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Abstract

Purpose/Background: In this paper, we consider the problem of locating the

information source with sparse observations. We assume that a piece of information

spreads in a network following a heterogeneous susceptible-infected-recovered (SIR)

model, where a node is said to be infected when it receives the information and

recovered when it removes or hides the information. We further assume that a small

subset of infected nodes are reported, from which we need to find the source of the

information.

Methods: We adopt the sample path-based estimator developed in the work of Zhu

and Ying (arXiv:1206.5421, 2012) and prove that on infinite trees, the sample

path-based estimator is a Jordan infection center with respect to the set of observed

infected nodes. In other words, the sample path-based estimator minimizes the

maximum distance to observed infected nodes. We further prove that the distance

between the estimator and the actual source is upper bounded by a constant

independent of the number of infected nodes with a high probability on infinite trees.

Results: Our simulations on tree networks and real-world networks show that the

sample path-based estimator is closer to the actual source than several other

algorithms.

Conclusions: In this paper, we proposed the sample path-based estimator for

information source localization. Both theoretic analysis and numerical evaluations

showed that the sample path-based estimator is robust and close to the real source.

Keywords: Information source detection; Heterogeneous SIR model; Sparse observation

Background

In this paper, we are interested in locating the source of information that spreads in a

network by using sparse observations. The solution to this problem has important appli-

cations such as locating the sources of epidemics, the sources of news/rumors in social

networks, or the sources of online computer virus. The problem has been studied in

[1-5] under a homogeneous susceptible-infected (SI) model for information diffusion and

in [6] under a homogeneous susceptible-infected-recovered (SIR) model for information

diffusion, assuming that a complete snapshot of the network is given.

While [1-6] answered some basic questions about information source detection in

large-scale networks, a complete snapshot of a real-world network, which may have
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hundreds of millions of nodes, is expensive to obtain. Furthermore, these works assume

homogeneous infection across links and homogeneous recovery across nodes, but in

reality, most networks are heterogeneous. For example, people close to each other are

more likely to share rumors, and epidemics are more infectious in the regions with

poor medical care systems. Therefore, it is important to take sparse observations and

network heterogeneity into account when locating information sources. In this paper,

we assume that the information spreads in the network following a heterogeneous SIR

model and assume that only a small subset of infected nodes are reported to us. The

goal is to identify the information source in a heterogeneous network by using sparse

observations.

We use the sample path-based approach developed in [6] for locating the information

source with sparse observations. Surprisingly, we find that the sample path-based esti-

mator is robust to network heterogeneity and the number of observed infected nodes. In

particular, our results show that even under a heterogeneous SIR model and with sparse

observations, the sample path-based estimator remains to be a Jordan infection center in

infinite trees, where the Jordan infection centers with a partial observation are the nodes

that minimize the maximum distance to observed infected nodes. We further show that

in an infinite tree, the distance between a Jordan infection center and the actual source

can be bounded by a value independent of the size of an infected subnetwork with a high

probability, where the infected subnetwork is the subnetwork consisting of nodes which

are either infected or recovered, and is a connected component. Assume that the size of

the infected subnetwork is n, and the result says that a Jordan infection center is a distance

of O(1) from the actual source.

We remark that the locations of the Jordan centers only depend on the network topology

and are independent of the infection and recovery probabilities, so the sample path-based

estimators (or the Jordan infection centers) are also robust to the information diffusion

model, which makes it very appealing in practice since the accurate knowledge of the SIR

parameters can be difficult to measure in reality.

Related works

Other than [1-6], there are several related works in this area including the following:

(1) detecting the first adopter of an innovation based on game theory [7], in which

the maximum likelihood estimator is derived but the computational complexity of find-

ing the estimator is exponential in the number of nodes; (2) distinguishing epidemic

infection from random infection under the SI model [8]; and (3) geospatial abduc-

tion which deals with reasoning certain locations in a two-dimensional geographical

area that can explain observed phenomena [9,10]. A recent paper [11] also proposed

a dynamic message passing algorithm (DMP) to detect the information source under

a general SIR model with complete or partial observations. However, the algorithm

needs the complete information of infection and recovery probabilities. In addition,

the complexity of DMP is very high under partial observations since almost all nodes

in the network are candidates of the source, and the calculation needs to be repeated

for every possible candidate. In the simulations, we will show that our algorithm

significantly outperforms DMP in terms of both accuracy and speed. We will see

that our algorithm is 400 times faster even when we limit the DMP algorithm to a

subnetwork.
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Methods

A heterogeneous SIR model

In this section, we introduce the heterogeneous SIR model for information propagation.

Different from the homogeneous SIR model in which infection and recovery probabilities

are both homogeneous [6], the heterogeneous SIR model we consider allows different

infection probabilities at different links and different recovery probabilities at different

nodes.

Consider an undirected graph G = {V , E}, where V is the set of nodes and E is the set

of edges. Denote by (u, v) ∈ E the edge between node u and node v. Each node v ∈ V has

three states: susceptible (S), infected (I), and recovered (R). A node is said to be suscep-

tible if it has not received the information, infected after it receives the information, and

recovered if the node removes or hides the information. Time is slotted. At the beginning

of each time slot, each infected node attempts to contact all its susceptible neighbors. A

contact from node u to node v succeeds with probability quv. A susceptible node becomes

infected after being successfully contacted by one of its infected neighbors. At the middle

of each time slot, an infected node, if it is infected before the current time slot, recovers

with probability pv. A recovered node cannot be infected again. We assume that contacts

succeed independently across links and time slots and that nodes recover independently

across nodes and time slots.

Consider a network shown in Figure 1, where node e is in the susceptible state, nodes a

and c are in the infected state, and nodes b and d are in the recovered state. Then, at the

next time slot, node e becomes infected with probability

1 − (1 − qae)(1 − qce),

and nodes a and c recover with probability pa and pc, respectively.

Problem formulation

In this section, we formally define the problem of information source detection. Table 1

summarizes the notations used in the paper. Adopting the notation in [6], we define Xv(t)

Figure 1 An example for illustrating the heterogeneous SIR model.
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Table 1 Notation table

Description

quv The probability an infected node u infects its neighbor node v

pv The probability an infected node v recovers

Y The partial snapshot

Xv(t) The state of node v at time t

X(t) The states of all nodes at time t

X[0, t] The sample path from 0 to t

X (t) The set of all valid sample paths from time slot 0 to t

IY The set of the observed infected nodes

HY The set of the unobserved nodes

ẽ(v, IY) The observed infection eccentricity of node v

v† The estimator of the information source

v∗ The actual information source

t∗v The time duration associated to the optimal sample path in which node v is the
information source

C(v) The set of children of v

φ(v) The parent of node v

Y k The set of infection topologies where the maximum distance from the source to
an infected node is k

Tv The tree rooted in v

T−u
v The tree rooted in v without the branch from its neighbor u

X
(

[0, t] , T−u
v

)

The sample path restricted to topology T−u
v

tIv , t
R
v The infection time and recovery time of node v

d(v, u) The length of the shortest path between node v and node u

to be the states of node v at the end of time slot t such that

Xv(t) =

⎧

⎪
⎨

⎪
⎩

S, if v is in state S at timet;

I, if v is in state I at timet;

R, if v is in state R at timet.

Let X(t) = {Xv(t) : ∀v ∈ V} denote the states of all nodes at time instant t.

In this paper, we assume that we only have one partial snapshot of the network, which is

a subset of the infected nodes. This observation can be sparse, and details will be given in

the next section. We assume that the states of other nodes are unknown.We let Yv denote

the state of node v in the snapshot such that

Yv =

{

1, if node v is observed to be infected;

0, otherwise.

Let Y = {Yv : ∀v ∈ V}. We denote by v∗ the information source. The problem of

information source detection is to locate v∗ based on the partial observation Y and the

network topology G.

Due to recovery and partial observations, all nodes in the network are potential can-

didates of the information source. The maximum likelihood estimator of the problem is

therefore computationally expensive to find as pointed out in [6]. In this paper, we follow

the sample path-based approach proposed in [6] to find an estimator of v∗.

Since X(t) is the state of the network at time t, the sequence {X(τ )}0≤τ≤t specifies the

complete infection process. Therefore, we call X[0, t]= {X(τ ) : 0 ≤ τ ≤ t} a sample path
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which is the states of all nodes from time 0 to time t. We further define a function F(·)

such that

F(Xv(t)) =

{

1, if Xv(t) = I and v is observed;

0, otherwise.

This function maps the actual state of a node to the observed state of the node.

F(X(t)) = Y if and only if F(Xv(t)) = Yv,∀v ∈ V . The optimal sample path X∗[0, t∗]

is defined to be the most likely sample path that results in the observed snapshot, i.e., it

solves the following optimization problem:

X∗[0, t∗]= argmaxt,X[0,t]∈X (t) Pr(X[0, t]), (1)

whereX (t) = {X[0, t] |F(X(t)) = Y} and Pr(X[0, t]) is the probability that the sample path

X[0, t] occurs. The source that associates with X∗[0, t∗] is called the sample path-based

estimator. It is proved in [6] that the sample path-based estimator on an infinite tree is a

Jordan infection center under the homogeneous SIRmodel with a complete snapshot. The

focus of this paper is to identify the sample path-based estimator under the heterogeneous

SIR model with sparse observations.

Main results

In this section, we summarize the main results of this paper.

Main result 1: the Jordan infection centers as the sample path-based estimators

In our theoretical analysis, we consider tree networks with infinitely many levels (or called

infinite trees) to derive the sample path-based estimator under the heterogeneous SIR

model with a partial snapshot. Let IY denote the set of observed infected nodes. We

define the observed infection eccentricity ẽ(v, IY) of node v to be the maximum distance

between v and any observed infected node where the distance is defined to be the short-

est distance between two nodes. The Jordan infection centers of the partial snapshot are

then defined to be the nodes with the minimum observed infection eccentricity. The fol-

lowing theorem states that on an infinite tree, the sample path-based estimator is a Jordan

infection center of the partial snapshot.

Theorem 1. Consider an infinite tree and assume that the partial snapshot Y contains

at least one infected node. The sample path-based estimator, denoted by v†, is a Jordan

infection center, i.e.,

v† ∈ argmin
v∈V

ẽ(v,IY). (2)

�

The proof of this theorem consists of the following key steps.

1. In the first step, we focus on the sample paths originated from node v (i.e., we

assume node v is the source). We consider two groups of sample paths: Xv(t) and

Xv(t + 1), where Xv(t) is the set of the sample paths that are originated from v,

have time duration t, and are consistent with the partial snapshot, i.e., F(X(t)) = Y

for any X[0, t]∈ Xv(t). The set Xv(t + 1) is similarly defined. We show that for any
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t ≥ ẽ(v,IY), the sample path with the highest probability in Xv(t) occurs more

likely than the one in Xv(t + 1). In other words,

max
X[0,t]∈Xv(t)

Pr(X[ 0, t] ) > max
X[0,t+1]∈Xv(t+1)

Pr(X[0, t + 1] ).

As a consequence of this result, we conclude that the sample path that has the

highest probability among those originated from node v has a duration of ẽ(v, IY)

(the observed infection eccentricity of node v). This result will be proved in

Lemma 1 in the ‘Proofs’ section.

2. In the second step, we consider two neighboring nodes, say nodes u and v, and

assume node v has a smaller observed infection eccentricity than node u. Based on

Lemma 1, we will prove that the optimal sample path associated with node v

occurs with a higher probability than that of node u. The key idea is to construct a

sample path originated from node v based on the optimal sample path originated

from node u and show that it occurs with a higher probability. This result will be

proved in Lemma 2 in the ‘Proofs’ section.

3. We will finally prove that starting from any node, there exists a path from the node

to a Jordan infection center such that the observed infection eccentricity strictly

decreases along the path. Consider an example in Figure 2. Nodes b and f are two

observed infected nodes. So node a is a Jordan infection center with observed

infection eccentricity 1. The path from node e to node a is

e → d → c → b → a,

along which the observed infection eccentricity decreases as

5 → 4 → 3 → 2 → 1.

By repeatedly using Lemma 2, it can be shown that the optimal sample path

originated from a Jordan infection center occurs with a higher probability than the

optimal sample path originated from a node which is not a Jordan infection center,

which implies that the sample path-based estimator must be a Jordan infection

center.

Main result 2: anO(1) bound on the distance between a Jordan infection center and the actual

information source

Unlike the maximum likelihood estimator, the sample path estimator does not guarantee

that the estimator is the node that most likely leads to the observation. It has been shown

in [6] that on tree networks and under the homogeneous SIRmodel, the distance between

Figure 2 The key intuition behind Theorem 1.



Zhu and Ying Computational Social Networks 2014, 1:3 Page 7 of 21

http://www.computationalsocialnetworks.com/content/1/1/3

the estimator and the actual source is a constant with a high probability. It is easy to see

that with a partial observation, the distance between the estimator and the actual source

cannot be bounded if the observed infection nodes are arbitrarily chosen. In this paper, we

consider a class of fairly general sampling algorithms that generate the partial observation

(and maybe sparse). The sampling algorithms have the following property: for any set of

M infected nodes, the probability that at least one node in the set is reported approaches

to 1 as M goes to infinity. We call such a sampling algorithm unbiased; in other words,

any subset of infected nodes is likely to contain an observed infected node when the size

of the subset is large enough. Note that if an infected node is reported with probability at

least δ for some δ > 0, independent of other nodes, then it satisfies the property above.

Our second main result is that the sample path estimator is within a constant distance

from the actual source independent of the size of the infected subnetwork if the sampling

algorithm is unbiased. We also emphasize that the observation generated by an unbiased

sampling algorithm can be very sparse since we only require that one observed infected

node is reported with a high probability among M nodes when M is sufficiently large.

Theorem 2. Consider an infinite tree. Let gmin be the lower bound on the number of

children and qmin > 0 be the lower bound on q. Assume gmin > 1, gminqmin > 1, and

the observed infection topology Y contains at least one infected node and is generated by

an unbiased sampling algorithm. Then given ǫ > 0, the distance between the sample

path estimator and the actual source is dǫ with probability 1 − ǫ, where dǫ is indepen-

dent of the size of the infected subnetwork. In other words, the distance is O(1) with a high

probability.

The idea of the proof is illustrated using Figure 3, which consists of the following key

steps:

1. We first define a one-time-slot infection subtree to be a subtree of the infected

subnetwork such that each node on the subtree is infected in the next time slot

after the parent is infected, except the source node. Note that the depth of a

one-time-slot infection subtree grows by 1 deterministically until it terminates. We

further say a node survives at time t if it is the root of a one-time-slot infection

subtree which has not terminated by time t.

2. In the first step, we will prove that there exist at least two survived nodes within a

distance L from the information source. In Figure 3, node a is the information

source, and nodes b and c are two survived nodes.

Figure 3 The key intuition behind Theorem 2.
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3. In the second step, we will show that with a high probability, at least one infected

node at the bottom of a one-time-slot infection subtree, which has not terminated,

is observed under an unbiased sampling algorithm. In Figure 3, nodes d and f are

two sampled nodes corresponding to the two one-time-slot infection subtrees

starting from nodes b and c, respectively.

4. Since a one-time-slot infection subtree grows by 1 deterministically at each time

slot, the depth of a one-time-slot infection subtree is t − tIk , where k is the root

node of the one-time-slot infection subtree. Recall that the Jordan infection centers

minimize the maximum distance to observed infected nodes, so a Jordan infection

center must be within a O(1) distance from the two survived nodes (nodes b and c).

Considering Figure 3, we know that the actual source (node a) has an infection

eccentricity ≤ t since the information can propagate at most t hops at time t. So

the infection eccentricity of the Jordan infection centers is no more than t

according to the definition. Assume node e in Figure 3 is a Jordan infection center,

then it is within a distance of O(t) from nodes d and f , and so is within a distance

of O(1) from nodes b and c. Since nodes b and c are no more than L hops from the

actual source a, we can conclude that the distance between the actual source a and

the estimator e is O(1).

Reverse infection algorithm

The Jordan infection centers for general graphs can be identified by the reverse infec-

tion algorithm proposed in [6]. In the algorithm, each observed infected node broadcasts

its identity (ID) to its neighbors. All nodes in the network record the distinct IDs they

received. When a node receives a new distinct ID, it records it and then broadcasts it

to its neighbors. This process stops when there is a node which receives the IDs from

all observed infected nodes. It is easy to verify that the set of nodes which first receive

all infected IDs is the set of Jordan infection centers. When there are multiple Jordan

infection centers in the graph, we select the one with the maximum infection close-

ness centrality as the information center. The infection closeness centrality is defined

as the inverse of the sum of the distances from one node to all observed infected

nodes.

We explain the reverse infection algorithm using an example in Figure 4. The red nodes

are the observed infected nodes, and the black nodes are the unobserved nodes. The array

next to each node records the IDs that the node has received. When an ID is received, it

Figure 4 An example of the reverse infection algorithm.
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is colored in red. For example, node 7 in iteration 1 has received the ID of node 2 which

is colored in red and has not received the ID of nodes 1 and 9 which are in black. At

each iteration, each node broadcasts its newly received IDs to its neighbors. For exam-

ple, node 4 just received the ID of node 1 in iteration 1 so it will broadcast node 1’s

ID to its neighbors in iteration 2. The algorithm terminates when some nodes receive

the IDs of all observed infected nodes, and this node is the Jordan infection center. In

iteration 3, node 5 received all IDs and so node 5 is the Jordan infection center in the

example.

Discussion: robustness

According to the two main results above, we know that the sample path-based esti-

mator remains to be a Jordan infection center. This is a somewhat surprising result

since the locations of the Jordan infection centers are determined by the topology of

the network and are independent of the parameters of the heterogeneous SIR model.

In other words, the locations of the Jordan infection centers remain the same for

different SIR processes as long as the set of observed infected nodes is the same.

This property suggests that the sample path-based estimator is a robust estimator

and can be used in the case when the parameters of the SIR model are unknown,

which is a very desirable property since knowing these parameters can be difficult in

practice.

In the simulations, we also consider a weighted graph with the link weights chosen

proportionally according to the SIR parameters and use the weighted Jordan infection

centers as the estimator. Interestingly, we will see that the performance is worse than

the unweighted Jordan infection centers, which again demonstrates the robustness of the

sample path-based estimator.

Furthermore, the main results hold as long as the sampling algorithm is unbiased and

are independent of the number of samples. So the results are valid for sparse observations

and are robust to the number of observations.

Results and discussion

Simulations

In this section, we evaluate the performance of the reverse infection algorithm for the

heterogeneous SIR model on different networks including tree networks and real-world

networks.

We first describe the heterogeneous SIR model we used in the simulation. Each edge

e ∈ E is assigned with a weight qe which is uniformly distributed over (0, 1). The infec-

tion time over each edge e ∈ E is geometrically distributed with mean 1/qe. Similarly,

each node v ∈ V is assigned with a weight pv generated by a uniform distribution over

(0, 1), and the recovery time is geometrically distributed with mean 1/pv. The informa-

tion source is randomly selected. The total number of infected and recovered nodes in

each infection graph is within the range of [100, 300]. Each infected node v in the infection

graph reports with probability σ , independently. The snapshots used in the simulations

have at least one infected node.We changed σ and evaluated the performance on different

networks.

We briefly introduce the three main algorithms which were used to compare with the

reverse infection algorithm (RI).



Zhu and Ying Computational Social Networks 2014, 1:3 Page 10 of 21

http://www.computationalsocialnetworks.com/content/1/1/3

1. Closeness centrality algorithm (CC) : The closeness centrality algorithm selects the

node with the maximum infection closeness as the information source.

2. Weighted reverse infection algorithm (wRI) : The weighted reverse infection

algorithm selects the node with the minimum weighted infection eccentricity as

the information source where the weighted infection eccentricity is similar to the

infection eccentricity except that the length of a path is defined to be the sum of

the link weights instead of the number of hops, and the link weight is the average

time it takes to spread the information over the link, i.e.,
⌊

1/qe
⌋

on edge e.

3. Weighted closeness centrality algorithm (wCC) : The weighted closeness centrality

algorithm selects the node with the maximum weighted infection closeness as the

information source.

Tree networks

We first evaluated the performance of the RI algorithm on tree networks.

Regular trees A g-regular tree is a tree where each node has g neighbors. We set the

degree g = 5 in our simulations.

We varied the sample probability σ from 0.01 to 0.1. The simulation results are sum-

marized in Figure 5a, which shows the average distance between the estimator and the

actual information source versus the sampling probability. When the sample probability

increases, the performance of all algorithms improves. When the sample probability is

Figure 5 The Performance of RI, CC, wRI, and wCC on different graphs. (a) Regular tree. (b) Binomial

tree. (c) The power grid network. (d) The Internet autonomous systems network.
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larger than 6%, the average distance becomes stable which means that a small number of

infected nodes is enough to obtain a good estimator. We also notice that the average dis-

tance of RI is smaller than all other algorithms and is less than one hop when σ ≥ 0.04.

wRI has a similar performance with RI when the sample probability is small (=0.01) but

becomes much worse when the sample probability increases.

Binomial trees We further evaluated the performance of RI and other algorithms on

binomial trees T(ξ ,β) where the number of children of each node follows a binomial

distribution such that ξ is the number of trials and β is the success probability of each

trial. In the simulations, we selected ξ = 10 and β = 0.4. Again, we varied σ from 0.01

to 0.1. The results are shown in Figure 5b. Similar to the regular trees, the performance

of RI dominates CC, wRI, and wCC, and the difference in terms of the average number of

hops is approximately 1 when σ ≥ 0.03.

Real-world networks

In this section, we conducted experiments on two real-world networks: the Internet

autonomous systems (IAS) network which is available at http://snap.stanford.edu/data/

index.html and the power grid (PG) network which is available at http://www-personal.

umich.edu/~mejn/netdata/.

The power grid network The power grid network has 4,941 nodes and 6,594 edges. On

average, each node has 1.33 edges. So the power grid network is a sparse network. The

simulation results are shown in Figure 5c. In the power grid network, we can see that RI

and wRI have similar performance, and both outperform CC and wCC by at least one hop

when σ ≥ 0.04.

The internet autonomous systems network The Internet autonomous systems net-

work is the data collected on 31 March 2001. There are 10,670 nodes and 22,002 edges

in the network. The simulation results are shown in Figure 5d. wRI and wCC always per-

form worse than RI. Although RI and CC have similar performance when the sample

probability is large, RI outperforms CC when σ ≤ 0.03.

RI versus DMP

We finally compared the performance of RI and DMP. We conducted the simulation on

the power grid network and fixed the sample probability to be 10%. Under this setting,

the complexity of DMP is very high since the DMP computation needs to be repeated for

every node in the network. Since nodes far away from the observed infected nodes are

not likely to be the information source, we ran DMP over a small subset of nodes close to

the Jordan infection centers (roughly 10%) to reduce the complexity of the algorithm.

We tested the speed of RI and DMP on a machine with 1.8 GB memory, 4 cores 2.4

GHz Intel i5 CPU and Ubuntu 12.10. The algorithms are implemented in Python 2.7. On

average, it took RI 0.57 s to locate the estimator for one snapshot and took DMP 229.12 s.

So RI is much faster than DMP.

Figure 6 shows the cumulative distribution function (CDF) of the distance from the

estimator to the actual source under DMP and RI. We can see that RI dominates DMP; in

particular, 71% of the estimators under RI are no more than seven hops from the actual

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
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Figure 6 The CDF of RI and DMP on the power grid network.

source compared to 57% under DMP. Therefore, RI outperforms DMP in terms of both

speed and accuracy. We remark that we did not compare the performance of RI and DMP

on the IAS network because the complexity of running DMP on a large-sized network

like the IAS network is prohibitively high.

Proofs

In this section, we present the proofs of the main results.

Proof of Theorem 1

Denote by IY = {v|Yv = 1} the set of observed infected nodes and HY = {v|Yv = 0} the

set of unobserved nodes. Given a node v, define the optimal time t∗v to be

t∗v � argt max
t,X[0,t]∈X (t)

Pr (X[ 0, t] |v is information source) ,

i.e., it is the duration of the optimal sample path with node v as the information source.

Lemma 1 (Time Inequality). Consider an infinite tree rooted at vr . Assume that vr is

the information source and the observed snapshot Y contains at least one infected node. If

ẽ(vr ,IY) ≤ t1 < t2, the following inequality holds:

max
X[0,t1]∈X̃ (t1)

Pr(X[0, t1]) > max
X[0,t2]∈X̃ (t2)

Pr(X[0, t2]),

where X̃ (t) = {X[ 0, t] |Y = F(X(t))}. In addition,

t∗vr = ẽ(vr ,IY) = max
u∈IY

d(vr ,u),

i.e., t∗vr is equal to the observed infection eccentricity of vr with respect to IY.

Proof. We adopt the notations defined in [6], which are listed below:

• C(v) is the set of children of v.

• φ(v) is the parent of node v.
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• Yk is the set of infection topologies where the maximum distance from vr to an

infected node is k. All possible infection topologies are then partitioned into

countable subsets {Yk}.

• Tv is the tree rooted in v.

• T−u
v is the tree rooted in v without the branch from its neighbor u.

• X([0, t] ,T−u
v ) is the sample path restricted to topology T−u

v .

• tIv, t
R
v are the infection time and recovery time of node v.

Considering the case where the time difference of two sample paths is 1, we will show that

max
X[0,t]∈X̃ (t)

Pr(X[0, t]) > max
X[0,t+1]∈X̃ (t+1)

Pr(X[0, t + 1]).

Next, we use induction over Yk .

Step 1 k = 0 vr is the only observed infected node in this case. Given a sample path

X[0, t + 1]∈ X̃ (t + 1), the probability of the sample path can be written as

Pr (X[0, t + 1]) = Pr (X[0, t])Pr(X(t + 1)|X[0, t]).

Since vr is the only observed infected node and all other nodes’ states are unknown, we

assignX′[0, t]∈ X̃ (t) to be same as the first t time slots inX[0, t+1] , i.e.,X′[0, t]= X[0, t] .

Hence, we obtain that

Pr
(

X′[0, t]
)

= Pr (X[0, t]) > Pr (X[0, t + 1]) .

Therefore, the case k = 0 is proved.

Step 2 Assume the inequality holds for k ≤ n and consider k = n + 1, i.e., Y ∈ Yn+1.

Clearly, t ≥ n + 1 ≥ 1 for each X[0, t]. Furthermore, the set of subtrees T = {T
−vr
u |u ∈

C(vr)} are divided into two subsets:

T h = {T−vr
u |u ∈ C(vr),T

−vr
u ∩ IY = ∅}

and

T i = T \T h.

Given tRvr , the infection processes on the subtrees are mutually independent.

We construct X′[0, t] which occurs more likely than X∗[0, t + 1] according to the

following steps, where X∗[0, t + 1]= argmaxX[0,t+1]∈X̃ (t+1) Pr(X[0, t + 1]).

Part 1 T i. For a subtree in T
i the proof follows Step 2.b and Step 2.c of Lemma 1 in [6].

The intuition is as follows: Consider a subtree and a sample path on it with duration t+1.

If u is not infected at the first time slot, we can construct a sample path with duration t

by moving the events one time slot earlier. The new sample path (with duration t) has a

higher probability to occur than the original one. If u is infected in the first time slot, we

can invoke the induction assumption to the subtree rooted at u, which belongs to Yn.

Part 2 vr . In this part, we have the freedom to assign the unobserved node as infected

or healthy. In part 1, the infection time of each root u in subtrees T i of X′[0, t] is either

the same as or one time slot earlier than its infection time in X∗[0, t + 1]. Therefore, if

tRvr ≤ t, the recovery time of the source vr in X′[0, t] can be assigned the same as that in

X∗[0, t + 1].

If tRvr = t + 1, the source vr recovers at time slot t + 1 which means vr is not observed

since the observation set only contains infected nodes. Therefore, inX′[0, t] we assign the

source to be in state I at time t, which is the same as the state of vr at time t inX∗[0, t+1].
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If tRvr > t + 1, vr remains infected in the sample path X∗[ 0, t + 1]. We assign the source

to be in state I in X′[ 0, t].

As a summary, according to the assignment above, the states of the source vr in X′[0, t]

are the same as those of the first t time slots in X∗[0, t + 1].

Part 3 T h. Based on the conclusion of part 2, the subtrees belonging to T h in X′[0, t]

mimic the behaviors of the first t time slots in X∗[0, t + 1].

Since X∗[0, t + 1] has one extra time slot during which some extra events occur, X′[0, t]

occurs with a higher probability on the subtrees in T h.

According to the discussion above, we conclude that time inequality holds for k = n+1

and hence for any k according to the principle of induction. Therefore, the lemma holds.

Lemma 2 (Adjacent nodes inequality). Consider an infinite tree with partial obser-

vation Y which contains at least one infected node. For u, v ∈ V such that (u, v) ∈ E , if

t∗u > t∗v

Pr(X∗
u[0, t

∗
u]) < Pr(X∗

v [0, t
∗
v ]),

where X∗
u[0, t

∗
u] is the optimal sample path associated with root u.

Proof. The proof of the lemma follows the proof of Lemma 2 in [6]. The key idea is

to construct a sample path rooted at v, which has a higher probability than the optimal

sample path rooted at u. It is not hard to see that t∗u = t∗v + 1 based on the defini-

tion of the infection eccentricity. The graph is partitioned into T−u
v and T−v

u which are

mutually independent after the infection of v and u. With this observation, we construct

X̃v[0, t
∗
v ] which infects u at the first time slot. X̃v

(

[0, t∗v ] ,T
−u
v

)

thenmimics the behavior of

X∗
u

(

[0, t∗u] ,T
−u
v

)

, and X̃v

(

[0, t∗v − 1] ,T−v
u

)

has a higher probability than X∗
u

(

[0, t∗u] ,T
−v
u

)

based on Lemma 1.

The adjacent nodes inequality results in partial orders in the tree and makes it pos-

sible to compare the likelihood of optimal sample paths associated with adjacent nodes

without knowing the actual probability of the optimal sample path. Following the proof

of Theorem 4 in [6], it can be shown that in tree networks, from any node, there exists a

path from the node to a Jordan infection center such that the observed infection eccen-

tricity strictly decreases along the path. By repeatedly using Lemma 2, we can then prove

that the source of the optimal sample path must be a Jordan infection center.

Proof of Theorem 2

In this subsection, we present the proof that shows that the sample path estimator is

within a constant distance from the actual source independent of the size of the infected

subnetwork. Given a tree rooted in v∗ where the information starts from v∗ following the

general SIR model, we define the following three branching processes:

1. Zl(Tv∗) denotes the set of nodes which are in infected or recovered states at level l

on tree Tv∗ . Let Zl(Tv∗) denote the cardinality of Zl(Tv∗). Note that

Z0(Tv∗) = {v∗}.We call this process the original infection process.

2. Zτ
l (Tv∗) denotes the set of infected and recovered nodes at level l whose parents

are in set Zτ
l−1(Tv∗) and who were infected within τ time slots after their parents
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were infected. This process adds a deadline τ on infection. If a node is not infected

within τ time slots after its parent is infected, it is not included in this branching

process. This process is called τ -deadline infection process. From the definition, if

u, v ∈ Zτ
l (Tv∗), then

|tIu − tIv| ≤ l(τ − 1).

For τ = 1, we call Z1
l (Tv∗) the one-time-slot infection process. The extinction

probability of a branching process is the probability that there is no offspring at a

certain level of the branching process, i.e., Z1
l
(Tv∗) = 0 for some l. Denote by ρv

the extinction probability of Z1
l

(

T
−φ(v)
v

)

.

3. We define the binomial branching process as a branching process whose offspring

distribution follows binomial distribution B(g,ϕ) where g is the number of trials

and ϕ is the success probability. Denote by ρ the extinction probability of the

binomial branching process.

The following notations will be used in later analysis:

• v† denotes the optimal sample path estimator.

• gmin is the lower bound on the number of children, i.e.,

min
v

|C(v)| ≥ gmin,∀v ∈ V .

• qmin is the lower bound on the infection probability, i.e.,

qmin = min
e

qe,∀e ∈ E .

• σ τ
v is the probability that a node v infects at least one of its children within τ

time slot after v is infected.

Given n0 > 0 and τ > 0, define l† = min l′ where Zτ
l′
(Tv∗) > n0, i.e., l

† is the first level

where the τ -deadline infection process has more than n0 offsprings.

Given τ and level L ≥ 2, we consider the following two events:

Event 1: ZL (Tv∗) = 0.

Event 2: l† ≤ L and at least two one-time-slot infection processes starting from level

l† survive, i.e., ∃u, v ∈ Zτ
l†
(Tv∗) such that ∀l, Z1

l

(

T
−φ(u)
u

)

�= 0 and Z1
l

(

T
−φ(v)
v

)

�= 0. In

addition, at least one infected node at the bottom of each survived one-time-slot infection

process is observed.

For event 1, no node at level L gets infected and the infection process terminates at level

L − 1. So the infection eccentricity of v∗ is at most L − 1, and the minimum infection

eccentricity of the network is at most L − 1. Therefore, the distance between v∗ and v† is

no more than 2(L − 1).

Considering event 2, we assume that the information propagates for t time slots. The

deadline property of the τ -deadline infection process indicates tIu1 ≤ τ l† and tIu2 ≤ τ l†.

Given a node ṽ at level (τ + 1)l† − 1 where ṽ ∈ T
−φ(u2)
u2 and a node v′ ∈ T

−φ(u1)
u1 which is

an observed infected node at the bottom of the infection tree, from Figure 7, we obtain

d
(

ṽ, v′
)

= t − tIu1 + τ l† + 1 ≥ t + 1.

Note that ∀u ∈ I ,

d
(

v∗,u
)

≤ t < d
(

ṽ, v′
)

.
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Figure 7 A pictorial description of the distance relations in Theorem 2.

Since l† ≤ L, any node at or below level L(τ + 1) − 1 has an infection eccentricity larger

than that of v∗. Hence, v† cannot be at or below level L(τ + 1) − 1. Therefore,

d
(

v†, v∗
)

< (τ + 1)L − 1.

Next, we prove the probability that either event 1 or event 2 happens goes asymptoti-

cally to 1. Denote byKl† the number of one-time-slot infection processes which start from

level l† and survive. Denote by E the event that a survived one-time-slot infection process

has at least one observed infected node at its lowest level.

According to the discussion above, the probability that the distance between the

estimator and the actual source is no more than (τ + 1)L − 1 is at least

Pr (ZL (Tv∗) = 0) + Pr
(

Kl† ≥ 2, l† ≤ L
)

Pr(E)2

≥ Pr (ZL (Tv∗)=0)+Pr
(

l† ≤L
)

Pr
(

Kl† ≥2
∣
∣
∣l† ≤L

)

Pr(E)2

= Pr (ZL (Tv∗) = 0) + Pr

(
L

⋃

i=1

Zτ
i > n0

)

× Pr(Kl† ≥ 2|l† ≤ L)Pr(E)2

=

(

1−Pr

(
L

⋂

i=1

0 < Zτ
i (Tv∗) ≤ n0

)

−Pr

(
L

⋃

i=1

Zτ
i (Tv∗)=0

))

× Pr
(

Kl† ≥ 2|l† ≤ L
)

Pr(E)2 + Pr (ZL (Tv∗) = 0) .

In addition, we have

Pr
(

Kl† ≥ 2|l† ≤ L
)

=

L
∑

l=1

Pr
(

Kl† ≥ 2, l† = l|l† ≤ L
)

(3)

=

L
∑

l=1

Pr
(

Kl† ≥ 2|l† = l
)

Pr
(

l† = l|l† ≤ L
)

. (4)

In Lemma 3, we prove that the extinction probability of each branching process from

level l† is upper bounded by the extinction probability ρ of the binomial infection process

B(gmin, qmin). Therefore, at level l
†, we have n0 i.i.d one-time infection processes whose

extinction probabilities are upper bounded by ρ. The probability that at least two of them

survive goes asymptotically to 1 when n0 increases. Therefore, ∀ǫ1 > 0, we have enough

large n0, such that

Pr
(

Kl† ≥ 2|l† = l
)

≥ 1 − ǫ1.
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Therefore, Equation 4 becomes

Pr
(

Kl† ≥ 2|l† ≤ L
)

≥ (1 − ǫ1)

L
∑

l=1

Pr
(

l† = l|l† ≤ L
)

= (1 − ǫ1).

We show in Lemma 4 that Pr(E) ≥ 1− ǫ2 given ǫ2 > 0. If n0 and t are sufficiently large,

we have

Pr
(

Kl† ≥ 2|l† ≤ L
)

Pr(E)2 ≥ (1 − ǫ1) (1 − ǫ2)
2 .

Therefore,

Pr(ZL(Tv∗) = 0) + Pr
(

Kl† ≥ 2, l† ≤ L
)

Pr(E)2

≥

(

1 − Pr

(
L

⋂

i=1

0 < Zτ
i (Tv∗) ≤ n0

))

(1 − ǫ1)(1 − ǫ2)
2

− Pr

(
L

⋃

i=1

Zτ
i (Tv∗) = 0

)

+ Pr(ZL(Tv∗) = 0)

=

(

1 − Pr

(
L

⋂

i=1

0 < Zτ
i (Tv∗) ≤ n0

))

︸ ︷︷ ︸

Part 1

(1 − ǫ1)(1 − ǫ2)
2

+ Pr(ZL(Tv∗) = 0) − Pr
(

Zτ
L(Tv∗) = 0

)

︸ ︷︷ ︸

Part 2

,

(5)

where Equation 5 holds since Zτ
l (Tv∗) = 0 implies that Zτ

L(Tv∗) = 0 for l ≤ L.

For part 1 in Equation 5, we prove in Lemma 4, given ǫ3 > 0, when τ and L are

sufficiently large,

1 − Pr

(
L

⋂

i=1

0 < Zτ
i (Tv∗) ≤ n0

)

> 1 − ǫ3.

For part 2 in Equation 5, we have

lim
τ→∞

Pr(Zτ
L(Tv∗) = 0) = Pr(ZL(Tv∗) = 0).

Therefore, given ǫ4 > 0, when τ is sufficiently large,

Pr(ZL(Tv∗) = 0) − Pr
(

Zτ
L (Tv∗) = 0

)

≥ −ǫ4.

Hence, we have

Pr (ZL (Tv∗) = 0) + Pr
(

Kl† ≥ 2, l† ≤ L
)

Pr(E)2

≥ (1 − ǫ1) (1 − ǫ2)
2 (1 − ǫ3) − ǫ4.

Now choosing ǫ1 = ǫ2 = ǫ3 = ǫ4 = ǫ5/5 for some ǫ4 > 0, we have

Pr (ZL (Tv∗) = 0) + Pr
(

Kl† ≥ 2, l† ≤ L
)

Pr(E)2 ≥ 1 − ǫ5.

Now let |Y| denote the number of infected nodes in the observation Y. Define events

E1 = {ZL = 0} and E2 = {Kl ≥ 2for some l ≤ L}, and E3 is the event that two of the

survived one-time-slot infection processes have at least one observed infected node each
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at their bottoms. We have

Pr(E1||Y| ≥ 1) + Pr (E2 ∩ E3||Y| ≥ 1)

=
1

Pr(|Y| ≥ 1)
(Pr(E1 ∩ {|Y| ≥ 1})

+Pr (E2 ∩ E3 ∩ {|Y| ≥ 1})) .

Since E2 ∩ E3 implies that |Y| ≥ 1, we have

Pr(E1||Y| ≥ 1) + Pr (E2 ∩ E3||Y| ≥ 1)

=
1

Pr(|Y| ≥ 1)
(Pr(E1 ∩ {|Y| ≥ 1}) + Pr (E2 ∩ E3))

=
1

Pr(|Y| ≥ 1)
(Pr(E1) − Pr(E1 ∩ {|Y| = 0})

+Pr (E2 ∩ E3))

≥
1

Pr(|Y| ≥ 1)
(Pr(E1) − Pr({|Y| = 0}) + Pr (E2 ∩ E3))

≥
1

Pr(|Y| ≥ 1)
(Pr({|Y| ≥ 1}) − ǫ5) = 1 −

ǫ5

Pr(|Y| ≥ 1)
.

(6)

Note that Pr(|Y| ≥ 1) is a positive constant since the one-time-slot infection process

starting from the information source survives with non-zero probability. The theorem

holds by choosing ǫ5 = ǫ Pr(|Y| ≥ 1).

Lemma 3. The extinction probability of a one-time-slot infection process is smaller than

the extinction probability of a binomial branching process B(gmin, qmin), i.e., ∀v ∈ V ,

ρv < ρ.

Proof. As shown in Figure 8, we construct a virtual source process Z
(vs)
l

(

T
−φ(v)
v

)

and

a min-infection process Z
(mi)
l

(

T
−φ(v)
v

)

as auxiliary processes over the same tree topol-

ogy where Y
(vs)
v and Y

(mi)
v are the binary numbers indicating whether node v has been

infected. Denote by ρ
(vs)
v and ρ

(mi)
v the extinction probabilities, respectively.

In the min-infection process, infection spreads over edges with probability qmin. In the

virtual source process, the probability that a node gets infected is

Pr
(

Y (vs)
v =1

)

= Pr
(

Y (mi)
v =1

)

+Pr
(

Y (mi)
v = 0

)

·
quv − qmin

1 − qmin
= quv,

Figure 8 A pictorial description of the two auxiliary processes in Lemma 3.
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i.e., for each node u ∈ C(v), v tries to infect u with probability qmin. If v fails to infect u,

a virtual source v′ tries to infect u with probability
qvu−qmin

1−qmin
. Therefore, the virtual source

process has the same distribution with the one-time-slot infection process.

We now couple the min-infection process and the virtual source infection process as

follows:

• If Y
(mi)
v = 1, then Y

(vs)
v = 1.

• If Y
(mi)
v = 0, then Y

(vs)
v = 1 with probability

quv−qmin

1−qmin
.

Since a node is more likely to get infected in the virtual source infection process, we obtain

ρ(vs)
v ≤ ρ(mi)

v .

Recalling that the one-time-slot infection process has the same distribution with the

virtual source branching process, we obtain ρv ≤ ρ
(mi)
v ,∀v.

In addition, the min-infection process has more children than the binomial branching

process with the same infection probability for each child. It is obvious that the binomial

branching process is more likely to die out, i.e., ρ
(mi)
v < ρ.

As a summary, we prove

ρv < ρ.

Lemma 4. Assume ∃ξ > 0 such that σ τ
v < 1 − ξ ,∀v ∈ V . Given any ǫ > 0, there exists

a constant L′ such that for any L ≥ L′,

Pr

(
L

⋂

i=1

0 < Zτ
i (Tv∗) ≤ n0

)

≤ ǫ

Proof. Follows the same argument of Lemma 7 in [6], and by choosing

L′ =

⌈
log ǫ

log (1 − ξn0)

⌉

,

we obtain for any L ≥ L′, ǫ > 0

Pr

(
L

⋂

i=1

0 < Zτ
i (Tv∗) ≤ n0

)

≤ ǫ.

Lemma 5. For any ǫ > 0, there exists a sufficiently large t such that

Pr(E) ≥ 1 − ǫ.

Proof. Note that the binomial branching process B(gmin, qmin) is a Galton-Watson (GW)

process [12] which requires each node to have an i.i.d offspring distribution. The previous

result about the instability of the Galton-Watson process in Theorem 6.2 in [12] proves

that the GW process either goes to infinity or goes to 0. If the GW process survives, the

number of offsprings goes to infinity as the level increases. Therefore, for a sufficiently

long time, the survived binomial branching process will have a sufficiently large number

of offsprings at the lowest level. Since the one-time-slot infection process always has at
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least the same number of children as the binomial branching process, the survived one-

time-slot infection process will have enough number of infected nodes at the lowest level

as time increases. According to the unbiased property of the partial observation, after a

sufficiently long time, the probability that at least one infected node in the lowest level is

observed goes to 1 asymptotically, i.e.,

Pr(E) ≥ 1 − ǫ.

Conclusions

In this paper, we studied the problem of detecting the information source in a hetero-

geneous SIR model with sparse observations. We proved that the optimal sample path

estimator on an infinite tree is a node with the minimum infection eccentricity with par-

tial observations. With a fairly general condition, we proved that the estimator is within

constant distance from the actual information source with a high probability with a sparse

observation. Extensive simulation results showed that our estimator outperforms other

algorithms significantly.
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