [‖u‖ − ‖ū‖] ≤ δ

‖ū‖ , (8)

∥

∥

∥

∥

u

‖u‖ − ū

‖ū‖

∥

∥

∥

∥

2

= 2

[

1 −
〈

u

‖u‖ ,
ū

‖ū‖

〉]

≤ 2δ

‖ū‖ , (9)

‖u − ū‖2 = ‖u‖2 − 2 〈u , ū〉 + ‖ū‖2

≤ ‖u‖2 − ‖ū‖2

≤ [2 ‖ū‖ + δ]δ. (10)

and

‖v − ū‖2 = ‖v‖2 − 2 〈v , ū〉 + ‖ū‖2

≤ ‖v‖2 − ‖ū‖2

≤ ‖v‖2 . (11)

Consequently,
〈

v − u ,
−u

‖u‖

〉

=

〈

v − ū ,
−ū

‖ū‖

〉

+

〈

v − ū ,
ū

‖ū‖ − u

‖u‖

〉

+

〈

u − ū ,
u

‖u‖

〉

≤
〈

v − ū ,
ū

‖ū‖ − u

‖u‖

〉

+

〈

u − ū ,
u

‖u‖

〉

≤ ‖v‖
√

2δ

‖ū‖ +
√

[2 ‖ū‖ + δ]δ

≤
[

‖v‖
√

2

η
+

√

[2 ‖ū‖ + δ]

]√
δ
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The next lemma establishes properties of the set of all points close to a
given point x′ that can be used to provide a δ-approximation to the element
of Gǫ(x

′) of least norm. Specifically, let m ≥ n + 1, δ > 0 and x′, x ∈ Rn be
given, and set

Dm
ǫ (x) =

m
∏

1

(D ∩ (x + ǫIB)) ⊂
m
∏

1

Rn.

Consider the set Rǫ(x
′, x, δ) ⊂

∏m+1
1 Rn of all (m + 1)-tuples (x1, . . . , xm, g)

satisfying

(x1, . . . , xm) ∈ Dm
ǫ (x) and g =

m
∑

j=1

λj∇f(xj),

for some 0 ≤ λj j = 1, 2, . . . , m with

m
∑

j=1

λj = 1 and

∥

∥

∥

∥

∥

m
∑

j=1

λj∇f(xj)

∥

∥

∥

∥

∥

≤ ρǫ(x
′) + δ .

We need to understand the local behavior of this set as well as its projections

Vǫ(x
′, x, δ) =

{

(x1, . . . , xm) : ∃g with (x1, . . . , xm, g) ∈ Rǫ(x
′, x, δ)

}

and

Uǫ(x
′, x, δ) =

{

g : ∃(x1, . . . , xm) with (x1, . . . , xm, g) ∈ Rǫ(x
′, x, δ)

}

.

Lemma 3.2 For ǫ > 0, let ρǫ be as defined in (2), and let m ≥ n + 1, δ > 0
and x̄ ∈ Rn be given with 0 < ρǫ(x̄).

(1) There is a τ > 0 such that the set Vǫ(x̄, x, δ) contains a non-empty open
subset whenever ‖x − x̄‖ ≤ τ .

(2) τ > 0 may be chosen so that there is a non-empty open set V̄ ⊂
Vǫ(x̄, x̄, δ) such that V̄ ⊂ Vǫ(x̄, x, δ) for all x ∈ x̄ + τIB.

(3) By definition, we have Uǫ(x̄, x, δ) ⊂ Gǫ(x) for all x ∈ Rn, and so

ρǫ(x) ≤ ‖u‖ ≤ ρǫ(x̄) + δ ∀u ∈ Uǫ(x̄, x, δ), x ∈ Rn.

In addition, if τ > 0 is as given by statement (1) or (2), then the set
Uǫ(x̄, x, δ) is guaranteed to be non-empty whenever ‖x − x̄‖ ≤ τ .
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(4) The function ρǫ is upper semi-continuous, i.e.,

lim sup
x→x̄

ρǫ(x) ≤ ρǫ(x̄).

(5) Let η > 0. Then for every compact subset K of the set L for which
infK ρǫ(x) ≥ η there exists µ̄ > 0, an integer ℓ ≥ 1, τj ∈ (0, ǫ/3), j =
1, . . . , ℓ, and a set of points {z1, z2, . . . , zℓ} ⊂ K such that the union
⋃ℓ

j=1(z
j + τj int IB) is an open cover of K and for each j = 1, . . . , ℓ

there is a point (zj1, . . . , zjm) ∈ Vǫ(z
j , zj, δ) such that

(zj1, . . . , zjm) + µ̄IBm ⊂ Vǫ(z
j , x, δ) whenever x ∈ zj + τjIB.

Proof Let u ∈ conv {∇f(x) | x ∈ (x̄ + ǫIB) ∩ D} be such that

‖u‖ < ρǫ(x̄) + δ.

Then Carathéodory’s Theorem [Roc70] implies the existence of (x̄1, . . . x̄m) ∈
Dm

ǫ (x̄) and λ̄ ∈ Rm
+ with

∑m
j=1 λ̄j = 1 such that u =

∑m
j=1 λ̄j∇f(x̄j). Since f

is continuously differentiable on the open set D, there is an ǫ0 > 0 such that
f is continuously differentiable on x̄j + ǫ0 int IB ⊂ x̄ + ǫIB for j = 1, . . . , n.
Define F : (x̄1 + ǫ0 int IB) × · · · × (x̄m + ǫ0 int IB) → Rn by F (x1, . . . , xm) =
∑m

j=1 λ̄j∇f(xj). The mapping F is continuous on (x̄1+ǫ0 int IB)×· · ·×(x̄m+
ǫ0 int IB). Next define U = {u ∈ Rn | ‖u‖ < ρǫ(x̄) + δ}. Then, by definition,
the set

V = F−1(U) ∩
(

(x̄1 + ǫ0 int IB) × · · · × (x̄m + ǫ0 int IB)
)

is a non-empty open subset of Vǫ(x̄, x̄, δ). Now since the sets x + ǫIB con-
verge to the set x̄ + ǫIB in the Hausdorff metric as x → x̄, we must have
that V ∩ ((x + ǫ int IB) × · · · × (x + ǫ int IB)) is open and non-empty for all
x sufficiently close to x̄. This proves statement (1).

To see that statement (2) is true, observe that since Vǫ(x̄, x̄, δ) contains a
non-empty open subset Ṽ there must exist an ǫ̃ ∈ (0, ǫ) such that

V̄ = Ṽ ∩ ((x̄ + ǫ̃ int IB) × · · · × (x̄ + ǫ̃ int IB))

is open and non-empty. Since the Hausdorff distance between x + ǫIB and
x̄ + ǫIB is ‖x − x̄‖ whenever ‖x − x̄‖ < ǫ/2, we have that V̄ ⊂ Vǫ(x̄, x, δ)
whenever ‖x − x̄‖ ≤ (ǫ − ǫ̃)/2 = τ . This proves statement (2).
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Statement (3) follows immediately from statement (2), while statement
(4) follows from statement (3) by letting δ → 0.

Statement (2) and compactness implies statement (5). Indeed, statement
(2) implies that for each x′ ∈ K there is a τ(x′) ∈ (0, ǫ/3) and a non-
empty open set V (x′) ⊂ Vǫ(x

′, x′, δ) such that V (x′) ⊂ Vǫ(x
′, x, δ) whenever

x ∈ x′+τ(x′)IB. The sets x′+τ(x′) int IB form an open cover of K. Since K is
compact, this open cover contains a finite subcover zj + τj int IB j = 1, . . . , ℓ.
Let (zj1, . . . , zjm) ∈ Vǫ(z

j , zj , δ) and µ̄j > 0 be such that (zj1, . . . , zjm) +
µ̄jIB

m ⊂ V (zj) for j = 1, . . . , ℓ. By setting µ̄ = min{µ̄1, . . . , µ̄ℓ} we obtain
the result.

We also need the following Mean Value Inequality.

Theorem 3.3 (Lebourg Mean Value Theorem) Let f : Rn → R be locally
Lipschitz and let x, y ∈ Rn. Then there exists z ∈ [x, y] and w ∈ ∂̄f(z) such
that

f(y) − f(x) = 〈w , y − x〉 .

The main convergence result follows.

Theorem 3.4 (Convergence for Fixed Sampling Radius) If {xk} is a se-
quence generated by the GS algorithm with ǫ0 = ǫ, ν0 = 0, and µ = 1, then
with probability 1 either the algorithm terminates finitely at some iteration
k0 with ρǫ(x

k0) = 0 or there is a subsequence J ⊂ IN such that ρǫ(x
k) →J 0

and every cluster point x̄ of the subsequence {xk}J satisfies 0 ∈ ∂̄ǫf(x̄).

Proof We may assume that event E occurs (see the discussion at the end of
Section 2). That is, we may assume that the sequence {(uk1, . . . , ukm)} hits
every positive measure subset of IB infinitely often. As previously noted, this
event occurs with probability 1.

We begin by considering the case where the algorithm terminates finitely.
Let x ∈ L and ǫ > 0, and let z be a realization of a random variable that
is uniformly distributed on IB. Then the probability that x + ǫz /∈ D is
zero. Hence, with probability 1 the algorithm does not terminate in Step 1.
Therefore, if the algorithm terminates finitely at some iteration k0, then with
probability 1 it did so in Step 2 with ρǫ(x

k0) = 0.
We now restrict our attention to the set of events Ê ⊂ E where the

algorithm does not terminate finitely. For such events, we have that xkj ∈ D
for j = 0, 1, . . . , m and k = 0, 1, 2, . . . . Conditioned on Ê occurring, we show
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that with probability 1 there is a subsequence J ⊂ IN such that ρǫ(x
k) →J 0

and every cluster point x̄ of the subsequence {xk}J satisfies 0 ∈ ∂̄ǫf(x̄).
Since the sequence {f(xk)} is decreasing and L is compact, it must be

the case that there is a κ > 0 and an f̂ such that κ is a Lipschitz constant
for f on all of L + IB and f(xk) ↓ f̂ . Consequently, (f(xk+1) − f(xk)) → 0,
and so by Step 3 of the GS algorithm

tk
∥

∥gk
∥

∥ → 0. (12)

If the result were false, then with positive probability there is an η > 0 such
that

η = inf
k∈IN

ρǫ(x
k) ≤ inf

k∈IN

∥

∥gk
∥

∥ , (13)

since by definition ρǫ(x) = dist (0 |Gǫ(x)) and
∥

∥gk
∥

∥ = dist (0 |Gk ). For such
an event tk ↓ 0.

Let K be the set of points x ∈ L having ρǫ(x) ≥ η. Note that K is closed
by part (4) of Lemma 3.2. Hence K is compact since L is compact. Choose
δ > 0 so that

[

κ

√

2

η
+
√

2κ + δ

]√
δ < (1 − β)

η

2
. (14)

Let µ̄ > 0, τj ∈ (0, ǫ/3), zj ∈ K, and (zj1, . . . , zjm) ∈ Vǫ(z
j , zj , δ) for j =

1, . . . ℓ be associated with K as in part (5) of Lemma 3.2 for ǫ > 0 and δ > 0
as given above. Hence, given that the event (13) occurs, we have for each
k = 1, 2, . . . that (xk1, . . . , xkm) ∈ (zj1, . . . , zjm)+ µ̄IBm for some j = 1, . . . , ℓ
with probability

(

µ̄
ǫ

)nm
. Consequently, given that the event (13) occurs, we

have with probability 1 that there is an infinite subsequence J ⊂ IN and a
j̄ ∈ {1, . . . , ℓ} such that for all k ∈ J

γ−1tk < min{γ,
ǫ

3
}, (15)

xk ∈ zj̄ +
ǫ

3
IB, and (16)

(xk1, . . . , xkm) ∈ (zj̄1, . . . , zj̄m) + µ̄IBm ⊂ Vǫ(z
j̄ , zj̄ , δ) ⊂ Dm

ǫ (zj̄), (17)

which implies that for all k ∈ J

{xk0, xk1, . . . , xkm} ⊂ zj̄ + ǫIB and (18)

η ≤
∥

∥gk
∥

∥ ≤ dist
(

0
∣

∣

∣
Ĝk

)

≤ ρǫ(z
j̄) + δ, (19)
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where Ĝk = conv {∇f(xk1), . . . ,∇f(xkm)}.
By construction we have that

−γ−1βtk
∥

∥gk
∥

∥ ≤ f(xk + γ−1tkd
k) − f(xk) ∀ k ∈ J.

The Lebourg Mean Value Theorem 3.3 yields for each k ∈ J the existence of
x̃k ∈ [xk + γ−1tkd

k, xk] and vk ∈ ∂̄f(x̃k) such that

f(xk + γ−1tkd
k) − f(xk) = γ−1tk

〈

vk , dk
〉

.

Since
∥

∥dk
∥

∥ = 1, relations (15) and (16) imply that x̂k ∈ zj̄ + ǫIB and so

vk ∈ Gǫ(z
j̄) for all k ∈ J . In addition, the Lipschitz continuity hypothesis

implies that
∥

∥vk
∥

∥ ≤ κ for all k ∈ J . Hence,

−γ−1βtk
∥

∥gk
∥

∥ ≤ γ−1tk
〈

vk , dk
〉

∀ k ∈ J,

or equivalently,

−β
∥

∥gk
∥

∥ ≤ −
∥

∥gk
∥

∥ +
〈

vk − gk , dk
〉

∀ k ∈ J,

which in turn implies that

0 ≤ (β − 1)η +

〈

vk − gk ,
−gk

‖gk‖

〉

∀ k ∈ J. (20)

By combining (18) and (19) with Lemma 3.1 where C = Gǫ(z
j̄) and then

applying the bound (14), we find that
〈

vk − gk ,
−gk

‖gk‖

〉

≤
[

κ

√

2

η
+
√

2κ + δ

]√
δ < (1 − β)

η

2
.

Plugging this into (20) yields the contradiction

0 <
1

2
(β − 1)η ∀ k ∈ J.

Consequently, the event (13) cannot occur with positive probability which
proves that if Ê occurs, then with probability 1 there is a subsequence J ⊂ IN
such that ρǫ(x

k) → 0.
Finally, if x̄ is a cluster point of the subsequence {xk}J with J ⊂ IN , then

dist
(

0
∣

∣ ∂̄ǫf(xk)
)

→J 0

since 0 ≤ dist
(

0
∣

∣ ∂̄ǫf(xk)
)

≤ ρǫ(x
k) →J 0. Hence 0 ∈ ∂̄ǫf(x̄) for every

cluster point x̄ of the subsequence {xk}J since the multifunction ∂̄ǫf is closed.
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Theorem 3.4 tells us that when f has compact level sets then with prob-
ability 1 the GS algorithm generates a sequence of iterates having at least
one cluster point that is Clarke ǫ-stationary. It is interesting to note that we
have deduced this without having shown that the values

∥

∥gk
∥

∥ = dist (0 |Gk )
converge to zero. Indeed, if this sequence of values did converge to zero,
then every cluster point of the sequence {xk} would be a Clarke ǫ-stationary
point. A convergence result of the type where every cluster point satisfies
some kind of approximate stationarity condition is what is usually obtained in
the smooth case. We now show that the GS algorithm also has this property
under a smoothness hypothesis. In the same vein, if one assumes convexity,
then a much stronger result is possible, and we cover this case as well in
our next result. This is introduced to provide intuition into the behavior of
the GS algorithm in the familiar settings of smoothness and convexity. By
no means are we suggesting that the GS algorithm is a useful method when
either smoothness or convexity is present.

Corollary 3.5 Let the hypotheses of Theorem 3.4 hold.

1. If the function f is everywhere continuously differentiable, then either
the GS algorithm terminates finitely at a point x̄ for which 0 ∈ Gǫ(x̄) =
∂̄ǫf(x̄) or the sequences {xk} and {

∥

∥gk
∥

∥} are such that
∥

∥gk
∥

∥ → 0 and
every cluster point x̄ of the sequence {xk} satisfies 0 ∈ Gǫ(x̄) = ∂̄ǫf(x̄).

2. If the function f is lower semi-continuous and convex, then with prob-
ability 1 either the GS algorithm terminates finitely at a point x̄ for
which 0 ∈ ∂̄ǫf(x̄ + ǫIB) or every cluster point x̄ of the sequence {xk}
satisfies

f(x̄) ≤ min
Rn

f(x) + 2κǫ, (21)

where κ is any Lipschitz constant for f on L.

Remark Condition (21) is equivalent to the condition that 0 ∈ ∂2κǫf(x̄)
where ∂ǫf(x) denotes the ǫ-subdifferential from convex analysis:

∂ǫf(x) = {z | f(y) ≥ f(x) + 〈z , y − x〉 − ǫ, ∀ y ∈ Rn}

Proof 1. If the algorithm terminates finitely at iteration k0, then it must
do so in Step 2 in which case 0 ∈ Gǫ(x̄).
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Next suppose that the algorithm does not terminate finitely. Further,
let us suppose to the contrary that the sequence of values

∥

∥gk
∥

∥ contains a
subsequence J ⊂ IN that is bounded away from zero:

0 < η := inf
J

∥

∥gk
∥

∥ .

Since the sequence {f(xk)} is decreasing and the set L is compact, we may
assume with no loss of generality that there is a point x̄ ∈ L such that
xk →J x̄ and f(xk) ↓ f(x̄). In addition, we have

f(xk+1) − f(xk) < −tkβ
∥

∥gk
∥

∥ ,

and so tk
∥

∥gk
∥

∥ → 0. For the subsequence J this implies that tk → 0. Thus,
we may assume again with no loss of generality that tk ↓J 0 with tk < 1 for
all k ∈ J . Hence, for all k ∈ J there exists zk ∈ [xk, xk + γ−1tkd

k] such that

−γ−1tkβ
∥

∥gk
∥

∥ ≤ f(xk + γ−1tkd
k) − f(xk)

= γ−1tk
〈

∇f(zk) , dk
〉

= γ−1tk
〈

∇f(xk) , dk
〉

+ γt−1
k

〈

∇f(zk) −∇f(xk) , dk
〉

≤ γ−1tk

[

sup
g∈Gk

〈

g , dk
〉

]

+ γt−1
k

∥

∥∇f(zk) −∇f(xk)
∥

∥

= −γ−1tk
∥

∥gk
∥

∥ + γt−1
k

∥

∥∇f(zk) −∇f(xk)
∥

∥ ,

where the first inequality follows since tk < 1, the first equality is an applica-
tion of the mean value theorem, and the third equality follows by construction
since dk solves the problem inf‖d‖≤1 supg∈Gk 〈g , d〉. Dividing through by γ−1tk
and rearranging yields the inequality

0 ≤ (β − 1)
∥

∥gk
∥

∥ +
∥

∥∇f(zk) −∇f(xk)
∥

∥ ≤ (β − 1)η +
∥

∥∇f(zk) −∇f(xk)
∥

∥ .

Taking the limit over J and using the continuity of ∇f we obtain the con-
tradiction 0 ≤ (β − 1)η < 0. Hence

∥

∥gk
∥

∥ → 0.
The final statement in Part 1 of the corollary now follows from the in-

equality 0 ≤ dist (0 |Gǫ(x̄)) ≤
∥

∥gk
∥

∥ and the continuity of the gradient.

2. Theorem 3.4 states that with probability 1 either the GS algorithm termi-
nates finitely at a point x̄ satisfying 0 ∈ Gǫ(x̄) ⊂ ∂̄ǫf(x̄) or there is a cluster
point x̂ that is a Clarke ǫ-stationary point of f . Hence we need only focus
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on the case where we obtain the cluster point x̂. Since the GS algorithm is
a descent method we know that f(x̂) = f(x̄) where x̄ is any cluster point
of the sequence generated by the algorithm. Hence we need only show that
(21) holds for x̂.

Since 0 ∈ ∂̄ǫf(x̂), Carathéodory’s theorem states that there exist pairs
(z1, w1), (z2, w2), . . . , (zn+1, wn+1) ∈ Rn × Rn and non-negative scalars 0 ≤
λj ≤ 1, j = 1, . . . , n+1 such that zj ∈ x̂+ǫIB, wj ∈ ∂̄f(zj), j = 1, . . . , n+1,
∑n+1

j=1 λj = 1, and
∑n+1

j=1 λjw
j = 0. The subdifferential inequality implies that

for every x ∈ Rn

f(x) ≥ f(zj) +
〈

wj , x − zj
〉

, j = 1, . . . , n + 1 . (22)

Let w ∈ ∂f(x̂). Multiply each of the inequalities in (22) by its associated λj

and sum up. Then

f(x) ≥
n+1
∑

j=1

λjf(zj) +

n+1
∑

j=1

λj

〈

wj , x − zj
〉

≥
n+1
∑

j=1

λj(f(x̂) +
〈

w , zj − x̂
〉

) +

〈

n+1
∑

j=1

λjw
j , x − x̂

〉

+

n+1
∑

j=1

λj

〈

wj , x̂ − zj
〉

≥ f(x̂) +
n+1
∑

j=1

λj

〈

wj − w , x̂ − zj
〉

≥ f(x̂) −
n+1
∑

j=1

λj(
∥

∥wj
∥

∥ + ‖w‖)
∥

∥x̂ − zj
∥

∥

≥ f(x̂) −
n+1
∑

j=1

λj2κǫ

= f(x̂) − 2κǫ,

where w ∈ ∂f(x̂) and we have used the fact that κ is a bound on any
subgradient at a point in L.

Our next convergence result is in the spirit of the sequential unconstrained
minimization technique (SUMT) employed in [FM68]. Here we consider the
behavior of the set of cluster points of the GS algorithm in fixed ǫ mode as
ǫ is decreased to zero.
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Corollary 3.6 Let {ǫj} be a sequence of positive scalars decreasing to zero.
For each j = 1, 2, . . . consider the GS algorithm with ν0 = 0 and ǫ = ǫj.
Let Cj denote either the point of finite termination of the iterates or, al-
ternatively, the set of all cluster points of the resulting infinite sequence of
iterates. By Theorem 3.4, with probability 1 there exists a sequence {xj} with
xj ∈ Cj, j = 1, 2, . . . , satisfying 0 ∈ ∂̄ǫj

f(xj) for each j = 1, 2, . . . . Then
every cluster point of the sequence {xj} is a Clarke stationary point for f .
Moreover, if the set L contains only one Clarke stationary point x̄, in which
case x̄ is the strict global minimizer of f , then with probability 1 the entire
sequence {xj} must converge to x̄ and sup {‖x − x̄‖ |x ∈ Cj } → 0, that is,
the sets Cj converge to the single point x̄ in the Hausdorff sense.

Proof Let {δj} be any positive sequence of scalars decreasing to zero. Since
0 ∈ ∂̄ǫj

f(xj) for each j = 1, 2, . . . , Carathéodory’s theorem tells us that for

each j = 1, 2, . . . there exists {xj
1, . . . , x

j
n+1} ⊂ xj +ǫjIB, {zj

1, . . . , z
j
n+1} ⊂ Rn

with zj
s ∈ ∂̄f(xj

s), s = 1, . . . n + 1, and λj
1, . . . , λ

j
n+1 ∈ R+ with

∑n+1
s=1 λj

s = 1

such that
∥

∥

∑n+1
s=1 λj

sz
j
s

∥

∥ ≤ δj. Let x̂ be any cluster point of the sequence {xj}
with associated subsequence J ⊂ IN such that xj →J x̂. By compactness and
the upper semi-continuity of ∂̄f , we may assume with no loss in generality
that there exists λ1, . . . , λn+1 ∈ R+ with

∑n+1
s=1 λs = 1 and zs ∈ ∂̄f(x̂)

such that λj
s →J λs and zj

s →J zs, s = 1, . . . , n + 1. Then
∑n+1

s=1 λj
sz

j
s →J

∑n+1
s=1 λszs ∈ ∂̄f(x̂). But by construction

∥

∥

∑n+1
s=1 λj

sz
j
s

∥

∥ ≤ δj with δj ↓ 0.

Hence it must be the case that
∑n+1

s=1 λszs = 0, which shows that 0 ∈ ∂̄f(x̂).
Next assume that the set L contains only one Clarke stationary point

x̄. If the sequence {xj} does not converge to x̄, then there is a subsequence
that remains bounded away from x̄. Since the GS algorithm only generates
iterates in the compact set L this subsequence must have a cluster point in
L that differs from x̄. Since we have just shown that this cluster point must
be a Clarke stationary point of f we have a obtained the contradiction that
establishes the result.

Finally suppose that x̄ is a local minimizer of f . Since any local minimizer
is a Clarke stationary point, we have that x̄ is the unique local minimizer of
f in the level set L and hence the unique global minimizer of f in the level
set L as well. Observe that since the GS algorithm is a descent algorithm,
we have that f(x) = f(xj) for all x ∈ Cj and all j = 1, 2, . . . . We have
just shown that xj → x̄, hence f(xj) → f(x̄). Now if the sequence of
values sup {‖x − x̄‖ |x ∈ Cj } does not converge to zero, then there must be
a sequence {x̂j} with x̂j ∈ Cj for each j = 1, 2, . . . such that the sequence is
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bounded away from x̄. Due to compactness there is a subsequence J ⊂ IN
such that {x̂j} converges to some x̂ ∈ L. But then f(x̄) = limJ f(xj) =
limJ f(x̂j) = f(x̂). Therefore, x̂ must also be a global minimizer of f on L.
Since this global minimizer is unique we arrive at the contradiction x̂ = x̄
which proves the result.

Corollary 3.7 Suppose that the set L contains a unique Clarke stationary
point x̄ of f , in which case x̄ is the unique global minimizer of f . Then for
every δ > 0 there exists an ǭ > 0 such that if the GS algorithm is initiated
with ǫ ∈ (0, ǭ), then with probability 1 either the algorithm terminates finitely
at a point within a distance δ of x̄ or, alternatively, every cluster point of the
resulting infinite sequence of iterates is within a distance δ of x̄.

Proof Suppose the result is false. Then with positive probability there ex-
ists δ > 0 and a sequence ǫj ↓ 0 such that the set of cluster points Cj (or the
finite termination point) of the sequence of iterates generated by the GS al-
gorithm with ǫ = ǫj satisfy sup {‖x − x̄‖ |x ∈ Cj } > δ. But this contradicts
the final statement of Corollary 3.6 whereby the result is established.

The convergence results stated above describe the behavior of the GS
algorithm in fixed ǫ mode. We now give a final convergence result for the
algorithm in the case where ǫk and νk are allowed to decrease.

Theorem 3.8 Let {xk} be a sequence generated by the GS algorithm with
ν0 > 0, ǫ0 > 0, µ ∈ (0, 1), and θ ∈ (0, 1). With probability 1 the sequence
{xk} is infinite. Moreover, if the sequence {xk} converges to some point x̄,
then, with probability 1, νk ↓ 0 and x̄ is a Clarke stationary point for f .

Proof We restrict our discussion to instances of the GS algorithm in E .
The algorithm terminates finitely only if it terminates in either Steps 1 or
2. As previously observed, finite termination in Step 1 has zero probability.
Finite termination occurs in Step 2 if νk =

∥

∥gk
∥

∥ = 0. But by construction,
0 < νk for all k if 0 < ν0. Hence the algorithm cannot terminate in Step 2.
Therefore, with probability 1 the sequence {xk} is infinite.

Let us first observe that if νk ↓ 0, then every cluster point is a Clarke
stationary point due to the upper semi-continuity of ∂̄f and the relation

dist
(

0
∣

∣ ∂̄ǫk
f(xk)

)

≤ dist
(

0
∣

∣ Gǫk
(xk)

)

≤ dist
(

0
∣

∣ Gk
)

=
∥

∥gk
∥

∥ ≤ νk.
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In this case it follows that the entire sequence must converge to x̄ since x̄ is
the unique Clarke stationary point.

Hence, we may as well assume that

ν̄ = inf
k

νk > 0. (23)

If ν̄ > 0, then it must be it must be the case that νk and ǫk were updated
only finitely many times. That is, there is an index k0 and an ǭ > 0 such
that

νk = ν̄ and ǫk = ǭ ∀ k ≥ k0. (24)

This places us in the context of Theorem 3.4 where finite termination almost
surely does not occur since ǫk = ǭ and

∥

∥gk
∥

∥ > νk = ν̄ for all k sufficiently
large. Hence the cluster point x̄ must be a Clarke ǭ-stationary point of f .
By Part 1 of Lemma 3.2, there is a τ > 0 and a non-empty open set V̄ such
that the set Vǫ(x̄, x, ν̄/2) contains V̄ whenever ‖x − x̄‖ ≤ τ . Now since we
assume event E the sequence {(uk1, . . . , ukm)} hits every open subset of the
unit ball IBm infinitely often, or equivalently, the sequence {(ǭuk1, . . . , ǭukm)}
hits every open subset of ǭIBm infinitely often. As xk → x̄, we have that the
sequence {(xk1, . . . , xkm)} hits V̄ infinitely often. But then it must be the case
that

∥

∥gk
∥

∥ ≤ ν̄/2 infinitely often since ρǫ(x̄) = 0. This is the contradiction
that proves the result.

We end this section with a summary of some Open Questions.

1. Theorem 3.4 indicates that the algorithm may not terminate. Under
what conditions can one guarantee that the GS algorithm terminates
finitely?

2. In Theorem 3.4, we show that if the GS algorithm does not terminate
finitely, then there exists a subsequence J ⊂ IN such that ρǫ(x

k) →J 0.
But we cannot show that the corresponding subsequence gk converges
to 0. Can one show that

∥

∥gk
∥

∥ →J 0? Or, is there a counter-example?
We believe that a counter-example should exist.

3. We have successfully applied the GS algorithm in many cases where
the function f is not Lipschitz continuous. Is there an analogue of
Theorem 3.4 in the non-Lipschitzian case?
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4. Is it possible to remove the uniqueness hypothesis in Corollary 3.7?

5. In Theorem 3.8, can one show that all cluster points of the sequence
are Clarke stationary points?

4 Numerical Results

We have had substantial experience using the GS algorithm to solve a wide
variety of nonsmooth, nonconvex minimization problems that arise in prac-
tice. In this section we describe some of these problems and present some
of the numerical results. As far as we are aware, none of the problems we
describe here have been solved previously by any method.

We begin by describing our choices for the parameters defining the GS
algorithm as well as changes that must be made to implement it in finite
precision. We have attempted to minimize the discrepancies between the
theoretical and implemented versions of the method, but some are unavoid-
able. The algorithm was implemented in matlab which uses IEEE double
precision arithmetic (thus accuracy is limited to about 16 decimal digits).
For the solution of the convex quadratic program required in Step 2, we
tried several QP solvers; we found mosek [Mos03] to be the best of these in
terms of reliability, efficiency and accuracy; SeDuMi, which does not require
a license and is easily available online, is another good choice.

Sample Size. Bearing in mind the requirement that the sample size m must
be greater than n, the number of variables, we always set m = 2n.

Sampling Parameters. We used ǫ0 = µ = 0.1, thus initializing the sam-
pling radius to 0.1 and reducing it by factors of 0.1. Naturally, appropriate
choices depend on problem scaling; these values worked well for our problems.

Optimality Tolerance Parameters. We used ν0 = 10−6 and θ = 1,
thus fixing the optimality tolerance to 10−6 throughout. (We experimented
with θ < 1, so that a courser sampling radius is associated with a courser
optimality tolerance; this reduced the iteration counts for easier problems
but led to difficulty on harder ones.)

Line Search Parameters. We set the backtracking reduction factor γ
to the standard choice of 0.5, but we set the Armijo parameter β to the
decidedly nonstandard choice of 0. The theoretical analysis requires β > 0,
but in practice, on difficult problems, even a modest “sufficient decrease” test
can cause the algorithm to fail prematurely, and we never encountered any
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convergence difficulty that could be attributed to the choice β = 0. Setting β
to a very small number such as 10−16 is, for all practical purposes, equivalent
to setting it to zero.

Maximum Number of Iterations and Line Search Failure. We lim-
ited the number of iterations for each sampling radius to 100; once the limit
of 100 is reached, the sampling radius is reduced just as if the condition
∥

∥gk
∥

∥ ≤ νk = 10−6 in Step 2 were satisfied, so the line search is skipped,
and sampling continues with the smaller sampling radius. The smallest sam-
pling radius allowed was 10−6; instead of reducing it to 10−7, the algorithm
terminates. Thus, the total number of iterations is at most 600. Also, the
line search may fail to find a lower function value (either because a limit
on the number of backtracking steps, namely 50, is exceeded, or because
the computed direction of search is actually not a descent direction). Line
search failure is quite common for the more difficult problems and generally
indicates that, roughly speaking, the maximum accuracy has been achieved
for the current sampling radius. When line search failure occurs, we reduce
the sampling radius and continue, just as if the condition

∥

∥gk
∥

∥ ≤ νk = 10−6

were satisfied or the limit of 100 iterations were reached.

Skipping the Differentiability Check. We do not attempt to check
whether the iterates lie in the set D where f is differentiable, either in Step
1 or in Step 4. This is simply impossible in finite precision, and in any case
would make life very difficult for the user who provides function and gradient
values. The user need not be concerned about returning special values if the
gradient is not defined at a point; typically, this happens because a “tie”
takes place in the evaluation of the function, and the user may simply break
the tie arbitrarily. The justification for this is that, for all practical purposes,
in finite precision the set D is never encountered except in contrived, trivial
cases.

Ensuring Boundedness. In practice it is advisable to terminate the algo-
rithm if an a priori bound on the norm of the iterates xk is exceeded; we set
this bound to 1000, but it was not activated in the runs described here.

All parameters and limits described above are easily changed by users of
our matlab implementation.

We now present a selection of numerical results for the GS algorithm,
concentrating on problems that have not, to our knowledge, been solved
previously. In the tables below, each line corresponds to running the GS
algorithm on one problem (one instance of f). Because of the stochastic
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nature of the algorithm, we ran it 10 times, either from one given starting
point, when specified, or from 10 different random starting points, when so
indicated; the results shown are for the run achieving the lowest value of
f . For each problem class, we display the results for a range of problems,
ranging from easier to harder, and collected in a single table. Each line
of every table displays the final value of f , the total number of iterations
for all six sampling radii (the total number of times Step 2 was executed),
and an approximate “optimality certificate”. The last deserves a detailed
explanation. An approximate optimality certificate consists of two numbers;
the first is an “optimality residual norm”

∥

∥gk
∥

∥, and the second is the value
of the sampling radius ǫk for which the first value

∥

∥gk
∥

∥ was achieved. These
quantities together provide an estimate of nearness to Clarke stationarity.
Instead of simply displaying the final optimality certificate, we show the
certificate for the smallest sampling radius ǫk for which the test

∥

∥gk
∥

∥ ≤ νk =
10−6 was satisfied, or, if it were satisfied for no ǫk, simply the final values.

We note that for the problems described in Sections 4.1 through 4.4 we
think that the local minimizers approximated by the GS algorithm are in fact
global minimizers, based on the failure to find other locally minimal optimal
values when initializing the algorithm at other starting points.1 However, we
discuss the difficulty of finding global minimizers in Section 4.5.

We also remark that, for comparison purposes, we have attempted to solve
the same problems by other methods, particularly the Bundle Trust (BT)
fortran code of [SZ92]. It is faster than our code but, in our experience,
generally provides less accurate results and is unable to solve any of the
harder problems described below. We also experimented with a variety of
“direct search” methods which are not intended for nonsmooth problems
but are so robust that they are worth trying anyway. Of these, the most
successful was the well known Nelder-Mead method, but it was only able to
solve the easier problems with very small size n. An important observation
is that the user of the Bundle Trust or Nelder-Mead method generally has
no way of knowing how good a computed approximation might be in the
absence of any kind of local optimality certificate.

The data matrices for the problems discussed in Sections 4.2 and 4.5 are
available on the web, as are the computed solutions that we obtained for all
the problems.2

1A possible exception is the problem defined by N = 8 in Section 4.2.
2http://www.cs.nyu.edu/overton/papers/gradsamp/probs/
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n f opt cert iters
2 8.55641e-002 (9.0e-011, 1.0e-004) 42
4 8.75226e-003 (8.9e-009, 1.0e-006) 63
6 7.14507e-004 (6.5e-007, 1.0e-004) 166
8 5.58100e-005 (2.2e-005, 1.0e-006) 282

Table 1: Results for exponential Chebyshev approximation, starting from
x = 0

4.1 Chebyshev Approximation by Exponential Sums

Our first example is a classical one: Chebyshev approximation. The function
to be minimized is

f(x) = sup
s∈[ℓ,u]

|h(s, x)|

where [ℓ, u] is any real interval and h : R×Rn → R is any smooth function.
To evaluate f(x) for a given x ∈ Rn, we evaluate h(·, x) on a one-dimensional
grid of equally spaced points, find the maximum (in absolute value), and use
this to initialize a one dimensional local maximization method, based on
successive cubic interpolation using the derivative of h with respect to s, to
accurately locate a maximizer, say s̄. The finer the grid is, the more likely
one is to obtain the global maximizer. The function f is differentiable if the
maximizer is unique, with gradient

∇f(x) = sign(h(s̄, x))∇hx(s̄, x).

We use

h(s, x) =
1

s
−

n/2
∑

j=1

x2j−1 exp(−x2js)

where n is even and ℓ > 0. Thus the problem is to approximate the function
1/s on a positive interval by a sum of decaying exponentials. We chose
[ℓ, u] = [1, 10] with 2000 grid points, equally spaced in the target function
value 1/s.

Table 1 shows the results obtained by the GS algorithm (see above for
interpretation of “opt cert”). We may safely conjecture on the basis of these
results that the optimal value decays exponentially with n. The accuracy
achieved is of course limited by the conditioning of the problem and the
finite precision being used: accurate solutions were not obtainable for n > 8.
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Figure 1: The error function for the sum of exponentials approximation to
1/s on [1,10] for n = 8, with 9 alternation points

Figure 1 shows the error function h(s, x) as a function of s for the optimal
parameter vector x found for n = 8. Notice the alternation in the error
function; the maximum error is achieved at 9 places on the interval (the
leftmost one being essentially invisible). Work of J. Rice in the 1950’s [Mei67]
showed that if an optimal approximation exists, such alternation must take
place, with the number of alternation points equal to one plus the number
of parameters, but computation of such an error function was impossible at
the time. A picture like Figure 1 may well have appeared in the more recent
literature (perhaps computed by semi-infinite programming) but we have not
seen one.

We remark that the optimal approximations seem to be unique up to the
obvious permutation of pairs of parameters with one another; the ordering
of pairs (x2j−1, x2j) is arbitrary.

4.2 Minimization of Eigenvalue Products

Our second example is the following problem: minimize the product of the
largest k eigenvalues of a Hadamard (componentwise) matrix product A◦X,
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n N k f mult opt cert iters
1 2 1 1.00000e+000 1 (1.3e-008, 1.0e-006) 10
6 4 2 7.46286e-001 2 (7.3e-006, 1.0e-006) 68
15 6 3 6.33477e-001 2 (5.8e-006, 1.0e-006) 150
28 8 4 5.58820e-001 4 (1.0e-001, 1.0e-006) 600
45 10 5 2.17193e-001 3 (1.7e-005, 1.0e-006) 277
66 12 6 1.22226e-001 4 (9.7e-003, 1.0e-006) 432
91 14 7 8.01010e-002 5 (4.5e-006, 1.0e-006) 309
120 16 8 5.57912e-002 6 (2.7e-003, 1.0e-006) 595

Table 2: Results for minimizing eigenvalue product, using random starting
points

where A is a fixed positive semidefinite symmetric matrix and X is a variable
symmetric matrix constrained to have ones on its diagonal and to be positive
semidefinite. Since the latter constraint is convex, we could impose it via
projection, but for simplicity we handle it by an exact penalty function.
Thus the function to be minimized is

f(x) =

k
∏

j=1

λj(A ◦ X) − ρ min(0, λN(X)),

where λj means jth largest eigenvalue and the N by N symmetric matrix X
has ones on its diagonal and n = N(N − 1)/2 variables from the vector x in
its off-diagonal positions. We set ρ = 100. The function f is differentiable
at a vector x corresponding to a matrix X if X is positive definite and
λk(A◦X) > λk+1(A◦X). The gradient of f at such points is easily computed
using the chain rule and the fact that the derivative of a simple eigenvalue
λj in matrix space is the outer product qqT defined by its corresponding
normalized eigenvector q. As explained earlier, the user coding the gradient
need not be concerned about “ties”, whether these are ties for the choice of
kth eigenvalue of A ◦ X, ties for the ordering of its eigenvalues λj for j < k,
or the boundary case λN (X) = 0.

Table 2 shows results for various instances of this problem: The matrices
A are the leading N by N submatrices of a specific 63 by 63 covariance data
matrix arising in an environmental application [AL03]. In each case we set
k, the number of eigenvalues in the product, to N/2. For each minimizer
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approximated for N > 2, the matrix A◦X has a multiple interior eigenvalue
including λk; its multiplicity is shown in the table. In addition, for N > 4,
the minimizer X has a multiple zero eigenvalue.

The results in Table 2 demonstrate that use of the GS algorithm is by no
means restricted to very small n. Each iteration of the algorithm requires the
solution of a quadratic program in m variables, a cost that is a small degree
polynomial in n since m = 2n. However, solving this problem for N > 20
(n > 200) would take an unreasonable amount of computer time at present.

4.3 Spectral and Pseudospectral Minimization

We now enter the realm of nonsymmetric real matrices, whose eigenvalues
may be complex and are non-Lipschitz at some points in matrix space. We
are interested in a function known as the pseudospectral abscissa of a matrix,
αδ(X), defined, for any given δ ≥ 0, as the maximum of the real parts of the
δ-pseudospectrum of X, that is the set of all z in the complex plane such
that z is an eigenvalue of some complex matrix within a distance δ of X
[Tre97]. Here, distance is measured in the operator 2-norm. Pseudospectra,
and more specifically the pseudospectral abscissa, arise naturally in the study
of robust stability of dynamical systems. When δ = 0 the pseudospectral
abscissa reduces to the spectral abscissa (the maximum of the real parts of the
eigenvalues of the given matrix X). An algorithm for computing αδ was given
by the authors in [BLO03b]. As is the case with so many of the applications
we have encountered, computing the function value is quite complicated, but
once it is computed, the gradient is easy to obtain where defined, in this
case requiring only the computation of singular vectors corresponding to a
certain least singular value. As usual, the user coding the gradient need not
be concerned with ties for the minimum value.

We consider a simple parameterized matrix,

X(x) =

















−x1 1 0 · · 0
x1 0 1 0 · 0
x2 0 · · · ·
· · · · · 0
· · · · · 1

xn 0 · · · 0

















, (25)
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Figure 2: The minimal pseudospectral abscissa αδ(X(x)) plotted as a func-
tion of δ, for various n.

where n, the number of parameters, is one less than the order of the matrix,
say N . Our optimization problem is to minimize

f(x) = αδ(X(x)) (26)

over the parameter vector x. The authors showed in [BLO01] that, in the
case δ = 0, the global minimizer of f is 0. It is easy to verify that f is not
Lipschitz at 0; in fact, f grows proportionally with |xn|1/N . The authors have
also shown [BLO03a] that, for fixed small positive δ, f is Lipschitz near 0,
but it is not known whether this is true on the whole parameter space.

Figure 2 shows the optimal values of (26) found by the GS algorithm for
various values of δ and N . We used x = 0 as the starting point since this
is the optimal solution for δ = 0. The figure suggests a conjecture: that
the optimal value is proportional to δ2/(N+1) for small δ. The irregularity
at the top right of the plot is not numerical error, but a reminder that the
phenomenon we are studying is nonlinear. We verified that the function (26)
is indeed nonsmooth at all the minimizers approximated by the GS algorithm.

Table 3 shows more detailed results for N = 5. Note particularly the final
line in the table which shows the case δ = 0 (minimizing the pure spectral
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δ f opt cert iters
1 1.63547e+000 (8.4e-007, 1.0e-006) 81

1.0e-001 4.92831e-001 (4.5e-006, 1.0e-006) 105
1.0e-002 2.56467e-001 (7.4e-009, 1.0e-002) 112
1.0e-003 1.08221e-001 (7.6e-008, 1.0e-003) 163
1.0e-004 4.66477e-002 (3.2e-010, 1.0e-005) 236
1.0e-005 2.10125e-002 (3.0e-007, 1.0e-006) 322
1.0e-006 9.68237e-003 (6.3e-007, 1.0e-006) 403

0 4.03358e-003 (3.0e-007, 1.0e-006) 157

Table 3: Results for minimizing pseudospectral abscissa αδ(X(x)) for n = 4
(N = 5), starting from x = 0 (except pure spectral abscissa case δ = 0,
started randomly)

abscissa). Since the solution is x = 0, we initialized the runs randomly in
this case. Because the exact optimal value of f is 0, the computed value
of f necessarily has no correct digits. However, its order of magnitude is
about as good as can be expected using a precision of 16 decimal digits,
because the exact spectral abscissa of X(x) has order of magnitude 10−3 for
‖x‖ = 10−15, the approximate rounding level. This experiment indicates that
the GS algorithm has no inherent difficulty with minimizing functions that
are non-Lipschitz at their minimizers.

4.4 Maximization of Distance to Instability

A stable matrix is one with all its eigenvalues in the open left half-plane. The
matrix X(x) defined in (25) is not stable for any x, but the shifted matrix
X(x) − sI is stable for all s > 0 and sufficiently small ‖x‖. Given a matrix
X, its distance to instability, denoted dinst(X), is the least value δ such that
some complex matrix Y within a distance δ of X is not stable. The distance
to instability is a well studied function [Bye88], especially in robust control,
where it is known as the complex stability radius (or, more generally, as the
inverse of the H∞ norm of a transfer function) [BB90]. The relationship
between αδ and dinst is summarized by

αδ(X) = 0 for δ = dinst(X),

for all stable X. By definition, dinst(X) = 0 if X is not stable.
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function of the shift s, for various n

s f opt cert iters
1 -4.49450e-001 (1.4e-006, 1.0e-006) 55

3.2e-001 -2.31760e-002 (1.5e-005, 1.0e-006) 71
1.0e-001 -8.12170e-004 (8.5e-007, 1.0e-002) 110
3.2e-002 -3.28692e-005 (1.8e-006, 1.0e-006) 141

Table 4: Results for maximizing distance to instability −f(x) = dinst(X(x)−
sI) for n = 4 (N = 5), starting from x = 0
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We now consider the problem of maximizing dinst(X(x) − sI) (equiva-
lently, minimizing f(x) = −dinst(X(x) − sI)) over the parameter vector x,
given s > 0. This is a difficult problem for small s because the set of x for
which f(x) < 0 shrinks to 0 as s → 0. We use the starting point x = 0
since f(0) < 0 for all s > 0. Figure 3 shows the optimal values found by
the GS algorithm for various s and N . The missing data points in the ta-
ble were suppressed because the computed values were too inaccurate to be
meaningful. The figure suggests another conjecture, related to the one in the
previous subsection: that the optimal value is proportional to s(N+1)/2.

Table 4 gives details for N = 5.

4.5 Static Output Feedback and Low-Order Controller

Design

Suppose the following are given: an N × N matrix A associated with a
dynamical system ξ̇ = Aξ, together with an N × m matrix B (defining
controllability of the system) and a p × N matrix C (defining observability
of the system), with m < N and p < N . Then, given an integer k < N , the
order k controller design problem is to find X1, X2, X3 and X4, respectively
with dimensions m×p, m×k, k×p and k×k, such that the matrix describing
the controlled system, namely

[

A 0
0 0

]

+

[

B 0
0 I

] [

X1 X2

X3 X4

] [

C 0
0 I

]

(27)

satisfies desired objectives. We confine our attention to optimizing the fol-
lowing functions of this matrix: asymptotic stability, as measured by α0, and
robust stability, as measured by dinst, respectively defined in the previous
two subsections. When k = 0, the controlled system reduces to static (or
memoryless) output feedback (SOF), the most basic control model possible,
with just mp free variables. Clearly, one may think of the order k controller
design problem as an SOF problem with (m + k)(p + k) variables instead of
mp, redefining A, B and C as the larger block matrices in (27).

When k, m and p are sufficiently large, it is known that stabilization is
generically possible and there are various well known techniques for finding
such solutions [Won85, Wil97]. However, for k, m, p << N , how to effi-
ciently find stabilizing X1, X2, X3, X4 (or show that this is not possible) is a
long-standing open problem in control [BGL95]. The title of this subsection
reflects the fact that we are only interested in small k.
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Figure 4: Eigenvalues and pseudospectra of B767 model at flutter condition
with no controller
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Figure 5: Eigenvalues and pseudospectra of B767 model when spectral ab-
scissa is minimized for SOF (order 0 controller)
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Figure 6: Eigenvalues and pseudospectra of B767 model when distance to
instability is maximized for SOF model (order 0 controller)
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Figure 7: Eigenvalues and pseudospectra of B767 model when distance to
instability is maximized for order 1 controller
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Figure 8: Eigenvalues and pseudospectra of B767 model when distance to
instability is maximized for order 2 controller

We focus on a specific, difficult example, which arises from a model of a
Boeing 767 at a flutter condition [Dav90]. The matrix A in this case describes
a linearized model when flutter has started to occur; in other words, the plane
is flying so fast that the aerodynamic and structural forces are interacting
to generate an instability in the system. The matrix A has size N = 55,
but the controllability and observability matrices B and C have only m = 2
columns and p = 2 rows respectively. Figure 4 shows the eigenvalues and
δ–pseudospectra boundaries of A as points (solid dots) and curves in the
complex plane. (Recall from Section 4.3 that the δ–pseudospectrum of A is
the set of complex numbers z such that z is an eigenvalue of a complex matrix
within a distance δ of A.) The legend on the right shows the values of δ using
a log 10 scale. Note the complex conjugate pair of unstable eigenvalues near
the top and bottom of the figure. This plot and subsequent ones were drawn
using T. Wright’s software EigTool [Wri02].

We first investigated the case k = 0 (SOF), applying the GS algorithm to
minimize the spectral abscissa α0 of the matrix (27) over the four free param-
eters (the entries in X1). Hundreds of runs from randomly chosen starting
points repeatedly found the same unstable local minimizers, with α0 > 0.
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Eventually, however, the GS algorithm found a stable local minimizer, with
α0 = −7.79 × 10−2 and an optimality certificate (2.8 × 10−15, 10−5). The
reason it was so difficult to find this minimizer is that the data is very badly
scaled. Once it became evident what scaling to use for the starting point, the
GS algorithm had no difficulty repeatedly finding this minimizer. Figure 5
shows the eigenvalues and pseudospectra of the stabilized matrix. Although
all the eigenvalues are now (barely) to the left of the imaginary axis, even the
10−6-pseudospectrum extends into the right half-plane. Thus, the matrix is
not robustly stable: tiny perturbations to it can generate instability.

We then used this stabilizing minimizer, as well as randomly gener-
ated small relative perturbations of it, as starting points for maximizing
dinst over the same four variables. The GS algorithm found a local opti-
mizer with dinst = 7.91 × 10−5, optimality certificate (9.2 × 10−7, 10−6), and
whose eigenvalues and pseudospectra are shown in Figure 6. Notice that
the 10−5-pseudospectrum now lies in the left-half plane, but that the 10−4-
pseudospectrum still extends into the right half-plane.

We now turn to order 1 and order 2 controllers (k = 1 and k = 2 respec-
tively). We used the local optimizer for k = 0 as a starting point, as well as
randomly generated small relative perturbations, to maximize the same dinst

objective over the 9 variable parametrization for an order 1 controller and
the 16 variable parametrization for an order 2 controller. For k = 1, the GS
algorithm found a local optimizer with dinst = 9.98 × 10−5, with optimality
certificate (7.9 × 10−7, 10−4) and whose eigenvalues and pseudospectra are
shown in Figure 7. For k = 2, the GS algorithm found a local optimizer
with dinst = 1.02 × 10−4, with optimality certificate (7.3 × 10−6, 10−6) and
whose eigenvalues and pseudospectra are shown in Figure 8. For k = 1, the
10−4-pseudospectrum extends just slightly into the right half-plane, while for
k = 2, it is barely to the left of the imaginary axis, indicating that pertur-
bations of magnitude 10−4 or less cannot destabilize the matrix.

As far as we are aware, no such low order stabilizing controllers were
known for the Boeing 767 model before we conducted this work. The opti-
mality certificates that we obtained give us confidence that the optimizers we
approximated are indeed local optimizers. However, our initial difficulty in
finding even one stabilizing local minimizer of α0 in the case k = 0 illustrates
how difficult it is to find global minimizers, and we certainly cannot conclude
that the local optimizers we found are global optimizers.
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5 Concluding Remarks

We have presented a new algorithm for nonsmooth, nonconvex optimization,
proved its convergence to Clarke stationary points under strong assumptions,
raised questions about other possible convergence results under weaker as-
sumptions, extensively tested the algorithm, presented solutions of quite a
number of interesting optimization problems that have not been solved pre-
viously, and showed how approximate first-order optimality certificates may
be used to give some confidence that the solutions found are meaningful. We
make a few final remarks.

All of the functions that we have minimized by the GS algorithm are
subdifferentially regular (in the sense of Clarke; see Section 1) at the mini-
mizers that we found. We view regularity as a fundamental property that is
crucial for the understanding of an optimization problem when smoothness
and convexity, both of which are essentially special cases, are lacking. It is
regularity that combines with Clarke stationarity to give a genuine first-order
optimality condition: that the ordinary directional derivative is nonnegative
in all directions. We have been able to show, although we do not give details
here, that Chebyshev approximation error, eigenvalue products for symmet-
ric matrices, and the distance to instability are globally regular functions
using results like [RW98, Theorem 10.31] and [Lew99, Corollary 4]. The
case of the pseudospectral abscissa, including the pure spectral abscissa, is
much more challenging. The authors’ theoretical results on regularity of this
function may be found in [BO01, BLO03a, Lew02].

Finally, strong convergence properties of an algorithm are not much use
to a user who has no access to it. Our matlab implementation of the
GS algorithm is freely available.3 Furthermore, it is our intention to make
publicly available a nonsmooth, nonconvex optimization test set that will
include all the problems described here, so that others may use them in the
future. For all its power, the GS algorithm is nothing more than a generalized
steepest descent method, and will hopefully provide a benchmark against
which other algorithms, perhaps more rapidly convergent and efficient, may
be compared in the future.
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gradients. In C. Lemaréchal and R. Mifflin, editors, Nonsmooth
Optimization, pages 51–70. Pergamon Press, 1978. Proceedings
of a IIASA Workshop 1977.

[Cla73] F.H. Clarke. Necessary conditions for nonsmooth problems in
optimal control and the calculus of variations. PhD thesis, Uni-
versity of Washington, 1973.

[Cla83] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley,
New York, 1983. Reprinted by SIAM, Philadelphia, 1990.

[CLSW98] F.H. Clarke, Yu. S. Ledyaev, R.J. Stern, and P.R Wolenski. Non-
smooth Analysis and Control Theory. Springer, 1998.

[Dav90] E.J. Davison. Benchmark problems for control system design:
Report of the IFAC Theory Committee. IFAC, Laxenberg, 1990.

[DR95] V.F. Demyanov and A. Rubinov. Constructive Nonsmooth Anal-
ysis. Verlag Peter Lang, 1995.

[FGG02] A. Fuduli, M. Gaudioso, and G. Giallombardo. A DC piecewise
affine model and a bundling technique in nonconvex nonsmooth
minimization. Technical Report 4/2002, University of Calabria
(I), 2002.

[Fle87] R. Fletcher. Practical Methods of Optimization. John Wiley,
Chichester and New York, second edition, 1987.

[FM68] A.V. Fiacco and G.P. McCormick. Nonlinear Programming: Se-
quential Unconstrained Minimization Techniques. John Wiley,
New York, 1968. Republished by SIAM, Philadelphia, 1990.

40



[Gol77] A.A. Goldstein. Optimization of Lipschitz continuous functions.
Mathematical Programming, 13:14–22, 1977.

[Gro02] A. Grothey. A second order trust region bundle method for non-
convex nonsmooth optimization. Technical Report MS02-001,
University of Edinburgh, 2002.

[HUL93] J.B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and
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