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OverviewOverview

• Rockwell Collins Introduction
• AAMP7G Microprocessor 

– MILS Certification
• SHADE Program

– AAMP7G tools
– Microcryptol Verifying Compiler 
– AAMP7G Instruction Set Formal Model
– Compositional Cutpoint Reasoning
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Rockwell CollinsRockwell Collins

Communications

Automated Flight Control

Displays / Surveillance
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In-Flight Entertainment

Integrated Aviation Electronics

Information Management Systems
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A World Leader in Aviation Electronics and Airborne/ Mobile 
Communications Systems for Commercial and Military Applications
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The Problem The Problem –– HighHigh--Assurance for Security Assurance for Security 
ApplicationsApplications

• Flawed implementations can have grave consequences
–So NSA performs intensive evaluations of critical 

encryption devices
• Evaluation process is difficult

– Increasingly numerous crypto implementations
–Trusted experts are scarce
–Review process is time-consuming and expensive
–Optimized crypto algorithms are complex, easy to 

overlook corner cases
• Highest Evaluation Assurance Level requires formal proofs

– Industry has very little practical experience in this area
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Rockwell Collins AAMP7G CPU Rockwell Collins AAMP7G CPU 

• Developed by RCI Advanced Technology 
Center
• Used in RCI GPS and Information 
Assurance products
• High Code Density
• Low Power Consumption (250 mW)
• 100 MHz operation
• Screened for full military temp range 
• Implements intrinsic partitioning

Intrinsic partitioning
• Computing Platform Enforces Data 
Isolation
• “Separation Kernel in Hardware”

X Y Z

AAMP7 die
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AAMP7G Formal VerificationAAMP7G Formal Verification
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AAMP7G Intrinsic Partitioning AAMP7G Intrinsic Partitioning 
Formal VerificationFormal Verification

Program Accomplishments

Developed formal description of separation for 
uniprocessor, multipartition system

Modeled trusted AAMP7G microcode

Constructed machine-checked proof that 
separation holds of AAMP7G model, using ACL2

Model subject of intensive code-to-spec review

Satisfies NSA MILS formal methods evaluation  
requirements patterned after Common Criteria 
EAL7+ with respect to ADV

NSA MILS certificate granted in May 2005

AAMP7G can concurrently process  
Unclassified through Top Secret Codeword 
information

• RCI IR&D funded
• Capability developed in multiyear RCI 
formal methods research program
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Secure, High Assurance Development Secure, High Assurance Development 
Environment (SHADE)Environment (SHADE)

Program Objectives

Provide a “nuts-and-bolts” partitioned 
development environment.

Develop tools and techniques to provide formal 
analysis at the instruction level for the AAMP7 
processor

Develop a verifying compiler for an “embeddable”
subset of the Cryptol cryptographic language 
targeting the AAMP7

Demonstrate a convenient, high-assured 
toolchain path from high-level algorithm 
description to load image.

RCI subcontractors: Galois Connections,
University of Texas at Austin

AAMP7G development board

Eclipse-based AAMP7G development 
environment
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SHADE SummarySHADE Summary
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AAMP7G Partition  Views
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AAMP7G ACL2 
Formal Model 

Integration with 
Eclipse AAMP7G 

Tools

Disassembly

Process Stack

Console

ACL2 session
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CryptolCryptol

• Galois’ domain-specific language for cryptography algorithms
http://www.cryptol.net

• Cryptol features:
• Purely functional
• Size-indexed bitvector types, no limits on bitvector size
• Lazy infinite streams
• Not Turing-complete

• µCryptol
• Cryptol subset, tailored for systems with constrained memory
• Formal semantics
• Designed for verification
• Creating a verifying compiler targeting the AAMP7G
• See paper in HCSS06 Proceedings



UNCLASSIFIEDAdvanced Technology Center

Why a verifying compiler for Why a verifying compiler for µµCryptolCryptol??

• Cryptographic systems need to be correct
– NSA is a demanding customer

• Cryptographic systems are difficult, expensive to certify
– A verifying compiler could markedly reduce code-to-spec review costs and 

reduce time-to-market for cryptographic devices
• Reference Cryptol specifications for common crypto algorithms are 

available
• A domain-specific language, such as Cryptol, seems to present lower 

risk than attempting a verifying compiler for a general-purpose 
programming language 

• Cryptol is a Galois Connections design, so we can state its 
specification precisely

• The AAMP7G is an “easy” code generation target (think JVM)
• The AAMP7G is a Rockwell Collins design with a precise specification
• Theorem prover technology has matured sufficiently to make this 

program feasible
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Example: factorial (mod 2Example: factorial (mod 288))

fac : B^32 -> B^8;
fac i = facs @@ i
where {
rec
idx : B^8^inf;
idx = [1] ## [x + 1 | x <- idx];

and 
facs : B^8^inf;
facs = [1] ## [x * y | x <- facs

| y <- idx];
};

idx = [1, 2, 3, 4, 5,   6, 7,   8, …]
facs = [1, 1, 2, 6, 24, 120, 208, 176, …]

Stream values:

1

+

1
idx

facs

1

*
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Extended Verification Architecture Extended Verification Architecture 

Focus of this talk

indexed
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program

first-order
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machine
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deep
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HOLCF
functions

shallow
embedding

first-order
functions

translate

deep embedding of ACL2 in HOL

canonical
program

tail-
recursive
functions

middle-end
transforms

shallow
embedding

shallow
embedding
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Machine code proofsMachine code proofs

• If machine starts at a state satisfying program’s 
precondition (entrypoint assertion), then 
–Partial correctness: if the machine ever reaches an 

exitpoint state, then the first exitpoint reached 
satisfies the program’s postcondition (exitpoint
assertion).

–Termination: the machine will eventually reach an 
exitpoint

• However, we don’t want to
–write and verify a VCG
–manually define a clock function

• computes for each program state exactly how many steps 
are needed to reach the next exitpoint
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AAMP7G InstructionAAMP7G Instruction--Set Formal ModelSet Formal Model

• Provides instruction-level simulator for the AAMP7
• Written in ACL2

–~100 KSLOC with all RCI support books
–~500 MB Lisp heap required

• Can be used as a processor simulator, as well as a 
vehicle for proof
–Validated by loading AAMP processor diagnostic tests 

into (simulated) memory, and running the model
• Models complex instruction set, including 

exception handling, trap handling, thread context 
switching, floating point, etc.
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Layers in the AAMP7G instructionLayers in the AAMP7G instruction--level level 
modelmodel

START STATE

Concrete Instruction Steps

Abstract Instruction Steps

Subroutine Invocations

Thread Context Switches

Microcode Steps

Partition Step

Basic Blocks

END STATE
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Instruction AbstractionInstruction Abstraction

• Concrete instruction set level similar to microcode 
implementation

• Abstract level models the overall effect of 
executing the instruction without necessarily 
modeling every microstep, e.g.:

(defun vm-addu-expected-result (st)
(modify st

:pc (inc-pc 1 st)
:tos (inc-tos 1 st)
:memtmp8 *addu-opcode*
:memtmp (get-stack-word 1 st)
:ram (modify-ram st :stack-word 1 (+ (get-stack-word 0 st)

(get-stack-word 1 st))
)))
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We couldnWe couldn’’t have done this 10 years agot have done this 10 years ago……

• Utilizes ACL2 single threaded object (stobj) to model CPU state; stobj
updates are performed “in place”, greatly reducing garbage generation 
at model execution time

• GACC (Generalized Accessor) library used to model memory, same as 
used in AAMP7 separation proofs

• Underlying memory implementation now uses Jared Davis’ fast 
memories, described at this workshop
– Results in 20x speedup on short simulation runs; higher on longer runs
– 4000 instructions/sec simulating complex instruction set with simulated 

memory management unit
• New bitvector library, “super-ihs”, extends ACL2 Integer Hardware 

Specification (IHS) library
• We make extensive use of David Greve’s Parameterized Congruences

(“nary”), also described at this workshop
• Partial correctness technique depends on defpun, first discussed by 

Manolios and Moore in 2000
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Underlying Verification Method Underlying Verification Method ––
Compositional Compositional CutpointCutpoint TechniqueTechnique

• Sound and automatic theorem proving technique 
for generating verification conditions from a 
small-step operational semantics

• Inspired by J Moore presentation at HCSS 2004
• Cutpoints and their state assertions for a given 

subroutine must be specified
• Symbolic simulation of processor model takes us 

from cutpoint to cutpoint, until we reach 
subroutine exit

• Compositionality: Once cutpoint proof is done for 
a given subroutine, we don’t have to reason 
about it again if it’s called by another subroutine

• No Verification Condition Generator required
• See Verification Condition Generation via 

Theorem Proving
John Matthews, J Moore, Sandip Ray, Daron 
Vroon, 2006 (LPAR’06, to appear)

• Has been used it to verify a 600-line JVM program 
implementing a generic CBC-mode encryption

Entry

Exit

Cutpoint
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AAMP7G Machine Code Proofs using AAMP7G Machine Code Proofs using 
Compositional Compositional CutpointCutpoint MethodMethod

• Preconditions, e.g.
– Code to be proved is loaded into memory
– Input parameter is within range for a given algorithm

• Postconditions
– e.g., fact(x) on top of stack after running AAMP7G machine code for 

factorial
• Frame Conditions

– e.g., Only local variables and operand stack memory needed to 
implement factorial are modified by executing AAMP machine code 
for factorial

• Compositional Cutpoint Proof Technique
– No Verification Condition Generator required

• Generation of the above information can be done mostly automatically
• See paper in Proceedings for more details
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Example Program Example Program –– Iterative FactorialIterative Factorial

#x04           ;; Proc Header --
#x00           ;; 4 words of locals

; 
#x10            ;; LIT4 0
#x11            ;; LIT4 1
#xc0            ;; ASNDL 0 --- local0 is a counter from 1 up to N
#x10            ;; LIT4 0  --- local2 is initialized to 1
#x11            ;; LIT4 1
#xc2            ;; ASNDL 2

; L2: loop top -------------------- CUTPOINT
#x30            ;; REFDL 0
#x34            ;; REFDL 4

; if local0 > N, goto L
#xa5
#x0e            ;; GRUD
#x5b            ;; SKIPNZI
#x0e            ;;  L (+14)
#x30            ;; REFDL 0
#x32            ;; REFDL 2
#xa5
#x2a            ;; MPYUD
#xc2            ;; ASNDL 2 –-- local2 = local2 * local0
#x30            ;; REFDL 0
#x10            ;; LIT4 0
#x11            ;; LIT4 1
#xa5
#x28            ;; ADDUD
#xc0            ;; ASNDL 0 –-- increment local0

; go to L2
#x19            ;; LIT8N  
#x13            ;;  L2 (-20)
#x59            ;; SKIP

; L: return local2
#x32            ;; REFDL 2
#x16            ;; LIT4 6
#x5f            ;; RETURN
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Machine Code Proofs Machine Code Proofs –– Preconditions Preconditions 
ExampleExample

(defun fact-iter-max-words-of-operand-stack () (declare (xargs :guard t)) 4) 
;from analysis of the code

(defund fact-iter-precondition (s)
(declare (xargs :non-executable t))
(and (standard-precondition (fact-iter-address) 

(fact-iter-code)
(fact-iter-max-words-of-operand-stack)
s) 

;; The routine doesn't work if the argument is the maximum 32-bit 
;; unsigned value, since in that case the loop never terminates:
(not (equal 4294967295 (aamp::read-two-local-words 4 s)))))
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Machine Code Proofs Machine Code Proofs –– PostconditionsPostconditions
ExampleExample

;; Factorial, defined in the traditional recursive style
(defun fact (n) 

(if (zp n) 1
(* n (fact (1- n)))))

(defun fact-iter-words-of-locals-and-args () (declare (xargs :guard t)) 6) 
;from dealloc count pushed just before return

(defun fact-iter-words-of-return-values () (declare (xargs :guard t)) 2) 
;from height of operand stack just before return

(defun fact-iter-poststate (s0 s)
(declare (xargs :non-executable t))
(standard-poststate ((0 ;; top return value

2 ;; takes up 2 words
;;the mathematical factorial of the argument:
(fact (gacc::read-data-words 2 (aamp::aamp.denvr s0) 

(+ 4 (aamp::aamp.lenv s0)) 
(aamp::aamp.ram s0)))

))
(fact-iter-max-words-of-operand-stack)
(fact-iter-words-of-locals-and-args)
(fact-iter-words-of-return-values)
s0
s))
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Machine Code Proofs Machine Code Proofs –– Assertions at Assertions at 
CutpointCutpoint

(prove-it  ;; Proof driver macro
fact-iter ;the name of the routine
:wormhole t
:subroutine-calls nil ;makes for faster proofs
:user-cutpoints
;; List of (PC byte offset . assertion) pairs
((6 . (and

;; First comes an equality claim about the current state, s, 
;; in terms of the initial state, s0.
(equal s

(standard-cutpoint-state 
:pc 6 
:locals (

(4 2 (aamp::read-two-local-words 4 s0))
(2 2 (fact (+ -1 (gacc::read-data-words 2

(aamp::aamp.denvr s0)
(aamp::aamp.lenv s0)
(aamp::aamp.ram s))))))))

;;  Precondition still holds (e.g., code has not been modified)                                                      
(fact-iter-precondition s0) 

;; Asserts that the loop counter at local slot 0 is at most one more  
;; than the input argument, N (accessed on the AAMP stack at local slot 4)
(<= (aamp::read-two-local-words 0 S) 

(+ 1 (aamp::read-two-local-words 4 S)))

;; Asserts that the loop counter is positive (it starts at 1 and goes upward).
(< 0 (aamp::read-two-local-words 0 S))))) <hints elided>)
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SummarySummary

Rockwell Collins and partners have developed robust 
techniques and tools to improve high-assurance 
system evaluations by:

• Making use of automated theorem provers to 
provide formal proofs as required by EAL7

• Producing executable formal models of computing 
platforms that can also be validated by execution 
of production tests

• Pioneering techniques for automating hardware, 
microcode, and software verification

• Designing and implementing a verifying compiler 
for a subset of the Cryptol language
– Currently completing first end-to-end equivalence proofs 

for a simple µCryptol program
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