
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1991

A Robust Intersection Algorithm Based on Delaunay Triangulation A Robust Intersection Algorithm Based on Delaunay Triangulation

Kokichi Sugihara

Report Number:
91-011

Sugihara, Kokichi, "A Robust Intersection Algorithm Based on Delaunay Triangulation" (1991). Department

of Computer Science Technical Reports. Paper 860.

https://docs.lib.purdue.edu/cstech/860

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A ROBUST INTERSECTION ALGORITHM

BASED ON DELAUNAY TRIANGUlATION

Kokichi Sugihara

CSD-TR-91-011

February 1991

A Robust Intersection Algorithm Based on Delaunay Triangulation

Kokichi.Sugihara

Department of Computer Science, Purdue University

West Lafayette, Indiana 47907, U.S.A.

Department of Mathematical Engineering and Information Physics

University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract
The paper presents a new robust method for finding points of intersection of line segments

in the plane. In this method the subdivision of the plane based on the Delaunay triangulation

plays the main role. First, the Delaunay triangulation spanning the end points of line segments

is constructed. Next, for line segments that are not realized by Delaunay edges, midpoints are

inserted recursively until the descendants of the line segments become realized by Delaunay

edges or the areas containing points of intersection are sufficiently localized. The method is

robust in the sense that in any imprecise arithmetic it gives a topologically consistent output,

and is stable in the sense that it does not miss intersection that can be easily detected by naive

pairwise check with the precision at hand.

1. Introduction
Rapid development in computational geometry has produced a huge amount of algorithms

for solving a variety of geometric problems. However, most of them are designed in the assump­

tion that numerical computation can be done precisely. In actual computation, on the other

hand, it is usually difficult to avoid numerical errors, and hence straightforward implement.a­

tions of these algorithms do not necessarily give practically valid computer programs; numerical

errors often produce inconsistency, making algorithms to fail.

Traditionally the problems caused by numerical errors were left to implementors, but it

has gradually been recognized that in order to solve the numerical error problems we need to

consider numerical errors from the beginning of designing algorithms [Dobkin and Silver. 1988]

[Hoffmann, 1989], and several such attempts are proposed. They include use of integer grids

[Greene and Yao, 1986], use of higher-precision arithmetic rOttmann, Thiemt and Ullrich, 1987]

[Sugihara and Iri, 1989a] (Karasick, Lieber and Nackman, 1989], use of geometric reasoning

[Hoffmann, Hopcroft and Karasick, 1988] [Karasick, 1989], use of enriched worlds [Milenkovic,

1988, 1989], use of three-value logic [Guibas, Salesin and Stolfi, 1989], use of approximate

geometric predicates [Fortune, 1989] and use of combinatorial abstraction [Sugihara and Iri,

1989b].

In this paper we propose a new robust method for finding points of intersection of line seg­

ments in a two-dimensional plane. In this method the subdivision of the plane by the Delaunay

triangulation is employed as a key tool for localizing the areas where points of intersection exist

and for guaranteeing the topological consistency of the resultant arrangement. The method

has several good properties. First it is robust in the sense that it always gives a topologically

consistent output. Secondly it is stable in the sense that it does not miss points of intersect.ion

that are easily detectable in a given precision. Thirdly, it is adaptive in the sense that most of

computational cost is paid to the areas where finding points of intersection is difficult.

The Delaunay triangulation is a kind of the space subdivision. The space subdivision is

one of fundamental techniques in designing geometric algorithms. Typical examples are a slab

method (preparata and Shamos, 1985], a space pointer method [Ohsawa, 1986, 1990], convex

1

(2.1)

subdivision [Vanecek, 1989] and quaternary or octant subdivision [Samet, 1990]. The present

method is different from the slab method and the space pointer method in the sense that

we divide the space according to intrinsic relations among objects whereas the other methods

depend on the coordinate system. The present method is different from the convex subdivision

because we divide the space according to the distance among objects. The present method has

similarity with the quaternary/octant subdivision in the sense that finer subdivision is applied

to the areas where the configurations are more complicated. However there is a great difference

because the quaternary/octant subdivision uses a fixed grid structure whereas we divide the

space using given objects as boundaries.

After reviewing numerical error problems in Section 2 and making some preparation in

Section 3, we present the basic algorithm and its behavior in Sections 4 and 5. In Section 6 the

algorithm is revised into a robust one, and computational experiments are shown in Section 7.

2. Numerical Problems in Finding Intersections
Let Pi be a point in the plane !R2 with coordinates (Xi, Yi) for i = 1,2,... We denote by

I(Pi' Pi) the open line segment connecting Pi and Pi, and by [(Pi, Pi) the closed line segment

connecting Pi and Pi· We denote the length of [(Pi, Pi) by I/(Pi, Pi)I·
Two closed line segments [(PI ,P2) and 1(P3,P4) have a point of intersection (as shown in

Fig. 2.1), if and only if there exist 0 :5 a,{3 :5 1 satisfying

a (::) + (1 - a) (::) = (3 (::) + (1 - (3) (::) .

From this equation we get

a = ((X2 - X4)(Y3 - Y4) - (Y2 - Y4)(X3 - X4)) h,
{3 = (-(Xl - X2)(Y2 - Y4) + (YI - Y2)(X2 - X4)) h,

where

(2.2)

(2.3)

(2.4)

If i =f:. 0, we can judge whether the two line segments have a point of interRection by

computing a and {3 and by checking the condition 0 :5 a,{3 :5 1. If i = 0 (which happens

when the two line segments are collinear), the two line segments have a common point of

intersection if and only if

min{e,7]} :5 1 and ma.x{e, 7]} ~ 0,

where eand 7] are two values satisfying

(2.5)

(2.6)

(2.7)

Hence if n line segments are given, we can find all points of intersection in O(n2) time by

computing i and either a and {3 or eand 7] for all pairs of line segments.

However, the exhaustive pairwise check is expensive particularly when the number of points

of intersection is not large. A typical technique for avoiding unnecessary pairwise check is a

plane sweep method [Bentley and Ottmann, 1979]. In this method the plane is swept by a

vertical line, called a sweepline, from left to right. The algorithm maintains a list, say L, of all

2

the line segments intersecting with the sweepline in the increasing order with respect to the y

coordinates of the points of intersection with the sweepline, and the pairwise check is done only

for those pairs that are ever adjacent in the list L.
An example is shown in Fig. 2.2(a), where there are four line segments a, b, c, d. When the

sweepline hits the left endpoint of line d (see the sweepline at 81), d is inserted in L, resulting

in L = (a, b, c, d). When the sweepline hits the point of intersection of a and b (at 82), they

are interchanged in the list, resulting in L = (b, a, c, d). When the sweepline pass through the

right endpoint of d (at 8a), d is deleted from L and we get L = (b,a,c). In this example,

d is always above c whereas a and b are always below Cj d never comes adjacent to a or b.

Consequently the pairwise check is not done between a and d or between band d. In this way

we can avoid unnecessary pairwise check.

However, the plane sweep method is not stable, because in imprecise arithmetic it has

chances to miss points of intersection that are easily detectable by the pairwise check [Kanazawa,

1990]. An example of such a situation is shown in Fig. 2.2(b). Since three line segments a, b,

c have their left endpoints very close to each other, numerical errors may give misjudgment on

the order of these line segments. Suppose that because of numerical errors the algorithm judged

that L = (a, c, b) after the sweepline hits all the left endpoints of these three lines and points of

intersection if any (at 84). When the sweepline hits the left endpoint of d (at 8s), d is judged

above a and below c, and hence d is inserted between a and c, resulting in L = (a,d,c,b).

Thus, b has.no chance to be adjacent to d in L, and hence the point of intersection between b

and d cannot be detected.

Note that the endpoints of a, b, c come close to each other and hence the points of

intersection among them may be missed. However, this is allowable because the configuration

is so delicate and it is difficult to find all the point of intersection in imprecise arithmetic. On

the other hand, band d intersect "obviously"; to miss it is a serious problem.

Ottmann, Thiemt and Ullrich (1987) proposed a method for employing high precision

arithmetic in order to avoid the unstableness. However, their method can be used only when

higher precision computation is available. It is also important and useful to construct a stable

algorithm that works even if high precision arithmetic is not available.

It is interesting to note that if we naively make the pairwise check between all pairs of line

segments, we do not fail in detecting obvious intersections. It seems that the unstableness of

the plane sweep method is the cost we should pay for obtaining efficiency in processing time.

The exhaustive pairwise check is also unstable for certain kinds of intersection problems.

One of such examples is the intersection between polygonal lines. As shown in Fig. 2.3(a),

suppose that we are given two polygonal lines, one consisting of two consecutive line segments

Z(Pl,P2) and Z{P2,P3) and the other consisting of one line segme~t Z(P4,PS)' S~ce the point

P2 is close to I(P4,ps), if we make the pairwise check between I(PbP2) and I(P4,ps) and

between Z(P2,pa) and Z(P4,PS) independently, it may happen that none of the two pairs has

point of intersection, failing in finding the obvious point of intersection. In order to find the

point of intersection stably, we need to use the information that P2 is the common end point

of T(P1 ,P2) and T(P2,pa)·
Another example is shown in Fig. 2.3(b), where we want to find points of intersection

between the boundaries of two polygons. Since the boundaries are closed, their points of

intersection appear in pairsj if a traveler moving along one of the boundaries crosses the other

and enters into its interior, he must cross it again to go out. However, if the pairwise check

is done between line segments independently, one of the points may be missed. In that case

the number of points of intersection becomes odd, though it should be even. This kino of

topological inconsistency easily gives a fatal damage to many geometric operations, such as

3

Boolean operations between polygons.

Thus, what we want is an algorithm that does not miss obvious points of intersection and

that gives topologically consistent output, even if the precision in computation is poor.

Milenkovic (1988) proposed an algorithm with these properties. He enriched the object

world from line segments to pseudo line segments, and constructed a method to find the ar­

rangement of given line segments always consistently. However, his method still requires a

certain precision in computation.

In this paper, we further loosen the object world, and construct a simple algorithm which

works in any poor arithmetic; no matter how poor the precision may be, the algorithm behaves

reasonably in a given precision and always gives a consistent output.

3. Intersection Problem and the Delaunay Triangulation
Let G = (V, E) be a finite graph having vertex set V and edge set E. We assume that

G has no selftoop and no parallel edge, and hence V is a finite set and E is a collect.ion of

two-element subsets of V. Ife = {Vi, Vi} E E, we say that Vi and Vi are the end vertices of

e. Let p be a mapping from V to ~ 2 . For Vi E V, we write P(Vi) = (Xi,Yi) and consider

them as the two-dimensional coordinates of the vertex vi. Placing the vertices in the plane by

p and drawing straight line segments between all pairs of the end vertices of the edges, we get

a diagram composed of line segments. We call this diagram the diagram generated by G and

p, or diagram (G,j.J.) in short.

For edge e E E, we denote by p(e) the closed line segment connecting P(Vi) and Jl(Vj):

(3.1)

We denote by L(G, p) the collection of all the closed line segments constituting the diagram

(G,p):

L(G,p) = {p(e) leE E}.

We denote by D(G,p) the set of all points on at least one line segment in L(G,p):

D(G,p) = {p Ip E p(e)fof some e E E}.

(3.2)

(3.3)

Given the diagram (G,p), we want to find all the points of intersection between t,wo

line segments in L(G, p). Some of the points of intersection are given explicitly in the graph

structure, that is, if E contains {Vi, Vj} and {Vi, Vk}, T(vi, Vj) and T(vi, Vk) have Vi as their

common point of intersection. So our problem is to find the points of intersection that are not

represented explicitly in the graph structure.

An example of diagram (G,p) is shown in Fig. 3.1(a), where'G has seven vertices VI, V2,

... , v., and four edges {VI, v2 }, {V2, V3}, {V4' VS}, {V6' V7}, and the images of the vertices

by the mapping p are as shown there. The diagram has points of intersection that are not

represented explicitly by the graph G. Inserting new vertices at the points of intersection

and dividing the edges at these points, we .get another diagram (G' ,p') shown in (b). The

graph G' has nine vertices v}, V2, ... ,Vg and nine edges {VI, vs}, {VS, V2}, {V2' V9}, {1.'9' V3} ,
{V4' VS}, {VS' vg}, {vg, VS}, {V6, vg}, {V9, V7}. In this paper, by the problem of finding points

of intersection in diagram (G, p) we mean the problem of modifying (G, p) to (G', J.l') such

that G' represents all the points of intersection explicitly.

More formally we define as follows. Diagram (G', p') is called a refinement of diagram

(G, p) if the graph G' is obtained from G by inserting new vertices on edges of G and by

dividing the edges into pieces at the new vertices and D(G, p) = D(G' ,p'). Diagram (G ,j.l)

is said to be coarser than diagram (G', p') if (G', p') is a refinement of (G, p). Diagram

4

(G, JJ) is said to be planar if line segments in L(G, JJ) do not intersect except at their end

points. The diagram in Fig. 3.1(b) is the coarsest planar refinement of the diagram in (a).

Thus, given a diagram (G, JJ), our problem is to find the coarsest planar refinement of (G, J.L),

If every vertex is the end point of exactly one edge, L(G, JJ) is a collection of line segments,

and hence our problem is to find all points of intersection between line segments. If G consists

of exactly one path, the diagram (G,JJ) is a polygonal line, and hence our problem is to find

all points of self-intersection of the polygonal line. If G is disconnected and every connected

component is a path, the diagram (G, JJ) is a collection of polygonal lines and our problem

is to find all points of self-intersection within each polygonal line and all point of intersection

between polygonal lines. Thus, our general form of the problem includes many different types

of intersection problems.

To solve this problem we employ the concept of the Delaunay triangulation. Let P =
{PI, P2, ... ,P1l} be a set of n points in the plane such that all the points are not on a common

line. For subset pi of P, if pi contains at least three points and there is a circle passing through

all the points in pi and contains no points in P - pi on it or in its interior, the convex polygon

defined by the vertex set pi is called a Delaunay polygon. The collection of all Delaunay

polygons gives a partition of the convex hull of P. If all the Delaunay polygons are triangles,

this partition is called the Delaunay triangulation spanning P. If there are nontriangu[ar

Delaunay polygons (this situation is called degeneracy), we arbitrarily triangulate them by

adding diagonal edges; the resultant partition of the convex hull of P is also called the Delaunay

triangulation spanning P. Let 1{P) denote the Delaunay triangulation spanning P. If there is

no degeneracy, 1{P) is unique. Otherwise, there is freedom in the choice of diagonal edges for

nontriangular Delaunay polygons. Throughout this paper, let us assume that we have a certain

algorithm for constructing the Delaunay triangulation, and that 1{P) represents the Delaunay

triangulation obtained by that algorithm. Hence, even if degeneracy takes place, we consider

that 1{P) represents a uniquely fixed Delaunay triangulation.

A triangle appearing in 1{P) is called a Delaunay triangle, and an edge of a Delaunay

triangle is called a Delaunay edge. Let nc represent the number of vertices of the convex

hull of P. Then, the number of edges and that of triangles in 1{P) are 3(n - 1) - nc and

2(n - 1) - nc, respectively. Hence, both the number of edges and that of vertices are of O(n).

There are many efficient methods for constructing the Delaunay triangulation [Shamos and

Hoey, 1975] (Lee and Schachter, 1980] [Ohya, Iri and Murota, 1984] [Guibas and Stolfi, 1985]

[Fortune, 1987] [Katajainen and Koppinen, 1988] [Sugihara and Iri, 1989b] [Sugihara, Ooishi

and Imai, 1990], among which a robust version of an incremental method [Sugihara and Iri,

1989b] is useful for the present purpose because we want to modify the Delaunay triangulation

by adding new points step by step.

4. Basic Idea.
In this section, we present the basic idea of our method. In order to simplify the argument,

we assume for a while that there is no numerical error in computation and that no degeneracy

takes place, that is, every line segment J.L(e) has nonzero length and each point of intersection

lies on exactly two line segments. In Section 6 we will remove all of these assumptions and

design a robust version of the algorithm.

In order to apply the Delaunay triangulation, let us start with some properties which

relate the Delaunay triangulation and the points of intersection. The next property is a direct

consequence of the definition.

Property 1. Let P and q be two points in P. If there is a circle passing through p and q and

5

containing no other points in P on it or in its interior, T(p, q) is a Delaunay edge of 7{P).

Property 1 intuitively implies that if two points are sufficiently close to each other, they

admit a Delaunay edge. Hence, we can expect the following. Let p and q be two points in

P. They are not necessarily connected by a Delaunay edge in 7{P). However, if we add

sufficiently many points on the line segment l(p, q) and construct the Delaunay triangulation

for the augmented set of points, p and q will be connected by a sequence of Delaunay edges.

This expectation is one of the basis of our method.

Our aim is to find points of intersections between line segments. For this purpose the

next two properties, which are the contrapositions of each other, are useful; we omit the proofs

because they are obvious.

Property 2. If T(Pl, P2) and T(q}, q2) are both Delaunay edges in 7{P), the open line

segments l(pt.P2) and l(q}, q2) do not intersect.

Property 3. If I(Pl'P2) arid l(q},q2) intersect, at least one ofT(p},P2) and T(q},Q2) is not

a Delaunay edge in T{P).

On the basis of these properties we can consider the next method for finding points of

intersection of the diagram (G,p.). We define P as the set of the images of the vert.ices by

the mapping p., i.e., P = {p.(v) I v E V}, and construct the Delaunay triangulation 7{P).
We say that edge e is realized in T{P) if p.(e) is a Delaunay edge in T{P), and unrealized

otherwise. If all the edges in E are realized in T{P), we can conclude from Property 2 that

there is no implicit point of intersection in (G,p.). If there are unrealized edges, on the other

hand, we can say nothing about these edges; they may intersect with other edges or they may

not. However, we do not want to make the pairwise check against all other edges. So, we insert

new vertices at the midpoints of these edges, and construct the Delaunay triangulation again

for the augmented set of vertices.

Recall that the Delaunay triangulation is a triangulation in which edges are generated

between points that are relatively close to each other. Hence, we can expect that if we insert

sufficiently many new points on line segments, either we can see that there is no point of

intersection or we can localize the areas in which the points of intersection may exist. So, we

concentrate on the following pattern. We say that two edges e = {Vi, Vi} and e' = {v~, vj}

form a cross pattern (see Fig. 4.1) if (i) p.(Vi) , p.(vi)' p.(vD form a Delaunay triangle (hence

e is a realized edge), (ii) e and e' are not adjacent to each other in G, and (iii) JL(1Jj) is in

the angle Lp.(Vi)P.(d;)p.(vi) and p.(vD and p.(vj) are mutually in the other sides of JL(e) (note

that the condition (iii) is equivalent to that l(vi, Vi) and l(v~, vj) have a point of intersect.ion).

Thus, the cross pattern is a pair of line segments that are mutually intersecting and that are

incident to a common Delaunay triangle. If the conditions (i), (ii), (iii) are checked in this

order, all cross patterns can be found in time linear in the number of vertices, because the

number of Delaunay triangles is of the same order as that of the vertices.

Suppose that in T{P) there is a pair of realized edge e = {Vi, Vi} and unrealized edge

e' = {v~, vj} forming a cross pattern. Then, we change the structure of G by adding new

vertex v to V, deleting the two edges e and e' from E, and adding four new edges {'l.'i, t'} ,
{vi, v}, { v ~ , v}, {vi, v} to E. Also we define JL(v) as the point of intersection between Jt(e)

and p.(e'). Thus, we represent the point of intersection explicitly in the resultant diagram

(G, p.). We do the same processing for all pairs of realized and unrealized edges forming a cross

6

pattern.

Summarizing this idea, we get the next algorithm.

Algorithm 1.

Input: diagram (G,J.£), where G = (V, E) is a finite graph with vertex set V = {VI, vz, . .. ,
vn } and edge set E = {eI' ez, ... , em} .

Output: coarsest planar refinement of (G, J.£).
Procedure:

- Initialization -

1.1. P - {J.£(v) Iv E V}, and Ie - n.
1.2. Construct the Delaunay triangulation 7{P).

- Extraction of points of intersection -

2. While there exists a pair of realized edge e = {Vi, Vj} and unrealized edge e' = {u~, vj}
forming a cross pattern, do:

begin

Ie - Ie + 1;

V - VU {Vk};
E - (E - {e,e'}) U {{Vi,Vk}, {Vj,Vk}, { V ~ , V k } , {vj,Vk}};

J.£(Vk) - the point of intersection between J.£(e) and J.£(e');
p - P U {J.£(Vk)};
construct the Delaunay triangulation 7{P);
end.

- Midpoint insertion -

3. If all the edges in E are realized, go to Step 4. Otherwise, choose the longest unrealized

edge e = {Vi,Vj} and do:

begin

Ie - Ie + 1;

V - VU {Vk};
E - (E - {e}) U {{Vi,Vk}, {Vk,Vj}};
J.£(Vk) - midpoint of J.£(e);
p - p U {J.£(Vk)};
construct the Delaunay triangulation 7{P) and go to Step 2;

end.

- Deletion of the midpoints -

4. For each vertex vk that is not in the original diagram and that is incident to exactly two

edges e = {Vi,Vk} and e' = {Vj,Vk}, do:

begin

V - V - {Vk};
E - (E - {e,e'}) U {{Vi,Vj}};
end.

5. Return (G,J.£). 0

An example is shown in Fig. 3.2: (a) shows a diagram composed of 60 vertices and 30

line segments; (b) is the Delaunay triangulation spanning the 60 vertices; (c) is the Delaunay

triangulation at the final stage of the processing, where the points of intersection are represented

by dots surrounded by circles; (d) represents the points of intersection found by the procedure.

In this example, the number of points of intersection is 97, and the number of midpoints inserted

is 446.

7

From this example, we can see several good properties of our new method. First, the

density of inserted midpoints is not uniform. Midpoints are inserted more densely around the

areas where line segments come closer to each other. This means that our method can change

computational cost adaptively; higher computational cost is paid to places where the judgment

of intersection is not easy. Secondly, the pairwise check is not done for two line segments which

are far away from each other, because Delaunay triangles involving the end points of these line

segments usually are not adjacent to each other. Thus, we are likely to be able to avoid O(n2)

naive pairwise checks if the number of intersections is not large. Thirdly, the output of our

method not only includes a collection of points of intersection but also includes the explicit

description of the topological structure composed of the line segments and their intersections;

this kind of structure is usually called the arrangement of the line segments. Moreover, even

if numerical error takes place, the topological structure thus obtained is always consistent in

the sense that it is embeddable in the plane without any extra points of intersection if we use

curved line segments. This is because the output diagram (G, jJ.) is a subgraph of the Delaunay

triangulation and we have a robust algorithm for constructing the Delaunay triangulation whose

output is guaranteed at least to be embeddable in the plane [Sugihara and Iri, 1989c].

5. Conditions for the Finite Termination of Algorithm 1

In this section we study the behavior of Algorithm 1 in more detail, and clarify the con­

ditions necessary for Algorithm 1 to terminate in a finite number of repetitions of Steps 2 and

3. Steps 2 and 3 are executed as many times as the number of midpoints inserted in Step 3.

Hence, we need to check how many midpoints are inserted in the algorithm.

Let (G,jJ.) be the diagram given to Algorithm 1 as the input. We call edges in G original
edges. In Algorithm 1, midpoints and points of intersection are inserted. If edge e = {Vi, Vj}

is divided into two edges e' = {Vi, Vk} and e" = {Vj, Vk} in Step 2 or Step 3, we say that e'

and elf are children of e and e is the parent of e' and e". If there is sequence (el' e2, ... , ek)
such that ei is the parent of ei+l for all i = 1,2, ... , k - 1, we say that el is an ancestor of

ek and ek is a descendant of el.

Let (G, jJ.) be a diagram, which may be the input diagram to Algorithm 1 or may be any

diagram that appears in Step 2 or 3 as the result of modification of the original diagram by

inserting points of intersection and/or midpoints. Edge e is said to be stable in diagram (G, 1£),
if a new vertex (midpoint or point of intersection) is not inserted in e any more in Step 2 or

3. Hence, if all the original edges are divided into stable descendants, Algorithm 1 terminates.

Thus, what we want to show is that every edge is divided into stable descendants in a finite

number of repetitions of Steps 2 and 3.

Vertex V of G is said to be obtuse either if V is of degree 1 or if any pair of line segments

incident to v form the smaller angle equal to or grea.ter than 11'/2, and acute otherwise. Fig.

5.1 shows examples of obtuse vertices and acute vertices.

Edge e = {Vi, Vj} of G is said to be clear, if for any edge e' that is not adjacent to e,

J.L(e) and J.t(e') do not intersect.· For clear edge e, we define the clearance of e as the minimum

distance from jJ.(e) to J.t(e') over all edges e' not adjacent to e.

Similarly, a vertex V is called dearif for any edge e that is not adjacent to v, J.t(e) does

not pass through jJ.(v). For clear vertex v, the minimum distance from J.t(v) to J.t(e) for any

edge e that is not incident to v is called the clearance of v.

Lemma 1. Suppose that e is a clear edge with clearance 8 and that both of the endpoints of

e are obtuse. Then, every descendant of e with length smaller than 8 is stable.

8

Proof. A direct consequence from Property 1. 0
For example, suppose that the diagram (G, J.L) is a collection of line segments that do not

have any point of intersection. Then, every edge is clear. Moreover, by a finite number of

midpoint insertions, we can make every edge shorter than its clearance. Hence, after a finite

number of repetitions of Steps 2 and 3, Algorithm 1 terminates and tells us that there is no

point of intersection.

Thus, we need to consider only· those edges e such that J.L(e) has a point of intersection

with other line segments in L(G, J.L) or such that J.L(e) has an adjacent edge meeting with J.L(e)
in an acute angle.

Lemma 2. Suppose that vertex v is of degree-two, acute and clear with clearance 8. After

a finite number of midpoint insertions on edges incident to v, both of the edges incident to v
become stable.

Proof. Let el and e2 be the two edges incident to v, and fJ be the smaller angle formed by

el and e2. As shown in Fig. 5.2, let C be the circle with radius 8/2 that is tangent to e2 at v

and that has another point of intersection, say p, with el' Let q be the center of C. Then, we

get Lpqv = 2fJ, and hence

IT(v,p)1 = 8tanfJ. (5.1)

C does not intersect any edge other than el and e2 J and it intersects e2 at v only. Hence,

any descendant {v, v'} of the edge el whose length is less than 8 tan fJ is realized. Thus, the

descendant of el that is incident to v becomes stable at latest when its length becomes smaller

than 8 tan fJ. Interchanging the roles of el and e2, we can prove the other half of the lemma

similarly. 0

For two real-value functions f(x) and g(x), we write f(x) = o(g(x)) if there exists

constant C such that

limsuplf(x)15C. (5.2)
%-0 g(x)

Lemma 3. Suppose that v is a degree-two clear acute vertex with angle fJ and clearance 8.

The number of midpoints inserted within distance 8 from J.L(v) is at most of o(-log fJ).

Proof. From the argument in the proof of Lemma 2, we see that the edge incident to v becomes

stable at latest when its length becomes smaller than 8 tan fJ. Hence, the number of midpoints

that should be inserted within distance 8 from J.L(v) to make the edge stable is bounded by the

smallest integer, = ,. that satisfy

28 (~).., < Han8. (5.3)

For small 181 we get tan fJ ~ sin fJ ~ fJ. Hence, ,. = o(-log fJ). 0

We say that two edges e and e' form an implicit intersection pair if e and e' are not

adjacent to each other in G and J.L(e) and J.L(e') have a point of intersection. The point of

intersection of J.L(e) and J.L(e') is said to be clear if (i) J.L(e) and J.L(e') are not collinear, (ii)

the point of intersection does not coincide with an endpoint of J.L(e) or J.L(e'), (iii) there is no

other edge elf such that J.L(elf) passes through the point of intersection. For a clear point of

intersection between J.L(e) and J.L(e'), the minimum distance from the point of intersection to

J.L(elf) for elf E E - {e, e/} is called the clearance of the point of intersection.

9

Lemma 4. Suppose that e and e' are two edges forming an implicit intersection pair and that

their point of intersection is clear. After a finite number of inserting midpoints on the edges

containing the point of intersection, Algorithm 1 creates vertex v corresponding to the point

of intersection. Moreover, all the four edges adjacent to v becomes stable in a finite number of

further repetitions of Steps 2 and 3.

Proof. Suppose that e and e' represent the original edge given in Lemma 4 or their descendants

in the current diagram (G, J.&) containing the point of intersection. Let e = {VI, 112} and

e' = {V3, V4}, and let 8 be the smaller angle formed by two line segments J.L(e) and J.&(e').

Without loss of generality, let us assume that J.L(VI) = (0,0), J.&(V2) = (a,O), J.L(V3) =
(b + ccos8,csin8) and J.&(V4) = «b - (d - c)cos8,-(d - c) sin 8), as shown in Fig. 5.3,

where a = 1J.&(e)l, d = 1J.&(e')I, °~ b ~ a and °~ c ~ d. Let Cijk denote the circle passing
through J.L(Vi), J.L(Vj) and J.L(VA:) for 1 ~ i < j < k ~ 4. We show that at least one of the

four circles C123, C124, C134, C234 will become an empty circle in a finite number of midpoint
insertions. The circle Cl23 is represented by

1 ° ° °1 a ° a2

HI23(X,y) =
(b + c cos 8)2 + (csin 8)2

= 0. (05.4)
1 b + ccos8 csin 8

1 x Y x2 + y2

Rewriting this, we get

H I23(X,y) = (acsin8)(x2 + y2) - (a2csin8)x

+ (-a(b + c cos 8)2 - (csin 8)2 + a2(b + c cos 8»y

• Ll[(a) 2 (~ + c2 + 2bc cos 8 - ab - ac cos 8) 2
= ac SIn 17 X - - + y - ------~~-----

2 2c sin 8

_ a2 _ (b2 + c2 + 2bc cos 8 - ab - ac cos 8)2].

4 4~~n28

Hence, the radius, say T123, of the circle Cl23is represented by

2 a2 1 b2
- ab 2

Tl23 = -4 + . 2 (c + + (2b - a) cos 8) . (5.5)
4sIn 8 c

By replacing c by d - c and 8 by -8, we get the radius Tl24 of the circle C124:

2 a2 1 b2
- ab 2

Tl24 = 4"+ 4sin28(d-c+ d-c -(2b-a)cos8). (5.6)

We want to find an upper bound, say a, of the smaller value of Tl23 and T124. However,

equation Tl23 = Tl24 gives a degree-three equation in c, which is difficult to solve. Hence, we

get an upper bound using the principle that the smaller of the two values is not greater than a

weighted average of the two values. Let us define

b2 - ab
A = c++ (2b - a) cos 8, (5.7)

c

b2 - ab
B=d-c+ d -(2b-a)cos8. (5.8)

-c

10

(5.9)

We get the weighted average with weights c/d and (d - c)/d by

JA + d ~ cB = ~ (c2 + (d - c)2 + 2(b
2

- ab) + (2c - d)(2b - a) cos 8) .

The right-hand expression is quadratic in b and in c, and hence the maximum value is attained

at b = 0 or b = a and c = 0 or c = d. Comparing these values, we get

(
c d - c)

max max -dA + -d-B = d + acos8,
0 ~ 6 ~ 1 1 O ~ c ~ d

and the right-hand value is attained when b = a and c = d, or when b = 0 and c = O. Thus,

we get

a
2 = max max min{rf23,rf24}

O ~ b ~ 1 I O ~ c ~ d

(
a

2
1 . 2 2)= max max -4 + . 2 mm{A ,B }

0~6~11 O~c~d 4 sm 8

:$ max max (a2
+ 1 (~A + d- cB)2)

0<6<11 O~c~d 4 4 sin28 d d

a2 (d + acos8?
= - + 2 (.5.10)

4 4sin 8

Recall that 8 is fixed, and that a and d become half of their previous values when the mid­

points are inserted on J.I.(e) and J.I.(e/) respectively. Hence, after a finite number of midpoint

insertions, a becomes smaller than 8/2 and hence one of the circles GI23 and GI24 contains

no points in P - {J.l.CVI),J.I.(V2),J.I.(V3),J.I.(V4)}. By a similar argument we can see that by a

finite number of midpoint insertions, one of the circles G134 and G234 contains no points in

P - {J.I.(VI), J.I.(V2), J.I.(V3), J.I.(V4)}' Since J.I.(V3) and J.I.(V4) are in mutually opposite sides of

J.I.(e) and J.I.(vd and J.I.(V2) are in mutually opposite sides of J.I.(e), we see the following: if

J.I.(V4) is inside G123, then J.I.(V3) is inside Gl24 and J.I.(VI) is outside G234 and J.I.(V2) is outside

G134; on the other hand, if J.I.(V4) is outside G123' then J.I.(V3) is outside Gl24 and J.L(vd is

inside G234 and J.I.(V2) is inside G134. In any case, the smaller circle of Gl23 and GI24 or the

smaller circle of GI34 and G234 does not contain any point in its interior, and hence one of

the four triangles is a Delaunay triangle, which means that e and e/ form a cross pattern and

consequently the point of intersection is detected and inserted by Algorithm 1.

The latter half of the lemma can be proved in the same manner as Lemma 2, because once

the point of intersection is inserted, the four edges incident to this vertex can be considered as

a compound of two acute vertices and the proof of Lemma 2 can be applied to each of them

separately. 0

Lemma 5. Suppose that e and e/ are two edges forming an implicit intersection pair and

their point of intersection is clear, with clearance 8. Let 8 be the smaller angle formed by J.I.(e)
and J1.(e/). The number of midpoints inserted to the descendants of e and e/ containing the

point of intersection is of o(-log 8).

Proof. Let I be the smallest integer satisfying

IJ.I.(:)1
2
(~)2-Y + 4Si~28 (IJ.I.(el)I(~)-Y +IJ.I.(e)lcoS8(~)-Y)2 :$ (~)2 (.5.11)

In the proof of Lemma 4, we saw that the number of points inserted by the time when the point

11

of intersection is detected is not larger than "'I. Thus, we get

(~) 2 ' " (1 ~ (e) 1 2 + (1~(e')1 + 1~(e)lcos8?) < (~)2
2 4 4 sin2 8 - 2

"'I 2: 21~g2 (log (const.+ : : : ~ .) -210g 8+210g2) =0(-log8).

From this inequality and Lemma 3 we get Lemma 5.

From Lemmas 1,2 and 4 we get the next theorem.

(5.12)

(5.13)

o

Theorem 1. Algorithm 1 terminates in finite steps if the following conditions are satisfied:

(i) in the original diagram (G , ~) every vertex is obtuse or is incident to at most two edges,

(ii) no two line segments are collinear, (iii) every point of intersection lies on exactly two line

segments, and (iv) no numerical error takes place in the course of computation.

However, these conditions are not practical, firstly because we usually do not know how

many line segments lie on each point of intersection before we find the point of intersection,

secondly because as shown by Lemmas 3 and 5, the time complexity is not so small if two lines

come close to be collinear, and thirdly because it is very difficult to avoid numerical errors in

actual computation. Hence, in the next section we will revise the algorithm into a robust one

in the sense that it is valid even if all the above conditions are removed.

6. Robust Method
We will revise Algorithm 1 into a robust one. As stated in Theorem 1, many conditions

are required for Algorithm 1 to be valid. Here we assume that the input does not necessarily

satisfy those conditions. The only assumption we pose on the diagram (G , ~) is

(AI) G is a finite graph without selfloops or parallel edges.

We place no assumption on the mapping ~ , and hence various kinds of degeneracy are allowed;

for example, any number of vertices in G may fall on the same point in the plane,. and any

number of line segments may have a common implicit point of intersection.

By numerical computation we mean computation involving floating-point numbers. Let +,
.:, X, +be imprecise operations corresponding to precise operations +, -, X, -:-. We place

the following assumptions on numerical computation.

(A2) The results of imprecise operations +, .:, X, +are in general different from the results

of precise operations +, -, X, -:-.

(A3) The comparison x = y or x < y can be done precisely.

(A4) The imprecise addition +is monotone in the sense that for any x, y 2: 0, x+y 2:: x and

x+y 2:: y.

(A5) Distance IT(Pi, Pi)I computed in imprecise arithmetic is nonnegative.

Actually (A2) is not an assumption; it simply states explicitly that we do not expect correctness

of these operations. We do not assume any bound of numerical error; hence, for example, the

difference between x + y and x+y can be arbitrarily large. In actual computation we can of

course expect some bound of numerical error, and consequently can expect a meaningful output

12

up to the precision at hand. However, we do not explicitly assume any bound because such a

bound is not necessary for the proof of the robustness of our algorithm. On the other hand,

we assume the correctness of comparison, monotonicity of addition of positive numbers and

nonnegativity of the distance, as stated in (A3), (A4) and (A5). Note that these properties are

usually satisfied by actual floating-point computation. Our goal is to design an algorithm for

finding points of intersection that always terminates and gives a topologically consistent output

in the world with assumptions (AI) '" (A5).

First of all there already exists a robust algorithm for constructing the Delaunay triangu­

lation [Sugihara and Iri, 1989b, 1989c]. In that algorithm, the basic procedure is described in

terms of combinatorial computation and numerical values are employed only in order to select

the most promising branch of the procedure. Consequently, the algorithm is robust in the sense

that no matter how poor the precision in computation may be, it terminates in finite steps and

gives an output whose topological structure is at least a planar triangular graph. So we use

this algorithm as a tool for constructing our robust intersection algorithm.

In order to guarantee termination of our algorithm, we need to guarantee finiteness of the

number of points of intersection and the number of midpoints inserted in the processing. To

restrict the number of points of intersection being finite, we place the next constraint.

(Cl) The point of intersection is generated at most once for each pair of line segments.

Hence, if the descendants of two edges form cross patterns twice or more, we consider that they

are due to numerical errors and ignore the second and later appearances of the cross patterns.

To guarantee finiteness of the number of midpoints, we intuitively place the following

constraint. We prespecify a small positive real number, say c, and once a descendant of an

edge becomes shorter than c, we do not insert the midpoint any more. It might seem that the

finiteness of the number of midpoints is obviously guaranteed by this constraint. However, we

must be a little more careful because the coordinates of the midpoints and the lengths of the

resultant edges cannot necessarily be computed precisely.

For each edge e of the original diagram (G, j.£), we associate number [3(e) which is defined

as the smallest integer satisfying

(
l)(3(e)

1j.£(e)1 2" < C. (6.1)

[3(e) is the minimum number such that the [3(e)-th descendant of e has length smaller than c.
An edge is said to be saturated if its ancestors suffer [3(e) times of midpoint insertions, and

unsaturated otherwise. An edge in general is created as a result of insertion of midpoints and

points of intersection, among which we count only the number of midpoint insertions; if this

number reaches [3(e), we do not insert the midpoint on the edge any more. In other words, we

place the following constraint:

(C2) The midpoints are inserted only to unsaturated edges.

Note that (C2) guarantees the finiteness of the number of midpoints inserted on original edge

e. Since numerical error takes place, the computed value of [3(e) may not be correct. However,

once we get an integer [3(e) (even if it is not correct), we can count the depth of descendants by

integer computation and hence can bound the number of midpoints inserted in the procedure.

Thus, employing (C1) and (C2), we can guarantee the finite termination. However, as the

cost of this, we have the possibility of having unrealized edges when the algorithm terminates.

13

So the next question is how to deal with these unrealized edges.

When the algorithm terminates, we have refinement (G' ,Ii) of the original diagram (G, p.),
and the associated triangulation T. Because of numerical errors T is not necessarily the De­

launay triangulation spanning vertices in (G' ,p.'), but at least the topological structure of T

is a planar triangular graph. So, for each unrealized edge e = {Vi, Vi} (if it exists) we find the

shortest path in T connecting p.(Vi) and IJ(vi); let us call this the shortest Delaunay path
connecting p.(Vi) and IJ(vi)' We replace e by this shortest Delaunay path.

For example, suppose that three line segments have a common point of intersection and t,hat

the Delaunay triangulation at the final stage of the midpoint insertion is as shown in Fig. 6.1(a),

where bold lines represent realized descendants of the line segments and thin lines represent

other Delaunay edges. All the three line segments have gaps near the point of intersection,

because the descendants containing the point of intersection are not realized. Replacing such

unrealized edges by the Delaunay shortest paths, we get the planar diagram as shown in (b).

It is known that the shortest Delaunay path is not so bad as an approximation to the direct

route connecting two end points [Keil and Gutwin, 1989] [Dobkin, Friedman and Supowit. 1990].
Hence, we can expect that this replacement gives a not-so-bad approximation of the original

line segment. As a result of this, we have the diagram whose edges are aU realized in the

triangulation T. Thus, the final diagram is a substructure of T, and consequently is a planar

diagram.

Summarizing all the above consideration, we get the next algorithm, where the descriptions

of Steps 2, 3 and 5 are simplified because they are almost the same as Steps 2, 3 and 4,

respectively, of Algorithm 1.

Algorithm 2 (robust version)
Input: diagram (G, IJ), where G = (V, E) is a finite graph with vertex set V = {VI, '112, ••• ,

V,,} and edge set E = {el' e2, ... , em}, and positive number e.
Output: approximation of the coarsest planar refinement of (G,IJ).
Procedure:

- Initialization -

1.1. For every pair of vertices Vi and Vi such that p.(Vi) = p.(vi), merge them into one vertex;

that is, do:

begin

V - V - {Vi};
replace every appearance of Vi in the list of edges by Vi;

if there is an edge e = {Vi,vi}' E - E - {eli
end.

1.2. Construct the Delaunay triangulation spanning {IJ(v) IV E V}.
- Extraction of points of intersection -

2. For each pair of realized edge e and unrealized edge e' forming a cross pattern such that the

point of intersection between the ancestor of e and that of e' has not yet been generated,

do:

generate new vertex V representing the point of intersection, and

modify the Delaunay triangulation by adding v.

- Midpoint insertion -

3. If all the unrealized edges are saturated, go to Step 4. Otherwise, choose an unsaturated

unrealized edge, say e, and do:

insert the midpoint v to e, and

modify the Delaunay triangulation by adding v, and go to Step 2.

14

- Approximation of unrealized edges -

4. For each unrealized edge e = {Vi, vi}, replace it by the shortest Delaunay path connecting

f.L(Vi) and f.L(vi)·
- Deletion of the midpoints -

5. Delete all the vertices that are incident to exactly two edges and that are not in the original

diagram, and return the resultant diagram. 0

Step 1.1 need comparison between the coordinates of vertices, which can be done correctly

because of (A3). Step 1.2 can be done by the robust method given by Sugihara and Iri (1989b,

1989c). In Steps 2 and 3, we employ the constraints (C1) and (C2), respectively, so that the

finiteness of the number of repetitions of these steps is guaranteed. Note that unlike Algorithm 1

we need not insert the midpoint to the longest edge first, because the termination is guaranteed

by the constraint (C2).

In Step 4 we can apply any existing shortest-path algorithm. However, in order to see the

finite termination, let us explicitly state the algorithm. The next is the simplest algorithm for

finding the shortest path between two specific points Vs and Vt. In this algorithm, c(v) denotes

the length of the shortest path from V s to v among the paths traced so far, Q is a stack to store

vertices from which we expand the shortest paths, and back(v) denotes the last vertex lying on

the path from Vs to v.

Algorithm 3 (shortest path)
Input: diagram (G,f.L), where G = (V, E) is a finite graph having vertex set V and edge set

E, and two specific vertices vs , Vt E V
Output: shortest path between Vs and Vt.
Procedure:

1. c(vs) - 0; c(v) - 00 for all v E V - {vs}; Q - {vs}.
2. Repeat 2.1, 2.2 and 2.3.

2.1. Choose and delete from Q vertex v with the smallest c(v).

2.2. If v =Vt, go to Step 3.

2.3. For every edge e = {v, vi} incident to v,if c(vi) > c(v) + 1f.L(e)1, then

begin

c(vi) - c(v) + 1f.L(e)lj back(vi) - v; Q - Q U {Vi};
end

3. i-Oj Vi - Vt;
while back(vi) =/: Vs do

vi+l - back(vi); i - i + 1;
return (Vs,Vk,Vk_l, ... ,V},Vt) (where back(vk) = vs). 0

Step 1 is for initiation, in which the length from Vs to itself is set 0, the lengths from Vs

to other vertices v are set 00, and Q is initialized as the set consisting of the start vertex vs.

In Step 2, the vertex v with the smallest c(v) is chosen (Step 2.1), and if it is the terminal

vertex Vt, we have found the shortest path and so go to Step 3 (Step 2.2); otherwise we expand

the path from v to the adjacent vertices (Step 2.3). Step 3 is for postprocessing to get t,he list

of vertices on the shortest path. For the correctness of this algorithm, see standard textbooks

[Knuth, 1973].

We can guarantee the finite termination of Algorithm 3 by showing that any vertex which

is once put in Q in Step 1 or Step 2.3 and is deleted from Q in Step 2.1 will never be put in

Q again. Indeed, from (A3) the vertex v with the smallest c(v) is correctly chosen and deleted

15

from Q in Step 2.1, and from (A4) and (AS) the computed value of c(Vj)+l.u(e)1 in Step 2.3

is not smaller than c(Vj). Hence, after each repetition of Steps 2.1 '" 2.3, no element J in Q
has the value of c(J) smaller than c(v), which means that the minimum value of c(v) over all

elements v in Q never decreases in the execution of Algorithm 3. Therefore, any vertex which

is once deleted from Q will never be put in Q again. Thus, the finite termination of Algorithm

3 is guaranteed in the assumption (A3) "'" (AS).

On the other hand, if these assumptions do not hold, the finite termination of Algorithm

3 is not guaranteed. Indeed, if (A4) or (AS) does not hold, the length of a path may decrease

as we walk farther along a path, and hence the shortest-path finding procedure may fall into

an endless loop.

The assumptions (A3), (A4) and (AS) are satisfied. by most of actual computers. Hence,

we need not worry about unrobustness due to numerical error when we implement Algorithm

3; the straightforward implementation usually gives a valid computer program.

Let us go back to Algorithm 2. Step S of Algorithm 2 does not employ numerical compu­

tation, so that it can be done always in finite steps.

Thus, Algorithm 2 terminates in finite steps. Also the output diagram is topologically

consistent in the sense that it can be embedded in the plane if we use curved line segments

because the output diagram is a subgraph of the final triangulation which is planer.

In Step 2 we have to find cross patterns. For this purpose we use a queue, say Q. When

the initial Delaunay triangulation is constructed in Step 1.2, all the Delaunay edges are stored

in Q. In Step 2 we choose and delete an edge e from Q one by one and examine the (at most

two) Delaunay triangles containing e to check whether the other vertex of the triangle has an

edge which together with e forms a cross pattern. New Delaunay edges generated in Steps 2

and 3 are added to QI and old Delaunay edges which are in Q and which disappear as the

result of modification of the· Delaunay triangulation in Steps 2 and 3 are deleted from Q.

Let m be the number of edges in the original diagram (G, p.), and let 1 and k be the

number of points of intersection and that of midpoints generated in Algorithm 2. If we can

regard that the vertices are located almost at random, we may expect the following average

time complexity. Step 1.1 can be done in O(m) time by the bucketing technique [Ohya, Iri and

Murota, 1984]. Step 1.2 is done in O(n). If points are located almost at random, we can expect

that the modification of the Delaunay triangulation for addition of one new point requires only

constant time. Hence, the time required for Step 2 is proportional to the number of Delaunay

edges ever stored in Q, which is of O(n + 1+ k). Step 3 is also done in O(n + 1+ k). Step

4 is for the exceptional case, so that we can expect that Step 4 is usually skipped. Step 5 is

done in O(k) time. Thus, the average time complexity can be expected to be of O(N), where

N = n+m+1+k.
The time complexity of Algorithm 2 depends not only on the input and output size (i.e.,

n +m +1) but also on k, the number of midpoints inserted in Step 3. We can bound k by

k ::s EeEE(Ip.(e) 1/e), where E is the edge set of the original diagram, but this bound is usually

an awful overestimation. An actual value of k depends on the distances between mut.ually

nonintersecting line segments and the angles between mutually intersecting line segments; k

becomes large if the distances and the angles become small. Thus, the time complexity of

the present method depends on "degree of difficulty" of the problem. This property seems

reasonable particularly when we design an algorithm that is robust and stable in imprecise
arithmetic.

It may be difficult to know an appropriate value of e. In that case we can take the

following alternative. Instead of giving the minimum length e of edges to be divided, we give

the maximum number, say](I of midpoints to be inserted, and instead of choosing an arbitrary

16

edge in Step 3 we choose the longest edge. If the number of midpoints generated in Step 3

becomes K, we stop the repetition of Steps 2 and 3 and go to Step 4. By this modification

we can bound the average time complexity in terms of the input and output size and [(; if

we use a priority queue to extract the longest unrealized edge, the time complexity will be of

O(MlogM) where M = n +m +1+K.
In this section we placed emphasis on maintaining topological consistency. However, this

does not mean that numerical computation is unimportant. Careful choice of the ways of

computing numerical values will improve the performance of the algorithm. For this reason,

we need to be a little careful in the computation of points of intersection and midpoints. The

locations of the original line segments are specified by the coordinates of the endpoints. The

original line segments are decomposed into smaller segments, and they are likewise specified by

the coordinates of the endpoints. However, the points of intersection and the midpoints should

be computed from the coordinates of the endpoints of the original line segments. Otherwise,

numerical errors will be accumulated. The point of intersection of two line segments can be

computed as the point of intersection of their origiJ;lal ancestors. For the computation of the

midpoint of a line segment, we keep the history of how the line segment is generated from

the original ancestor and compute the point on the original segment that corresponds the

midpoint of the present descendant. Numerical computation related with the construction of

the Delaunay triangulation was discussed in [Sugihara and Iri, 1989b].

7. Computational Experiments
Algorithm 2 was implemented in a FORTRAN program, in which VORON0I2 [Sugihara

and Iri, 1989c], a robust incremental method for constructing Voronoi diagrams, was employed

for the construction of the Delaunay triangulation. The FORTRAN code consisted of about

4500 lines, including routines for generating input data and those for drawing the output.

The experiments were done in Sequent Symmetry Multiprocessor System with UNIX operating

system and with FORTRAN compiler FORTRAN 77 V3.2 by Silicon Valley Software Inc. All

numerical computations were done in single-precision Boating-point arithmetic. The following

are examples of the behavior of this computer program.

In the first example, a collection of ten line segments shown in Fig. 7.1(a) was given as an

input. The ten line segments were first generated in such a way that they had a common point

of intersection at the center, and next they were perturbed slightly by random numbers. The

line segments are generated in the region {(x, y) I0 ~ X, Y ~ 1}, and the square drawn in the

figure represents the region {(X , y) I -0.1 ~ x, y ~ 1.1}.
First, we saw the effect of the value of input c, the threshold such that unrealized line

segments are divided only when their lengths are greater than c. Fig. 7.1(b) shows the Delaunay

triangulation obtained at the final stage of the algorithm for c = 0.1; the length of c is

represented by the horizontal line segment near the right lower corner of the figure. In this figure,

the solid lines represent Delaunay edges and the broken lines represent unrealized descendants

of the input line segments. Fig. 7.1(b') shows the final output, where each point of intersection

is represented by a dot surrounded by a circle.

Fig. 7.1(c) and (c') show the Delaunay triangulation at the final stage and the output,

respectively, for c = 0.01.
If we magnify the central region in (a) by 100, we get the diagram as shown in (d). The final

Delaunay triangulations and the outputs for c = 0.002, c = 0.001 and c = 0.0001 magnified

by the same factor are shown in (e) and (e'), (f) and (f'), and (g) and (g'), respectively. For

c = 0.0001, all the descendants of the input line segments were realized in the Delaunay

triang1.!lation in (g) and hence all the points of intersection were found in (g').

17

The number of points generated in the algorithm (i.e., the total number of midpoints and

points of intersection) were 103 for e = 0.1, 194 for e = 0.01, 256 for e = 0.002, 281 for

e = 0.001, and 300 for e = 0.000l.

From this example, we can see that the value of e can control the resolution of the output;

larger e gives lower resolution and smaller € gives higher resolution.

In the next example, we saw the effect of numerical errors. In the computer program many

floating-point computations were done. Using random numbers, we added artificial errors to the

result of floating-point computation. Let a be the result of a certain floating-point computation.

We replaced a by

, 6
a = (1 + 100r)a, (7.1)

where r is a random number uniformly distributed in [-1,1) and 6/100 is a constant repre­

senting the maximum of the relative error. When a' is replaced by a' according to equation

(7.1), we say that 6 % numerical error is added to a.

The input to the computer program is the same set of line segments as in the previous

example, i.e., the ten line segments in Fig. 7.1(a). Fig. 7.2(a) and (a') show the Delaunay

triangulation and the output obtained when 5% numerical errors were added to the computation

of midpoints and to the computation of the points of intersection. In this example, Step 5 of

Algorithm 2 was not executed, and hence the midpoints inserted by the algorithm remain in

the figure. This is because we can see the effect of numerical error more clearly. In this case,

the Delaunay triangulation was computed without any artificial error, so that the resultant

diagram (a') has no implicit point of intersection.

Fig. 7.2(b) and (b') show the result obtained when 5% numerical errors were added to

the computation of the Delaunay triangulation (in which the floating-point computation was

used for two purposes; one is to compute the distance between two points and the other is to

judge whether a circle passing through three points includes the fourth point in its interior).

Because the Delaunay triangulation was not computed correctly, the output diagram (b ') has

many implicit points of intersection. However, it is assured that the graph structure of the

triangulation in (b) is planar [Sugihara and Iri, 1989b], and hence the diagram in (b'), which is

a subgraph of (b), can be embedded in the plane if we use curved line segments. In this sense

the output is topologically consistent.

Fig. 7.2(c) and (c ') show the result obtained when 100% numerical errors were added to

both the computation of midpoint and intersection and the computation of Delaunay triangu­

lation. 100% numerical errors mean that numerical computation were almost meaningless, but

still our computer program gave some output. Even when 500% or 1000% numerical errors

were added, the program carried out its task and gave some output, though the output was

almost nonsense.

What should be noted in this example is that no matter how large numerical errors take

place, the algorithm does not come across any inconsistency and hence it always gives some

output that is at least topologically consistent.

In this experiment, numerical errors were not added in the stage of finding the shortest

paths, i.e., in Step 4 in Algorithm 2. This is because the termination of the shortest path

algorithm is not guaranteed if the sum of the lengths of two edges becomes shorter than the

lengths of the original edges. However, this does not mean that the shortest path cannot be

found robustly. As we saw in the previous section, the shortest path can be found robustly in

the assumptions (A3), (A4) and (A5). We skipped adding numerical error in this step simply

because the error generated by equation (7.1) does not satisfy (A4) and (A5).

18

Another example is shown in Fig. 7.3. The input was a collection of 30 line segments

shown in (a). This set of line segments was generated in such a way that first 30 line segments

meeting at the center were generated at random and next their endpoints were perturbed at

random. The outputs for c =0.1, for c =0.02 and for c =0.0001 are shown in (b), (c) and

(d), respectively. In (b) and (c) the extracted points of intersection are not shown explicitly

(they are represented by dots with circles in other figures) j this is because we want to show the

microstructure more clearly. The number of unrealized edges was 236 in (b), 181 in (c) and 0

in (d), and the number of generated points was 359 in (b), 1123 in (c) and 1537 in (d). The

number of points of intersection found in (d) was 375.

Fig. 7.4(a) shows a polygonal line connecting 50 points (and hence the number of line

segments is 49). This diagram was generated by locating 50 points at random and connecting

them sequentially. The output for c =0.3, for c =0.05 and for c =0.0001 are shown in (b),

(c) and (d), respectively. The number of unrealized edges was 120 in (b), 77 in (c) and 19 in

(d), and the number of generated points was 247 in (b), 810 in (c) and 1376 in (d).

The last example is shown in Fig. 7.5. The input was a collection of ten line segments;

they were generated so that they met at the center up to numerical error due to single-precision

floating-point expression. The output for c = 2 X 10-6 is shown in (a). If we magnify the

central region of this figure by 105 , we get the figure shown in (b). The output at the same

central region for c =10-6 and for c = 10-8 are shown in (c) and (d), respectively. In this

example, Step 5 of Algorithm 2 was skipped, and hence the midpoints inserted in the algorithm

remain in the figure. The number of unrealized edges was 41 in (a), 40 in (c) and 39 in (d), and

the number of generated points was 814 in (a), 890 in (c) and 1065 in (d). Even if smaller value

of c (Le., c = 10-9 or c = 10-1°) was used, no new midpoint or point of intersection was

generated. This is because the midpoint of any unrealized edge computed in single precision

coincided with one of the endpoints of the edge, and hence no new point was created in the

stage of the midpoint insertion. In this sense, the result shown in (d) seems the best possible

that we can obtain in singe-precision arithmetic.

8. Concluding Remarks
We have constructed a new algorithm for finding points of intersection of line segments in

the plane. The algorithm first subdivides the plane into the Delaunay triangulation spanning

the end points of the line segments, and next refines the subdivision by inserting midpoints

recursively until the areas containing points of intersection are sufficiently localized.

This algorithm has many good properties. First, the algorithm is robust; no matter how

poor the precision in computation may be, the algorithm executes the task without facing

inconsistency and gives an output that is topologically consistent in the sense that the output

diagram is always embeddable in the plane. Secondly, the algorithm is stable; it does not miss

pairs of line segments that can be detected easily by pairwise check in the precision at hand.

Thirdly, the algorithm is simple; it does not have any exceptional branch of processing for

degenerate or nearly degenerate cases. Forthly, the algorithm can pay its const adaptively. The

algorithm terminates quickly if the input is simple in the sense that no two line segments are

near to collinear, no mutually nonintersecting line segments come close to each other, and no

two points of intersection come close to each other. If the input is not simple, on the other

hand, the algorithm spends much time in the areas where the situations are not simple. This

property seems reasonable as the behavior of an algorithm in the world with numerical errors.

We cannot bound the time complexity of the present algorithm in terms of the number

of the input line segments and the number of points of intersection, because the number of

midpoints inserted in the algorithm depends on the distances between nonintersecting line

19

segments and the angles between mutually intersecting line segments. However, it is not. fair

to conclude that the present algorithm is less efficient than the existing "efficient" algorithms,

because the correctness of those algorithms is guaranteed only in precise arithmetic whereas

the present algorithm is valid in the world with numerical errors. We need some new concept

to measure the complexity of algorithms that take numerical errors into account.

The basic idea presented in the paper also has some alternative ways of implementation.

First, in our algorithm new vertices are placed at the midpoints of unrealized edges. This

is because this strategy can be easily converted into a numerically robust one. Other strategies

for placing new points are studied for the domain Delaunay triangulation problem [Boissonnat,

1988] [Schroeder and Shephard, 1988] [Sapidis and Perucchio, 1990]. They might be useful

for our problem in order to decrease the number of new points. However, these strategies are

designed basically for precise arithmetic, and how to implement them in a numerically robust

manner is one of our future problems.

Second, we consider all of the given line segments from the beginning. Another method

may be an incremental one, in which we start with a single line segment and add other line

segments one by one; at each addition of a line segment, we find or localize all the points

of intersection between the line segments added so far. The incremental method may have

advantage for degeneracy; for example, even if three lines have a common point of intersection,

the degeneracy does not appear before the third line is added.

Third, we use the Delaunay triangulation, but other triangulation can be used similarly

as long as it is a "good" triangulation, where "good" means that the triangulation does not

contain relatively narrow and elongated triangles. The triangulation obtained as a dual of the

Ll-metric Voronoi diagram [Chew, 1988] seems one of such candidates. To search for this

possibility is also one of our future work.

We are now extending the present idea to the three-dimensional intersection problem.

The author would like to express his thanks to Prof. C. M. Hoffmann, Prof. C. Bajaj and

T. K. Dey of Department of Computer Science, Purdue University, for their valuable comments.

This work is partly supported by the Grant in Aid for Scientific Research of the Ministry of

Education, Science and Culture of Japan (Grant No. 01550279) and by the Computing-About­

Physical-Object Project at Purdue University.

Reference

J. L. Bentley and T. A. Ottmann, 1979: Algorithms for reporting and counting geometric

intersections, IEEE Transactions on Computers, vol. 28, pp. 643-647.

J. D. Boissonnat, 1988: Shape reconstruction from planar cross sections. Computer Vision,

graphics, and Image Processing, vol. 44, pp. 1-29.

P. Chew, 1988: There is a planar graph almost as good as the complete graph. Proceedings

of the 2nd ACM Annual Symposium on Computational Geometry, pp. 169-177.

D. P. Dobkin, S. J. Friedman and K. J. Supowit, 1990: Delaunay graphs are almost as good as

complete graphs, Discrete and Computational Geometry, vol. 5, pp. 399-407.

D. Dobkin and D. Silver, 1988: Recipes for geometry and numerical analysis - Part I, An

empirical study. Proceedings of the 4th ACM Annual Symposium on Computational
Geometry, Urbana-Champaign, pp. 93-105.

S. Fortune, 1987: A sweepline algorithm for Voronoi diagrams. Algorithmica, vol. 2, pp.

153-174.

S. Fortune, 1989: Stable maintenance of point-set triangulations in two dimensions. Preprint,

AT&T Bell Laboratories, Murray Hill.

20

D. H. Greene and F. Yao, 1986: Finite-resolution computational geometry, Proceedings of the

27th IEEE Annual Symposium on Foundations of Computer Science, Toronto, pp.

143-152.

L. Guibas, D. Salesin and J. Stolfi, 1989: Epsilon geometry - Building robust algorithms

from imprecise computations. Proceedings of the 5th A CM A nnual Symposium on

Computational Geometry, Saarbruchen, pp. 208-217.

L. Guibas and J. Stolfi, 1985: Primitives for the manipulation of general subdivisions and the

computation of Voronoi diagrams. ACM Transactions on Graphics, vol. 4, pp. 74-123.

C. M. Hoffmann, 1989: Geometric & Solid Modeling. Morgan Kaufmann Publishers, Inc.,
San Mateo.

C. M. Hoffmann, J. Hopcroft and M. Karasick, 1988: Towards implementing robust geometric

computations. Proceedings of the 4th ACM Annual Symposium on Computational

Geometry, Urbana-Champaign, pp. 106-117.

Y. Kanazawa, 1990: A robust method for finding points of intersection (in Japanese). Master's

Thesis submitted to the Department of Mathematical Engineering, Faculty of Engineering,

University of Tokyo, Tokyo, Japan.

M. Karasick, 1989: On the representation and manipulation of rigid solids. Technical Report,

TR 89-976, Department of Computer Science, Cornell University, Ithaca.

M. Karasick, D. Lieber and L. R. Nackman, 1989: Efficient Delaunay triangulation using ratio­

nal arithmetic. IBM Report, RC 14455, IBM Thomas J. Watson Research Center, Yorktown

Heights.

J. Katajainen and M. Koppinen, 1988: Constructing Delaunay triangulations by merging buck­

ets in quadtree order. Fundamental Informatica, vol. XI, pp. 275-288.

J. M. Keil and C. A. Gutwin, 1989: The Delaunay triangulation closely approximates the

complete Euclidean graph. Proceedings of the First Workshop on Algorithms and

Data Structures, pp. 47-56.

D. E. Knuth, 1973: The Art of Computer Programming, Volume III - Sorting and

Searching. Addison-Wesley, Reading.

D. T. Lee and B. J. Schachter, 1980: Two algorithms for constructing a Delaunay triangulation.

International Journal of Computer and Information Sciences, vol. 9, pp. 219-242.

V. Milenkovic, 1988: Verifiable implementations of geometric algorithms using finite precision

arithmetic. Technical Report, CMU-CS-88-168, Computer Science Department, Carnegie­
Mellon University.

V. Milenkovic, 1989: Double precision geometry - A general technique for calculating line and

segment intersections using rounded arithmetic. Proceedings of the 30th IEEE Annual

Symposium on the Foundations of Computer Science, pp. 500-505.

T. Ohya, M. Iri and K. Murota, 1984: Improvements of the incremental method for the Voronoi

diagram with computational comparison of various algorithms. Journal of the Opera­

tiOn3 Research Society of Japan, vol. 27, pp. 306-336.

A. Ohsawa, 1986: Pointer-based 2d-space modeling method allowing local geometric procp.ssing

(in Japanese). Transactions of Information Processing Society of Japan, vol. 27, pp.

1174-1185.

A.Ohsawa, 1990: Failure free geometrical algorithm against calculation error - Rea.lization by

means of space model (in Japanese). Transactions of Information Processing Society

of Japan, vol. 31, pp. 42-55.

T. Ottmann, G. Thiemt and C. Ullrich, 1987: Numerical stability of geometric algorithms. Pro­

ceedings of the 3rd ACM Annual Conference on Computational Geometry, Wa.terloo,

pp. 119-125.

21

F. P. Preparata and M. I. Shamos, 1985: Computational Geometry - An Introduction.
Springer-Verlag, New York.

B. Samet, 1990: Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading,

MA.

N. Sapidis and R. Perucchio, 1990: Delaunay triangulation of arbitrarily shaped planar domains.

Preprint, Department of Mechanical Engineering, University of Rochester.

W. J. Schroeder and M. S. Shephard, 1988: Geometry-based full au tomatic mesh generation

and the Delaunay triangulation. International Journal for Numerical Methods in En­
gineering, vol. 26, pp. 2503-2515.

M. I. Shamos and D. Boey, 1975: Closest-point problems. Proceedings of thr 16th IEEE

Annual Symposium on Foundation of Computer Science, pp. 151-162.

K. Sugihara and M. Iri, 1989a: A solid modelling system free from topological inconsistency.

Journal of Information Processing, vol. 12 (1989), pp. 380-393.

K. Sugihara and M. Iri, 1989b: Construction of the Voronoi diagram for one million gener­

ators in single-precision arithmetic. Paper presented at the First Canadian Conference

on Computational Geometry, August 21-25, 1989, Montreal, Canada, and submitted for

publication.

K. Sugihara and M. Iri, 1989c: VORON0I2 reference manual. Research Memorandum RMI

89-04, Department of Mathematical Engineering and Information Physics, Faculty of En­

gineering, University of Tokyo, 1989.

K. Sugihara, Y. Ooishi and T. Imai, 1990: Topology-oriented approach to robustness and its

applications to several Voronoi-diagram algorithms. Abstracts of the Second Canadian
Conference on Computational Geometry, Ottawa, August 1990, pp. 36-39.

G. Vanecek, Jr., 1989: Set operation on polyhedra using decomposition method. Ph.D Disser­

tation, Department of Computer Science, University of Maryland.

22

23

5, 52 53
I I I

54 55
I

,
I

I I I I I
d , I I

I I ~C
I II I
I II
I II I

I
I ,
~I I
I I I I

I

I
~ I "'~bI

I~

I
~

I I

a I
I I I I

I I I
I I I

I I
I I I

I 1"'-" -a
'...-.. I I

1...-.. I-Q
1"t:J

,...-..
I

,-Q I l ..i'
I "

1"'tJ It:;
I "'tJ'1l..J l..J" I I l..J"I "
I c::i'I-l:)"' I c:f ICJ

I CJ"
I-Q" I ~

I t::s"' I-Q" 1-'- I,-.- ,-.- '-.-

(a) (b)

Fig. 2.2. Plane sweep method and its instability: (a) basic idea of the plane sweep

method; (b) example in which the plane sweep method misses a point of in-

tersection that is easily detectable by the naive pairwise check.

~

(a) (b)

Fig. 2.3. Configurations for which the exhaustive pairwise check is not stable: (a)

intersection of two polygonal lines; (b) intersection of two polygons.

)1-(V6)}l(~)
)L(V6))J.(~)

';u(\f) / I /' ~ (~)

• -
P(V8)

'p(V~ I / I ft (V5)t.:l I ./ I
I

~

I /

p(V2) V !p(V7) ~(V2)· ·fl(V7)

(a) (b)

Fig. 3.1. Diagram and its coarsest planar refinement: (a) diagram having implicit

points of intersection; (b) coarsest planar refinement of the diagram in (a).

\.,
\.
\.

\
\.

\.
\.

\.

\
\

... \
OJ\

\ .:-:\ >~

.~

t.:I
00

(a) (b)

Fig. 4.2. Behavior of Algorithm 1: (a) 30 line segments generated at random; (b) Dealu­

nay triangulation spanning the end points of the line segments; (c) Delaunay

triangulation at the time when all the original line segments are realized; (d)

91 points of intersection found by the algorithm.

29

~

o

(a) (b)

Fig. 5.1. Obtuse vertices and acute vertices: (a) obtuse vertices; (b) acute vertices.

..-
QJ

N

ClJ

31

y

~
~

)-l(Vl)= (OJ 0)

~ (~)

9

(bJO)

f!(V3)

'p(V2)

=(aIO)

x

Fig. 5.3. Two line segments containing a common point of intersection.

.~

(a) (b)

Fig. 6.1. Unrealized edges and Delaunay shortest paths: (a) triangulation obtained at

the end of the midpoint insertion; (b) approximation of unrealized edges by

Delaunay shortest paths.

~
~

(a)

Fig. 7.1. Example 1 - Effect of the threshold c: (a) input diagramj (h) and (h')

c = 0.1; (c) and (c ') c = 0.01; (d) central region of (a) magnified hy 100j (e)

and (e') c = 0.002j (f) a.nd (fl) c = O.OOlj (g) and (g') c = 0.0001.

35

I

---"'T;j
Q,)

=':::
·z
:::
0
u

'--'

..-.I

I
r...:

.~
~

36

~
u

.........

37

.-
-e
v
~
~.-...,

--.. ~

"0 8
'--' --

""""r--=

.~
~

38

39

40

~-

I------i

(a)

I------i

(a')

Fig. 7.2. Example 2 - Effect of numerical errors (e = 0.1): (a) and (a') 5% errors

to the computation of midpoints and intersection; (b) and (b') 5% errors to

the computation of the Delaunay triangulation; (c) and (c') 100% errors to

both the computation of midpoints and intersection and the computation of

the Delaunay triangulation.

42

I

.--
"'t:l

<U
;:l

.S.....
>::
0
C.l--

C'l

to-

I
bO
~

43

I

-.
""0

Q)

::l
~

·z
~
0
u
'-'

C'l

l:-

I
bO
~

:t

(a)

f---t

(b)

Fig. 7.3. Example 3 - 30 line segments: (a) input diagram; (b) e = 0.1; (c) e = 0.02;

(d) e = 0.0001.

:r

45

"'"C)

(a)

I I

(b)

Fig. 7.4. Example 4 - Polygonal line having 50 vertices: (a) input diagramj (h)

c = 0.3; (c) c = 0.05; (d) c = 0.0001.

47

,.-
'"0
V
::l

.s
~

>::::
0
~

"-"

~

to-

I
aD

iZ

~
00

7

(a) (b)

I I

Fig. 7.5. Example 5 - Ten line segments having a common point of intersection: (a)

output for € = 2 X 1O-6
j (b) central region of (a) magnified by 105

j (c) output

for €.= 1O-6
j (d) output for € = 10-8

.

49

	A Robust Intersection Algorithm Based on Delaunay Triangulation
	Report Number:
	

	tmp.1307986960.pdf.aMLgY

