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Abstract 38 

 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are characterized by 39 

differences in transmissibility and response to therapeutics. Therefore, discriminating among them is 40 

vital for surveillance, infection prevention, and patient care. While whole viral genome sequencing 41 

(WGS) is the “gold standard” for variant identification, molecular variant panels have become 42 

increasingly available. Most, however, are based on limited targets and have not undergone 43 

comprehensive evaluation. We assessed the diagnostic performance of the highly multiplexed Agena 44 

MassARRAY® SARS-CoV-2 Variant Panel v3 to identify variants in a diverse set of 391 SARS-CoV-2 45 

clinical RNA specimens collected across our health systems in New York City, USA as well as in 46 

Bogotá, Colombia (September 2, 2020 – March 2, 2022). We demonstrate almost perfect levels of 47 

interrater agreement between this assay and WGS for 9 of 11 variant calls (κ ≥ 0.856) and 25 of 30 48 

targets (κ ≥ 0.820) tested on the panel. The assay had a high diagnostic sensitivity (≥93.67%) for 49 

contemporary variants (e.g., Iota, Alpha, Delta, Omicron [BA.1 sublineage]) and a high diagnostic 50 

specificity for all 11 variants (≥96.15%) and all 30 targets (≥94.34%) tested. Moreover, we highlight 51 

distinct target patterns that can be utilized to identify variants not yet defined on the panel including the 52 

Omicron BA.2 and other sublineages. These findings exemplify the power of highly multiplexed 53 

diagnostic panels to accurately call variants and the potential for target result signatures to elucidate new 54 

ones.   55 

 56 
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Importance 58 

 The continued circulation of SARS-CoV-2 amidst limited surveillance efforts and inconsistent 59 

vaccination of populations has resulted in emergence of variants that uniquely impact public health 60 

systems. Thus, in conjunction with functional and clinical studies, continuous detection and 61 

identification are quintessential to inform diagnostic and public health measures. Furthermore, until 62 

WGS becomes more accessible in the clinical microbiology laboratory, the ideal assay for identifying 63 

variants must be robust, provide high resolution, and be adaptable to the evolving nature of viruses like 64 

SARS-CoV-2. Here, we highlight the diagnostic capabilities of a highly multiplexed commercial assay 65 

to identify diverse SARS-CoV-2 lineages that circulated at over September 2, 2020 – March 2, 2022 66 

among patients seeking care at our health systems. This assay demonstrates variant-specific signatures 67 

of nucleotide/amino acid polymorphisms and underscores its utility for detection of contemporary and 68 

emerging SARS-CoV-2 variants of concern.  69 

  70 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.22275691doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.28.22275691
http://creativecommons.org/licenses/by-nd/4.0/


 5

Introduction  71 

Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, suboptimal surveillance 72 

and diagnostic efforts have not been able to prevent the rapid, unchecked spread of severe acute 73 

respiratory syndrome coronavirus 2 (SARS-CoV-2) (1–4). In conjunction with various factors (e.g., 74 

variable healthcare access, limitations to effective infection prevention efforts), continued spread has led 75 

to the emergence of viral variants characterized by increased genomic diversity including the most 76 

recent Omicron (B.1.1.529) variant and its sublineages (5–8). This poses a unique challenge to 77 

healthcare systems and diagnostic laboratories, alike, as genomic variation has the potential to impact 78 

viral fitness (5, 9), disease pathogenesis (10–12), response to therapeutics (e.g., antibodies) (5, 13, 14), 79 

and molecular target detection (15–17).  80 

Ideally, SARS-CoV-2 diagnostic assays should be scalable to test increased clinical specimens 81 

and should be robust enough to accommodate genomic variation in viruses over time. Although 82 

improved technologies have made high-throughput platforms more available, most are limited in the 83 

level of multiplexing and, thus, risk target dropout and failing to capture infected individuals. Indeed, 84 

current nucleic acid amplification tests (e.g., reverse-transcription polymerase chain reaction (RT-PCR)) 85 

largely utilize 1-3 targets to detect (e.g., presence/absence) SARS-CoV-2 nucleic acids. Moreover, as 86 

new variants have emerged, diagnostic panels are based on targets designed for detection of nucleotide 87 

changes that yield specific amino acid substitutions and call variants based on distinct target result 88 

combinations (18–20). However, most of these assays distinguish viral variants through result patterns 89 

of 3-9 molecular targets across multiple reaction wells (20–28), which are constrained to distinguishing 90 

current circulating variants but may not be sufficient to distinguish nascent, increasingly divergent 91 

variants.  92 
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Whole viral genome sequencing (WGS) has, therefore, largely served as the “gold standard” for 93 

pathogen genomic surveillance. Still, this methodology is not realistic for most diagnostic laboratories as 94 

it requires staff with bioinformatic expertise, bioinformatics infrastructure, is relatively expensive and 95 

restricted in lower income countries (LICs) and lower middle income countries (LMCs) (29, 30). 96 

Therefore, there is great potential for highly multiplexed assays that target an expansive repertoire of 97 

polymorphisms. Currently, these platforms are rare in number (31, 32) and most have not yet been 98 

evaluated for their diagnostic capabilities in the clinical setting.  99 

Here, we recovered 391 SARS-CoV-2 viral RNA from clinical specimens collected from 100 

infected individuals who presented for testing at the Mount Sinai Health System (MSHS) in New York 101 

City (NYC) and at the Universidad del Rosario in Bogotá, Colombia from September 2, 2020 – March 102 

2, 2022. These specimens had previously undergone WGS for epidemiologic surveillance, and we used 103 

this data as a benchmark to evaluate the diagnostic performance of the Agena MassARRAY® SARS-104 

CoV-2 Variant Panel v3 (research use only, RUO). We tested this highly diverse set of viral variants to 105 

interrogate the level of agreement and diagnostic sensitivity and specificity across 12 distinct variants on 106 

the panel and 30 distinct polymorphic targets in the Spike (S) gene region. We demonstrate a high level 107 

of assay agreement and high levels of diagnostic sensitivity and specificity across most variant and 108 

individual targets tested. Furthermore, we highlight the utility of the variant panel to elucidate undefined 109 

or emergent variants based on unique target result signatures. 110 

  111 
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Materials and Methods 112 

Ethics statement 113 

For specimens obtained through routine testing at MSHS, the Mount Sinai Pathogen Surveillance 114 

Program was reviewed and approved by the Human Research Protection Program at the Icahn School of 115 

Medicine at Mount Sinai (ISMMS) (HS#13-00981). For specimens from Colombia, the study was 116 

reviewed and approved by the ethics Committee from Universidad del Rosario in Bogotá, Colombia 117 

(Act number DVO005 1550-CV1499). This study was performed following the Declaration of Helsinki 118 

and its later amendments, and all patient data was anonymized to minimize risk to participants. 119 

 120 

SARS-CoV-2 specimen collection and testing 121 

Residual viral RNA from a total of 391 specimens that were previously collected from 122 

September 2, 2020 – March 2, 2022 for routine diagnostic testing were utilized for this study.  123 

Specifically, 349 upper respiratory tract (e.g., nasopharyngeal, anterior nares) and saliva 124 

(September 2, 2020 – March 2, 2022) specimens were originally collected for SARS-CoV-2 diagnostic 125 

testing in the Molecular Microbiology Laboratory of the MSHS Clinical Laboratory, which is certified 126 

under Clinical Laboratory Improvement Amendments of 1988, 42 U.S.C. §263a and meets requirements 127 

to perform high-complexity tests were eligible for inclusion in this study. Viral RNA was extracted from 128 

300μL of each specimen using the Viral DNA/RNA 300 Kit H96 (PerkinElmer, CMG�1033�S) on the 129 

automated chemagic™ 360 instrument (PerkinElmer, 2024�0020) per manufacturer’s protocol as 130 

previously described (33, 34). After routine testing and extraction, viral RNA was stored at -80°C prior 131 

to recovery for testing in this study. 132 

Forty-two nasopharyngeal specimens were collected from patients from the Valle del Cauca 133 

department for SARS-CoV-2 testing at Universidad del Rosario from March 29, 2021 – July 28, 2021. 134 
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Details of processing and SARS-CoV-2 testing of upper respiratory specimens have been described 135 

previously (35). After diagnostic testing, residual viral RNA was also stored at -80°C prior to recovery 136 

for testing in this study.  137 

 138 

SARS-CoV-2 sequencing, assembly, and phylogenetics 139 

 As part of the ongoing Mount Sinai Pathogen Surveillance Program, SARS-CoV-2 viral RNA 140 

from MSHS underwent RT-PCR and next-generation sequencing followed by genome assembly and 141 

lineage assignment using a phylogenetic-based nomenclature as described by Rambaut et al. (36) using 142 

the Pangolin v4.0.6 tool and PANGO-v1.2.81 nomenclature scheme (https://github.com/cov-143 

lineages/pangolin) as previously described (4, 37).  144 

 Sequence libraries were prepared from RNA from Colombian specimens using the ARTIC 145 

Network protocol (https://artic.network/ncov-2019 accessed on 1 February 2021) as previously 146 

described (38). Briefly, long-read Oxford Nanopore MinION sequencing was conducted by the 147 

MinKNOW application (v1.5.5). Raw Fast5 files were base called and demultiplexed using Guppy. 148 

Reads were filtered to remove possible chimeric reads, and genome assemblies were obtained following 149 

the MinION pipeline described in the ARTIC bioinformatics pipeline (https://artic.network/ncov-150 

2019/ncov2019-bioinformatics-sop.html accessed on 1 February 2021). 151 

 Of 391 specimens, 381 single variant consensus genome sequences were identified, and the 152 

remaining 10 yielded mixed assemblies and, thus, a putative (inconclusive) consensus genome sequence 153 

was generated. All FASTA consensus genome sequences underwent mutation calling and phylogenetic 154 

lineage assignment by the Nextclade Web Interface (https://clades.nextstrain.org/, last accessed 4/18/22) 155 

and the Pangolin COVID-19 Lineage Assigner (https://pangolin.cog-uk.io/, last accessed 4/18/22).   156 

 157 
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SARS-CoV-2 Variant Panel Testing 158 

We recovered residual viral RNA from all 391 specimens from -80°C storage to undergo testing 159 

on the Agena MassARRAY® SARS-CoV-2 Variant Panel v3 160 

(https://www.agenabio.com/products/panel/coronavirus-sars-cov-2-variant-detection-research-161 

panel/#:~:text=The%20MassARRAY%C2%AE%20SARS%2DCoV,SARS%2DCoV%2D2%20variants162 

., last accessed 4/25/22). The panel combines RT-PCR and matrix-assisted laser desorption/ionization 163 

time-of-flight (MALDI-TOF) to detect targeted viral polymorphisms in the Spike (S) gene (Fig. 1A). It 164 

consists of a two-well multiplex qualitative assay that utilizes primer mixes that target a total of 36 165 

polymorphisms which – in various signature combinations – reflect 16 distinct SARS-CoV-2 variants 166 

(Fig. 1B).  167 

 168 

RT-PCR and generation of analytes 169 

Per manufacturer’s protocol, for each specimen, viral RNA underwent RT-PCR by combining 170 

0.355μL nuclease-free water, 1μL RT-PCR Mastermix, 0.125μL RNase Inhibitor, and 0.020μL of 171 

MMLV Enzyme in each of two wells in a 384-well format. To one well, 0.500μL SARS-CoV-2 Variant 172 

v3 PCR Primer P01 was added, and to the second, 0.500μL SARS-CoV-2 Variant v3 PCR Primer P02 173 

was added. Three microliters of sample RNA were added to each of the two wells for a final RT-PCR 174 

reaction volume of 5μL. Four positive controls of synthetic SARS-CoV-2 RNA (Twist Synthetic SARS-175 

CoV-2 RNA Controls 1 (MT007544.1, #102019), 14 (B.1.1.7_710528, #103907), 16 (EPI_ISL_678597, 176 

#104043), and 17 (EPI_ISL_792683, #104044)) were diluted in a mixture of nuclease-free water 177 

(Ambion #AM9916) and human liver total RNA (Takara Bio #636531) and included in each RT-PCR 178 

run. This resulted in a total of 8 wells with 1,500 SARS-CoV-2 genome copies/well and 10ng human 179 
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liver total RNA/well for all positive controls. A negative control of nuclease-free water was included in 180 

each RT-PCR run. RT-PCR thermocycler conditions are depicted in Table S1.  181 

RT-PCR products underwent reaction with shrimp alkaline phosphatase (SAP). Directly to each 182 

RT-PCR well, a mastermix of 1.53μL nuclease-free water, 0.17μL SAP Buffer, and 0.30μL SAP was 183 

added for a total volume of 7μL including 2μL of SAP mastermix. SAP reaction thermocycler 184 

conditions are described in Table S2.  185 

Extension products were generated with SARS-CoV-2 Variant v3 Extend Primers using the 186 

iPLEX® Pro Reagent Set. Mastermixes were created as follows: 1.06μL nuclease-free water, 0.20μL 187 

iPLEX Buffer Plus, GPR; 0.20μL iPLEX Termination Mix, 0.04μL iPLEX Pro Enzyme, and 0.50μL 188 

MassARRAY® SARS-CoV-2 Variant v3 Extend Primers (E01 or E02. Two microliters of E01 189 

mastermix were added to each well amplified by P01 primers, and 2μL E02 mastermix was added to 190 

each well amplified by P02 primers for the total extension reaction volume of 9μL. Extension 191 

thermocycler conditions are detailed in Table S3. 192 

 193 

Analyte dispensing, data acquisition, and data analyses 194 

 Twenty microliters of nuclease-free water were added to each well prior to desalting and 195 

dispensing in the MassARRAY® System for data acquisition. Analytes were desalted using suspended 196 

clean resin (Agena #08060) and dispensed onto SpectroCHIP® Arrays (CPM-384) for data acquisition 197 

with the MassARRAY® Analyzer with Chip Prep Module 384 as per manufacturer’s protocol. 198 

Instrument settings for iPLEX Pro genotyping panels were used with Genotype+Area selected as the 199 

Process Method. After data acquisition, MassARRAY® Typer Analyzer was used to analyze data and 200 

generate variant report output results for each specimen. All variant target results and individual target 201 

results for each specimen are depicted in Table S4. 202 
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Diagnostic performance analyses  203 

 To compare performance of the panel to the WGS “gold standard”, we generated 2x2 204 

contingency tables for detected and not detected results of each variant call or target call. To measure the 205 

level of agreement between WGS and the variant panel, we performed agreement analyses with kappa 206 

(κ) results and 95% confidence intervals (95% CI) using the publicly-available GraphPad Prism web 207 

calculator (https://graphpad.com/quickcalcs/kappa2/, last accessed April 20, 2022). Level of agreement 208 

was interpreted from kappa values as previously described (39). Interpretations included no (κ < 0), 209 

slight (0 ≤ κ ≤ 0.20), fair (0.21 ≤ κ ≤ 0.40), moderate (0.41 ≤ κ ≤ 0.60), substantial (0.61 ≤ κ ≤ 0.80), and 210 

almost perfect agreement (0.80 ≤ κ ≤1.00). In addition, we measured diagnostic sensitivity and 211 

specificity and negative (NPV) and positive predictive values (PPV) for each variant and individual 212 

target polymorphism tested (GraphPad Prism v.9.3.1). Ninety-five percent confidence intervals were 213 

calculated by the hybrid Wilson/Brown method. Fisher’s exact tests were performed for each 214 

contingency table for each variant and/or target tested. 215 

 Statistical analyses were performed for variant call results of 12 of the possible 16 variants on the 216 

panel. We also performed these analyses for 30 of the 36 possible targets on the panel as clinical 217 

specimens that encoded 6 specific amino acid polymorphisms (D80G, Y453F, E484Q, Q493K, N501T, 218 

I692V) were not recovered for this study. In addition, we did not recover any specimens that harbored 219 

the native D614 amino acid (A23403 nucleotide), and, therefore, we were not able to compute level of 220 

agreement or diagnostic specificity for the D614G variant or D614G target calls. In addition, for 221 

performance analyses of targets H69_V70del, N439K, and E484K, we excluded specimens that resulted 222 

in target dropout as we could not infer nucleotide polymorphisms that caused dropout given that 223 

primer/probe sequences are proprietary and not known.  224 
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 To assess prevalence of variant panel targets across Omicron sublineages, we interrogated 225 

publicly-available SARS-CoV-2 genomes on the GISAID database (last accessed May 6, 2022). Using 226 

the online graphical user interface, we counted the number of genomes that harbored each of the 36 227 

possible substitutions for each of four Omicron sublineages: BA.2.12.1 (n = 12324 genomes), BA.3 (n = 228 

184), BA.4 (n = 857), BA.5 (n = 437). Prevalence of each substitution was determined by dividing the 229 

number of genomes with the substitution by the total number of genomes analyzed for the sublineage in 230 

question.  231 

 232 

Display Items 233 

 All figures are original and were generated using the GraphPad Prism software, Microsoft Excel 234 

v16.60, and finished in Adobe Illustrator (v.26.1). Fig. 1A was created in BioRender.com and finished 235 

in Adobe Illustrator.  236 

 237 

Data availability  238 

All single variant consensus genome sequences were deposited in the publicly-available Global 239 

Initiative on Sharing Avian Influenza Data (GISAID) database (www.gisaid.org) [accession identifiers 240 

indicated in Table S4]. The remaining 10 genomes with mixed patters of mutations were not deposited 241 

into GISAID as single variant consensus genomes could not be resolved (data available upon request).  242 
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Results 243 

 We analyzed a diverse set of 391 SARS-CoV-2 viral RNA specimens that were collected from 244 

infected patients over 18 months of the COVID-19 pandemic in the NYC metropolitan area and 245 

Colombia. These RNA all underwent WGS that resulted in consensus genomes that comprise 56 distinct 246 

phylogenetic Pango lineages and corresponded to 12 of the 16 possible variant calls on the panel (Fig. 247 

1C). These included 39 Iota (B.1.526), 40 Alpha (B.1.1.7), 110 Delta (B.1.617.2 (n = 3) + AY.x (n = 248 

107)), and 79 Omicron (B.1.1.529 [BA.1 sublineage]) specimens. We also included 45 specimens that 249 

corresponded to 3 variants that are not defined by the panel (e.g., Lambda (C.37), Mu (B.1.621), 250 

Omicron (BA.2 sublineage)) to interrogate the assay’s ability to distinguish these based on target result 251 

patterns. 252 

 253 

Diagnostic performance of variant calling 254 

 To evaluate the diagnostic performance of the Agena MassARRAY® Variant Panel, phylogenetic 255 

results of consensus sequences based on WGS data served as the “gold standard” for comparison. Of 256 

391 specimens tested on the variant panel, there were 62 with variant calls that were discordant from 257 

WGS data; however, 45 of these consisted of specimens whose sequenced variant was without an 258 

appropriately defined variant algorithm on the panel. Therefore, only 17 (4.91%) of clinical RNA tested 259 

yielded discordant results between WGS and the expected results on the variant panel. 260 

 We measured the level of agreement between the overall variant calls from WGS and the variant 261 

panel (Table 1). Of the 12 panel variants in our study set, we performed agreement analyses on 11. We 262 

could not measure level of agreement – or diagnostic sensitivity/specificity – for the isolated D614G 263 

result because specimens which concurrently encoded the native D614 amino acid and did not yield any 264 

other variant result were not recovered for this study.  265 
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 Overall, we observed a high level of agreement (e.g., κ ≥ 0.856) for 9/11 variants including the 266 

contemporary Delta (B.1.617.2+AY.x) and Omicron (BA.1) variants. The Zeta (P.2) and Eta (B.1.525) 267 

variant calls demonstrated the lowest level of agreement. The single Zeta variant confirmed by WGS 268 

that was tested (PV26936) resulted as the Florida variant on the panel (Table S4). Interestingly, 269 

although the E484K and the four native amino acids – L18, K417, A701, Q677H – were correctly 270 

detected as part of the Zeta target algorithm, detection of K1191N and Q493K targets met the Florida 271 

variant target result criteria. The low level of agreement for the Zeta variant call is also impacted by the 272 

fact that all 15 Mu (B.1.621) specimens tested on the panel were incorrectly identified as Zeta; however, 273 

it is important to note that the Mu variant is not yet defined on this panel. Of the 7 Eta (B.1.525) variants 274 

tested on the panel, only 1 correctly identified as Eta while the remaining 6 resulted as detected D614G. 275 

These did not meet the minimum number of detectable targets to yield the Eta result and only resulted in 276 

2-3 of the 4 minimum required targets. These results may be the consequences of RNA degradation over 277 

long-term storage. For example, the six discordant specimens encode the H69_V70del by WGS, but all 278 

yielded dropout of that target on the panel which further supports this scenario.  279 

 We also measured the diagnostic sensitivity and specificity of the panel (Fig. 2A-B) for the 280 

variants tested. Diagnostic sensitivity ranged from 0% (95% CI: 0-94.87%) [Zeta] to 100% (95% CI: 281 

91.24-100%) [Alpha]. Unsurprisingly, the specimens for which we had limited (e.g., <10) specimens 282 

available for testing had the lowest measured sensitivities and broadest CIs including Zeta and Eta 283 

variants. Among variants for which we recovered >10 specimens for testing, diagnostic sensitivity was 284 

≥93.67% [Omicron (BA.1)]. In addition, the variant panel demonstrated a high level of diagnostic 285 

specificity across all 11 variants tested that ranged from 96.15% (95% CI: 93.75-97.66%) for the Zeta 286 

variant to >99% for all other variants (Fig. 2B). Furthermore, excluding the Zeta variant, the panel 287 

results showed high PPVs (≥0.933) and high NPVs (≥0.984) for all variant calls (Table S5).  288 
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Diagnostic performance of distinct target calls 289 

 To evaluate the diagnostic capabilities of each of the 36 targeted polymorphisms that comprise 290 

the variant panel, we performed interrater agreement analyses and measured the diagnostic sensitivity 291 

and specificity of each assay target. Across all 391 viral RNA specimens, each of 30 of the possible 36 292 

polymorphisms were present in at least one specimen.  293 

 When we performed agreement analyses on each of these 30 targets (Table 2), 25 demonstrated 294 

almost perfect levels of agreement (κ ≥ 0.820). The targets with suboptimal levels of agreement for our 295 

dataset included D215G (κ = 0; no agreement), L242_244del (κ = 0.568; moderate agreement), N501Y 296 

(κ = 0.528; moderate agreement), and K1191N (κ = 0.799; substantial agreement). This low level of 297 

agreement may be impacted by small sample sizes tested. Indeed, we only recovered 2-4 specimens that 298 

encoded each of the D215G, L242_244del, and K1191N targets, Therefore, small frequencies (e.g., 2-4) 299 

of inaccurate calls may explain this result. It is important to note that our study set did not include 300 

specimens with the native D614 amino acid (A24303 nucleotide), and level of agreement could not be 301 

calculated for the D614G target. 302 

 Interestingly, for N501Y target, we found that of 158 specimens with the polymorphism by 303 

WGS, 79 yielded a false-negative result on the variant panel. All 79 belong to the Omicron (BA.1) 304 

variant lineage, and when reanalyzed excluding these BA.1 specimens, interrater agreement was almost 305 

perfect (κ = 0.975) (Table 2). This suggests genomic variation outside original assay design may impact 306 

primer/probe binding and yield distinct target results for novel variants. 307 

 Across the 30 targets tested, the average diagnostic sensitivity measured was 90.2% (Fig. 2C). 308 

The targets with the lowest sensitivities included D80A (75.00%, 95% CI: 30.06-98.72%), D215G (0%, 309 

95% CI: 0.00-56.00%), L242_244del (50.00%, 95% CI: 9.00-91.00%), and N501Y (50.00%, 95% CI: 310 
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42.00-58.00%). Notably, when all BA.1 specimens were excluded from the analyses, the sensitivity of 311 

the N501Y target improved to 100.00% (95% CI: 95.00-100.00%).  312 

 The variant panel assay demonstrated a high diagnostic specificity across nearly all 30 targets 313 

tested in this study (Fig. 2D). On average, the diagnostic specificity was >99.00% across all of the tested 314 

diagnostic targets. Specificity was not calculated for the D614G target because no clinical specimens 315 

with the native D614 amino acid were recovered in this study. In addition, across the 30 targets, the 316 

PPVs and NPVs were 0.900 and 0.959, respectively (Table S6).  317 

 318 

Diagnostic target signatures of undefined variants 319 

 Given that the variant panel has a uniquely high level of multiplexing, we also interrogated the 320 

capabilities of the assay to reveal unique signatures of variants not defined by the panel software. To do 321 

this, we included 45 clinical specimens that included the older Lambda (C.37) (n = 21) and Mu 322 

(B.1.621) (n = 15) variants as well as the contemporary Omicron BA.2 variants (n = 9) recently captured 323 

in NYC (Fig. 3A). Each of the three were called as D614G, Zeta (P.2), and D614G, respectively on the 324 

panel.  325 

 Based on the current design of the panel, most of the Lambda specimens tested (18/21) only have 326 

detectable D614G polymorphisms among the 36 targets. The remaining 3 additionally yield a T95I 327 

(C21846U) polymorphism; however, this substitution is not found in any of the 3 consensus sequences, 328 

and, therefore, may represent a nonspecific reaction or a minority intra-host variant. Notably, this 329 

polymorphism is rare and found in only 24/10186 (0.23%) Lambda genomes deposited in GISAID (last 330 

accessed May 6, 2022). The current target design does not target common Lambda substitutions 331 

including G75V, T76I, D253N, L452Q, T859N, or deletions (e.g., amino acids 246-252).  332 
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 All 15 Mu specimens were appropriately called as Zeta (P.2) based on the presence of the native 333 

L18, K417, Q677, and A701 amino acids as well as the E484K which meets the threshold for the Zeta 334 

variant call. All Mu specimens display a signature of six detectable targets that is unique among all other 335 

variant patterns on this assay: T95I, Y144del, E484K, N501Y, D614G, and P681H. Interestingly, none 336 

of the specimens’ consensus genome sequences encode the Y144del which suggests other sequence 337 

variation may alter primer/probe binding to this target. In fact, 12 of the Mu sequences harbor 338 

substitutions at positions 144-145 (e.g., Y144S, Y145N) which may impact target detection. The five 339 

other amino acid substitutions are encoded in the consensus genomes of all 15 specimens. Of note, 340 

although specimen K42 features an adenosine insertion at genome position 21995, the downstream 341 

nucleotide sequence encodes these amino acid polymorphisms. In addition to these 5 substitutions, there 342 

are 3 Mu specimens which yielded a detectable Q677H target. However, these genomes harbor the 343 

G23593 nucleotide which encodes the native Q677 amino acid and suggests this is a nonspecific result 344 

or detection of a minor intra-host variant. 345 

 We also found that the 9 Omicron BA.2 specimens generated a distinct target result signature on 346 

the variant panel assay. All 9 resulted in detection of S477N, T478K, N501Y, D614G, and P681H 347 

targets as well as dropout of the N439K target. The five detected targets each were confirmed by the 348 

presence of the amino acid substitutions in WGS data. We cannot delineate the cause of the N439K 349 

target dropout because we do not know primer/probe sequences at the site of the targeted nucleotide 350 

substitution at position 22879. However, one can speculate that sequence variation around this region 351 

may interfere with primer/probe binding. Indeed, all 9 of the BA.2 specimens harbor the T22882G 352 

polymorphism which results in the N440K substitution. Furthermore, the K417N substitution is found in 353 

all BA.2 consensus genomes but is only detected in 7 specimens. This may be the result of different 354 

nucleic acid quantities across specimens and reflect a limit in analytic sensitivity for the target. 355 
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Together, these are important findings to gauge the capabilities of this assay to highlight unique target 356 

signatures of variants that may be captured by this platform.  357 

 Finally, to assess the capabilities of the assay to detect other Omicron sublineages (e.g., 358 

BA.2.12.1, BA.3, BA.4, BA.5), we independently interrogated the prevalence of each variant panel 359 

target substitution among publicly-available genomes (GISAID) (Fig. 3B). We found that 94.9-99.7% of 360 

BA.2.12.1 genomes harbor each of the K417N, S477N, T478K, N501Y, D614G, and P681H 361 

substitutions. With the exception of the N439K target dropout in BA.2 genomes tested in this study, the 362 

BA.2.12.1 target signature harbors the same detectable polymorphisms. While 70.7-99.5% of BA.3 363 

genomes also encode the S477N, T478, N501Y, D614G, and P681H, 63.0-66.3% harbor the 364 

H69_V70del, T95I, and Y144del substitution which help to distinguish this sublineage from BA.2 and 365 

BA.2.12.1. Furthermore, 88.1% of BA.4 and 99.3% of BA.5 genomes encode the L452R substitution 366 

which may help to differentiate these genomes from other Omicron sublineages.  367 

  368 
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Discussion 369 

 Monoclonal antibody treatments are effective in limiting severe COVID-19 but emerging 370 

variants of concern often carry mutations that render the virus partially or completely resistant to 371 

antibody neutralization (13, 14, 40–44). Rapid SARS-CoV-2 variant calling is therefore essential for 372 

personalized COVID-19 treatment interventions. With the advent of commercial and lab-developed 373 

variant panels, however, accurate variant requires robust, high-resolution platforms which are limited in 374 

number and have not undergone evaluation prior to implementation. Indeed, a multi-laboratory external 375 

quality assessment in late 2021 revealed gaps in calling of contemporary variants that stemmed from 376 

inadequate selection of diagnostic targets to discern between variants (27). Given this, highly 377 

multiplexed, efficient platforms are invaluable but are limited in number and warrant comprehensive 378 

evaluation before implementation in the molecular microbiology laboratory.  379 

 Here, we report a comprehensive diagnostic evaluation of one of the highest multiplexed variant 380 

panel assays on the market. Based on a diverse cohort of clinical specimens across two continents and a 381 

wide timeline of the pandemic, we highlight almost perfect levels of interrater agreement between this 382 

assay and the “gold standard” WGS for 9 of 11 variants and 25 of 30 distinct targets tested. The assay 383 

has a high diagnostic specificity across all variants (≥96.15%) and all targets (≥94.34%) tested. 384 

Furthermore, the panel shows a high diagnostic specificity and sensitivity for contemporary variants in 385 

global circulation (e.g., Delta, Omicron (BA.1)).  386 

 Our study does present some limitations particularly with respect to limited sampling. While the 387 

panel has defined target signatures for 16 different variants, we were only able to recover clinical 388 

specimens that corresponded to 11 of these variants for testing. Indeed, variants with the lowest level of 389 

agreement and diagnostic performance metrics were those with some of the fewest specimens recovered 390 

and tested (e.g., Zeta (n = 1), Beta (n = 4), Eta (n = 7). We also did not include specimens from the early 391 
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phase of the pandemic including D614 viruses (45, 46) which limited diagnostic analyses of the D614G 392 

variant and individual target. It is important to note, however, that the D614G polymorphism has 393 

undergone positive selection to eventuate emergent variants (47), and these older viruses have largely 394 

been replaced by the emergent Omicron lineage(s) (6, 48). We also recognize that we did not conduct 395 

this study at the extraction step of clinical specimens given limited availability of remnant upper 396 

respiratory or saliva specimens.  397 

 A unique benefit of a highly multiplexed molecular assay is its adaptability to the natural 398 

evolution of the pathogen at hand which confers the ability to identify changes in circulating viruses that 399 

manifest as distinct target result signatures. To assess this potential, we included undefined variants to 400 

determine if the discrete assay target result patterns could elucidate a variant’s identity without 401 

necessarily providing a defined result as the current software stands. Testing of Mu specimens resulted 402 

in a distinguishable combination of 5 detectable substitutions, but each result was interpreted as a Zeta 403 

(P.2) variant. This scenario highlights the utility of distinct target results to point to new viruses that 404 

rapidly arise the circulating milieu of variants. Moreover, this underscores the importance of adaptable 405 

target result interpretation software to address acute changes detected in patient populations. We also 406 

tested clinical specimens that corresponded with the most current variant in circulation – the Omicron 407 

sublineage BA.2 – which has largely replaced BA.1 globally over January through April 2022 408 

(https://covariants.org/, last accessed 4/26/22). From our results, we report a BA.2-specific pattern of 409 

target results on this panel that can be used to readily discriminate the BA.2 from the BA.1 subtype. The 410 

following weeks/months will be key to monitoring to understand the utility of this platform for capturing 411 

other emerging Omicron sublineages (e.g., BA.2.12.1, BA.3, BA.4, BA.5).  412 

 Accurate identification of currently circulating and emerging SARS-CoV-2 variants is key to 413 

effective pathogen surveillance and providing optimal care to patients. Although WGS is the mainstay 414 
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for surveillance, it is important to consider in the global context of a pandemic, this may not be a 415 

realistic technology for many LICs and LMCs (29). Therefore, there is a great need for rapid, cost-416 

effective, conventional technologies (e.g., RT-PCR) in the clinical laboratory. However, these require 417 

increased diagnostic resolution to adequately capture viral evolution and meet the needs of pathogen 418 

surveillance. Thus, highly multiplexed molecular assays such as the one presented benefit from high 419 

discriminatory power and are a vital tool to shed light on changing viral dynamics. 420 

  421 
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Table and Figure Legends 692 

TABLE 1. Diagnostic agreement between WGS and panel variant calls 693 
 694 

Variant 
Number of 
Specimens a 

Agreement (%) Kappa (95% CI) Interpretation b 

Omicron (BA.1) 79 98.72 % 0.959 (0.924-0.995) Almost perfect 

Delta 110 98.72 % 0.968 (0.940-0.996) Almost perfect 

Alpha 40 100.00 % 1.000 (1.000-1.000) Almost perfect 

Beta 4 99.74 % 0.856 (0.577-1.000) Almost perfect 

Gamma 14 99.74 % 0.964 (0.894-1.000) Almost perfect 

Zeta 1 95.91 % -0.005 (-0.014-0.004) None 

Eta 7 98.47 % 0.247 (0.147-0.640) Fair 

Iota 39 99.74 % 0.986 (0.957-1.000) Almost perfect 

Epsilon 19 100.00 % 1.000 (1.000-1.000) Almost perfect 

B.1.258 1 100.00 % 1.000 (1.000-1.000) Almost perfect 

D614G c 27 NA NA NA 

Broad USA 5 100.00 % 1.000 (1.000-1.000) Almost perfect 

 695 a Number of specimens confirmed by WGS as the indicated variant. 696 
b Interpretation of level of agreement is based on reference (39). 697 
c Agreement analyses were not performed as specimens that harbor the native D614 amino acid were not recovered for 698 
testing. NA, not available. 699 
 700 
 701 
  702 
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TABLE 2. Diagnostic agreement between WGS and panel target calls 703 
 704 

Target 
Number of 

Specimens a, b 
Agreement (%) Kappa (95% CI) Interpretation c 

L5F 42 99.49 % 0.973 (0.935-1.000) Almost perfect 

S13I 19 99.74 % 0.972 (0.916-1.000) Almost perfect 

L18F 15 98.99 % 0.877 (0.758-0.996) Almost perfect 

T19R 110 98.72 % 0.968 (0.940-0.996) Almost perfect 

H69_V70del 51 97.35 % 0.906 (0.841-0.970) Almost perfect 

D80A 4 99.74 % 0.856 (0.577-1.000) Almost perfect 

D80G 0 NA NA NA 

T95I 159 96.42 % 0.927 (0.889-0.964) Almost perfect 

Y144del 126 92.33 % 0.824 (0.764-0.885) Almost perfect 

W152C 19 100.00 % 1.000 (1.000-1.000) Almost perfect 

D215G 3 99.23 % 0 None 

L242_244del 4 99.23 % 0.568 (0.127-1.000) Moderate 

D253G 39 98.98 % 0.944 (0.890-0.999) Almost perfect 

K417N 92 97.95 % 0.942 (0.902-0.982) Almost perfect 

K417T 14 99.23 % 0.899 (0.786-1.000) Almost perfect 

N439K 1 100.00 % 1.000 (1.000-1.000) Almost perfect 

L452R 124 98.47 % 0.965 (0.937-0.933) Almost perfect 

Y453F 0 NA NA NA 

S477N 90 100.00 % 1.000 (1.000-1.000) Almost perfect 

T478K 194 98.72 % 0.974 (0.952-0.997) Almost perfect 

E484Q 0 NA NA NA 

E484K 65 95.79 % 0.860 (0.791-0.929) Almost perfect 

Q493K 0 NA NA NA 

N501Y 158 79.03 % 0.528 (0.447-0.609) Moderate 

N501Y (exclude BA.1) 79 99.04 % 0.975 (0.947-1.000) Almost perfect 

N501T 0 NA NA NA 

A570D 40 100.00 % 1.000 (1.000-1.000) Almost perfect 

D614G d 388 99.49 % NA NA 

Q677H 7 99.23 % 0.820 (0.620-1.000) Almost perfect 

Q677P 5 100.00 % 1.000 (1.000-1.000) Almost perfect 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.28.22275691doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.28.22275691
http://creativecommons.org/licenses/by-nd/4.0/


 38

P681H 141 98.47 % 0.967 (0.940-0.993) Almost perfect 

P681R 110 98.47 % 0.961 (0.931-0.992) Almost perfect 

I692V 0 NA NA NA 

A701V 49 98.88 % 0.955 (0.911-0.999) Almost perfect 

T716I 40 100.00 % 1.000 (1.000-1.000) Almost perfect 

S982A 40 99.74 % 0.986 (0.958-1.000) Almost perfect 

K1191N 2 99.74 % 0.799 (0.413-1.000) Substantial  

 705 a Number of specimens that harbor the given target polymorphism by WGS. 706 
b Analyses were not performed if specimens with the given target polymorphism by WGS were not recovered for 707 
testing. NA, not available. 708 
c Interpretation of level of agreement is based on reference (39). 709 
d Kappa could not be determined as specimens that harbor the native D614 amino acid were not recovered for testing. 710 
 711 
  712 
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FIG 1. Detection of viral variants by the Agena MassARRAY® SARS-CoV-2 Variant Panel. (A) 713 

SARS-CoV-2 genome with nucleotide positions from 5’-to-3’ direction depicted above. S gene 714 

polymorphisms targeted by the variant panel (lollipops) and corresponding amino acids are depicted 715 

below. (B) A color map depicts algorithms of target combinations that define 16 distinct SARS-CoV-2 716 

variants on the panel. Variant results are depicted (left) which include the WHO designation (e.g., 717 

Omicron, Delta, etc.) and corresponding PANGO lineage assignments. Note that the B.1.526.1 variant 718 

was re-designated as B.1.637 to distinguish it from the Iota variant lineage (https://cov-719 

lineages.org/lineage_list.html, last accessed 4/26/22). The minimum number of targets required to 720 

support the corresponding variant result are indicated (right). Target results are depicted as colored cells 721 

indicating detectable native (e.g., unchanged from Wuhan-Hu-1 reference) amino acids which do not 722 

contribute to the variant target algorithm (grey), detectable native amino acids which do contribute to the 723 

algorithm (yellow), detectable amino acid polymorphisms (red), and dropout of the given target 724 

polymorphism. (C) Phylogenetic composition of 391 clinical specimen viral RNA recovered for 725 

diagnostic evaluation of the variant panel. Numbers of each lineage tested are depicted in brackets. 726 

  727 
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FIG 2. Diagnostic sensitivity and specificity of the Agena MassARRAY® SARS-CoV-2 Variant 728 

Panel. (A) Diagnostic sensitivity and (B) diagnostic specificity of eleven variant calls on the panel are 729 

depicted. The number of specimens that correspond with each variant according to WGS are annotated 730 

in brackets. Depiction of (C) diagnostic sensitivity and (D) diagnostic specificity of each of thirty 731 

distinct panel targets. The number of specimens that correspond with each amino acid polymorphism 732 

according to WGS are annotated in brackets for each target. Asterisks (*) indicate targets for which 733 

dropout results were excluded from analyses (see Methods). For target N501Y, a separate diagnostic 734 

analysis was conducted excluding BA.1 specimens (“N501Y_Excl-BA.1”). Error bars reflect 95% CI in 735 

all four panels. ND, not determined. 736 

  737 
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FIG 3. Target result patterns of undefined variants on the Agena MassARRAY® SARS-CoV-2 738 

Variant Panel. (A) A color map depicts the observed target results for three undefined SARS-CoV-2 739 

variants tested on the panel: Lambda (C.37), Mu (B.1.621), and Omicron (BA.2). Distinct target patterns 740 

observed among each of the variant types are depicted. Cells indicate the distinct target results including 741 

detectable native amino acid (grey), detection of target polymorphism (red), and target dropout (green). 742 

The number of specimens that yielded each of the distinct target result patterns are indicated on the right 743 

as well as the output variant ID result generated by the variant panel software. (B) A heatmap depicts the 744 

measured prevalence of each variant panel target substitution among publicly-available Omicron 745 

sublineage genomes as of May 6, 2022. 746 

 747 
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