
SLIDE 1 UNCLASSIFIED

A Robust Machine Code Proof
Framework for Highly Secure

Applications
David Hardin

Advanced Technology Center
Rockwell Collins

Eric Smith
Stanford University

Bill Young
University of Texas at Austin

UNCLASSIFIEDAdvanced Technology Center

OverviewOverview

• Rockwell Collins Introduction
• AAMP7G Microprocessor

– MILS Certification
• SHADE Program

– AAMP7G tools
– Microcryptol Verifying Compiler
– AAMP7G Instruction Set Formal Model
– Compositional Cutpoint Reasoning

• Summary

UNCLASSIFIEDAdvanced Technology Center

Rockwell CollinsRockwell Collins

Communications

Automated Flight Control

Displays / Surveillance

Aviation Services

In-Flight Entertainment

Integrated Aviation Electronics

Information Management Systems

Navigation

A World Leader in Aviation Electronics and Airborne/ Mobile
Communications Systems for Commercial and Military Applications

http://www.aerospace-technology.com/projects/boeing777/index.html
http://images.google.com/imgres?imgurl=http://plus.maths.org/issue35/features/dartnell/F22.jpg&imgrefurl=http://plus.maths.org/issue35/features/dartnell/index.html&h=225&w=403&sz=28&hl=en&start=15&tbnid=zrCJiZQxuN1o1M:&tbnh=69&tbnw=124&prev=/images%3Fq%3Df22%26svnum%3D10%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://army-gps.robins.af.mil/UE/UEimages/Dagr2apr02V3.jpg&imgrefurl=http://army-gps.robins.af.mil/UE/dagr.html&h=302&w=216&sz=11&hl=en&start=1&tbnid=W8zA3UPnrWl2nM:&tbnh=116&tbnw=83&prev=/images%3Fq%3Dgps%2Bdagr%26svnum%3D10%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://imagecache2.allposters.com/images/pic/PF_NEW%255C08_22_2005_A/PF_994072~Airplane-Boeing-777-200-in-Flight-Posters.jpg&imgrefurl=http://www.allposters.com/-sp/Airplane-Boeing-777-200-in-Flight-Posters_i994072_.htm&h=238&w=350&sz=15&hl=en&start=25&tbnid=sTGsmCKr1uDq4M:&tbnh=82&tbnw=120&prev=/images%3Fq%3Dboeing%2B777%26start%3D20%26ndsp%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN

UNCLASSIFIEDAdvanced Technology Center

The Problem The Problem –– HighHigh--Assurance for Security Assurance for Security
ApplicationsApplications

• Flawed implementations can have grave consequences
–So NSA performs intensive evaluations of critical

encryption devices
• Evaluation process is difficult

– Increasingly numerous crypto implementations
–Trusted experts are scarce
–Review process is time-consuming and expensive
–Optimized crypto algorithms are complex, easy to

overlook corner cases
• Highest Evaluation Assurance Level requires formal proofs

– Industry has very little practical experience in this area

UNCLASSIFIEDAdvanced Technology Center

Rockwell Collins AAMP7G CPU Rockwell Collins AAMP7G CPU

• Developed by RCI Advanced Technology
Center
• Used in RCI GPS and Information
Assurance products
• High Code Density
• Low Power Consumption (250 mW)
• 100 MHz operation
• Screened for full military temp range
• Implements intrinsic partitioning

Intrinsic partitioning
• Computing Platform Enforces Data
Isolation
• “Separation Kernel in Hardware”

X Y Z

AAMP7 die

UNCLASSIFIEDAdvanced Technology Center

AAMP7G Formal VerificationAAMP7G Formal Verification

AAMP7

Microcode

Low-Level
Model Kernel

Abstract
Model

Formal Verification

Formal Verification

Common Criteria
EAL7 Proof Obligations

Security
Policy

Code-to-Spec Reviews

Abstract
Model

Low-Level
Model Kernel

Microcode

AAMP7G

UNCLASSIFIEDAdvanced Technology Center

AAMP7G Intrinsic Partitioning AAMP7G Intrinsic Partitioning
Formal VerificationFormal Verification

Program Accomplishments

Developed formal description of separation for
uniprocessor, multipartition system

Modeled trusted AAMP7G microcode

Constructed machine-checked proof that
separation holds of AAMP7G model, using ACL2

Model subject of intensive code-to-spec review

Satisfies NSA MILS formal methods evaluation
requirements patterned after Common Criteria
EAL7+ with respect to ADV

NSA MILS certificate granted in May 2005

AAMP7G can concurrently process
Unclassified through Top Secret Codeword
information

• RCI IR&D funded
• Capability developed in multiyear RCI
formal methods research program

UNCLASSIFIEDAdvanced Technology Center

Secure, High Assurance Development Secure, High Assurance Development
Environment (SHADE)Environment (SHADE)

Program Objectives

Provide a “nuts-and-bolts” partitioned
development environment.

Develop tools and techniques to provide formal
analysis at the instruction level for the AAMP7
processor

Develop a verifying compiler for an “embeddable”
subset of the Cryptol cryptographic language
targeting the AAMP7

Demonstrate a convenient, high-assured
toolchain path from high-level algorithm
description to load image.

RCI subcontractors: Galois Connections,
University of Texas at Austin

AAMP7G development board

Eclipse-based AAMP7G development
environment

UNCLASSIFIEDAdvanced Technology Center

SHADE SummarySHADE Summary

GenerateGenerate

Cryptol
Spec

AAMP7
Code

ACL2
SpecProof

Linker/
Loader/

Debugger

AAMP7
Simulator

AAMP7

User
Interface

Configuration

UNCLASSIFIEDAdvanced Technology Center

AAMP7G Partition Views

UNCLASSIFIEDAdvanced Technology Center

AAMP7G ACL2
Formal Model

Integration with
Eclipse AAMP7G

Tools

Disassembly

Process Stack

Console

ACL2 session

UNCLASSIFIEDAdvanced Technology Center

CryptolCryptol

• Galois’ domain-specific language for cryptography algorithms
http://www.cryptol.net

• Cryptol features:
• Purely functional
• Size-indexed bitvector types, no limits on bitvector size
• Lazy infinite streams
• Not Turing-complete

• µCryptol
• Cryptol subset, tailored for systems with constrained memory
• Formal semantics
• Designed for verification
• Creating a verifying compiler targeting the AAMP7G
• See paper in HCSS06 Proceedings

UNCLASSIFIEDAdvanced Technology Center

Why a verifying compiler for Why a verifying compiler for µµCryptolCryptol??

• Cryptographic systems need to be correct
– NSA is a demanding customer

• Cryptographic systems are difficult, expensive to certify
– A verifying compiler could markedly reduce code-to-spec review costs and

reduce time-to-market for cryptographic devices
• Reference Cryptol specifications for common crypto algorithms are

available
• A domain-specific language, such as Cryptol, seems to present lower

risk than attempting a verifying compiler for a general-purpose
programming language

• Cryptol is a Galois Connections design, so we can state its
specification precisely

• The AAMP7G is an “easy” code generation target (think JVM)
• The AAMP7G is a Rockwell Collins design with a precise specification
• Theorem prover technology has matured sufficiently to make this

program feasible

UNCLASSIFIEDAdvanced Technology Center

Example: factorial (mod 2Example: factorial (mod 288))

fac : B^32 -> B^8;
fac i = facs @@ i
where {
rec
idx : B^8^inf;
idx = [1] ## [x + 1 | x <- idx];

and
facs : B^8^inf;
facs = [1] ## [x * y | x <- facs

| y <- idx];
};

idx = [1, 2, 3, 4, 5, 6, 7, 8, …]
facs = [1, 1, 2, 6, 24, 120, 208, 176, …]

Stream values:

1

+

1
idx

facs

1

*

UNCLASSIFIEDAdvanced Technology Center

Extended Verification Architecture Extended Verification Architecture

Focus of this talk

indexed
program

μCryptol
program

AAMP7
program

first-order
functions

AAMP7
state

machine

front-end
transforms

SHADE
Compiler

deep
embedding

generate
code

HOLCF ACL2

HOLCF
functions

shallow
embedding

first-order
functions

translate

deep embedding of ACL2 in HOL

canonical
program

tail-
recursive
functions

middle-end
transforms

shallow
embedding

shallow
embedding

UNCLASSIFIEDAdvanced Technology Center

Machine code proofsMachine code proofs

• If machine starts at a state satisfying program’s
precondition (entrypoint assertion), then
–Partial correctness: if the machine ever reaches an

exitpoint state, then the first exitpoint reached
satisfies the program’s postcondition (exitpoint
assertion).

–Termination: the machine will eventually reach an
exitpoint

• However, we don’t want to
–write and verify a VCG
–manually define a clock function

• computes for each program state exactly how many steps
are needed to reach the next exitpoint

UNCLASSIFIEDAdvanced Technology Center

AAMP7G InstructionAAMP7G Instruction--Set Formal ModelSet Formal Model

• Provides instruction-level simulator for the AAMP7
• Written in ACL2

–~100 KSLOC with all RCI support books
–~500 MB Lisp heap required

• Can be used as a processor simulator, as well as a
vehicle for proof
–Validated by loading AAMP processor diagnostic tests

into (simulated) memory, and running the model
• Models complex instruction set, including

exception handling, trap handling, thread context
switching, floating point, etc.

UNCLASSIFIEDAdvanced Technology Center

Layers in the AAMP7G instructionLayers in the AAMP7G instruction--level level
modelmodel

START STATE

Concrete Instruction Steps

Abstract Instruction Steps

Subroutine Invocations

Thread Context Switches

Microcode Steps

Partition Step

Basic Blocks

END STATE

UNCLASSIFIEDAdvanced Technology Center

Instruction AbstractionInstruction Abstraction

• Concrete instruction set level similar to microcode
implementation

• Abstract level models the overall effect of
executing the instruction without necessarily
modeling every microstep, e.g.:

(defun vm-addu-expected-result (st)
(modify st

:pc (inc-pc 1 st)
:tos (inc-tos 1 st)
:memtmp8 *addu-opcode*
:memtmp (get-stack-word 1 st)
:ram (modify-ram st :stack-word 1 (+ (get-stack-word 0 st)

(get-stack-word 1 st))
)))

UNCLASSIFIEDAdvanced Technology Center

We couldnWe couldn’’t have done this 10 years agot have done this 10 years ago……

• Utilizes ACL2 single threaded object (stobj) to model CPU state; stobj
updates are performed “in place”, greatly reducing garbage generation
at model execution time

• GACC (Generalized Accessor) library used to model memory, same as
used in AAMP7 separation proofs

• Underlying memory implementation now uses Jared Davis’ fast
memories, described at this workshop
– Results in 20x speedup on short simulation runs; higher on longer runs
– 4000 instructions/sec simulating complex instruction set with simulated

memory management unit
• New bitvector library, “super-ihs”, extends ACL2 Integer Hardware

Specification (IHS) library
• We make extensive use of David Greve’s Parameterized Congruences

(“nary”), also described at this workshop
• Partial correctness technique depends on defpun, first discussed by

Manolios and Moore in 2000

UNCLASSIFIEDAdvanced Technology Center

Underlying Verification Method Underlying Verification Method ––
Compositional Compositional CutpointCutpoint TechniqueTechnique

• Sound and automatic theorem proving technique
for generating verification conditions from a
small-step operational semantics

• Inspired by J Moore presentation at HCSS 2004
• Cutpoints and their state assertions for a given

subroutine must be specified
• Symbolic simulation of processor model takes us

from cutpoint to cutpoint, until we reach
subroutine exit

• Compositionality: Once cutpoint proof is done for
a given subroutine, we don’t have to reason
about it again if it’s called by another subroutine

• No Verification Condition Generator required
• See Verification Condition Generation via

Theorem Proving
John Matthews, J Moore, Sandip Ray, Daron
Vroon, 2006 (LPAR’06, to appear)

• Has been used it to verify a 600-line JVM program
implementing a generic CBC-mode encryption

Entry

Exit

Cutpoint

UNCLASSIFIEDAdvanced Technology Center

AAMP7G Machine Code Proofs using AAMP7G Machine Code Proofs using
Compositional Compositional CutpointCutpoint MethodMethod

• Preconditions, e.g.
– Code to be proved is loaded into memory
– Input parameter is within range for a given algorithm

• Postconditions
– e.g., fact(x) on top of stack after running AAMP7G machine code for

factorial
• Frame Conditions

– e.g., Only local variables and operand stack memory needed to
implement factorial are modified by executing AAMP machine code
for factorial

• Compositional Cutpoint Proof Technique
– No Verification Condition Generator required

• Generation of the above information can be done mostly automatically
• See paper in Proceedings for more details

UNCLASSIFIEDAdvanced Technology Center

Example Program Example Program –– Iterative FactorialIterative Factorial

#x04 ;; Proc Header --
#x00 ;; 4 words of locals

;
#x10 ;; LIT4 0
#x11 ;; LIT4 1
#xc0 ;; ASNDL 0 --- local0 is a counter from 1 up to N
#x10 ;; LIT4 0 --- local2 is initialized to 1
#x11 ;; LIT4 1
#xc2 ;; ASNDL 2

; L2: loop top -------------------- CUTPOINT
#x30 ;; REFDL 0
#x34 ;; REFDL 4

; if local0 > N, goto L
#xa5
#x0e ;; GRUD
#x5b ;; SKIPNZI
#x0e ;; L (+14)
#x30 ;; REFDL 0
#x32 ;; REFDL 2
#xa5
#x2a ;; MPYUD
#xc2 ;; ASNDL 2 –-- local2 = local2 * local0
#x30 ;; REFDL 0
#x10 ;; LIT4 0
#x11 ;; LIT4 1
#xa5
#x28 ;; ADDUD
#xc0 ;; ASNDL 0 –-- increment local0

; go to L2
#x19 ;; LIT8N
#x13 ;; L2 (-20)
#x59 ;; SKIP

; L: return local2
#x32 ;; REFDL 2
#x16 ;; LIT4 6
#x5f ;; RETURN

UNCLASSIFIEDAdvanced Technology Center

Machine Code Proofs Machine Code Proofs –– Preconditions Preconditions
ExampleExample

(defun fact-iter-max-words-of-operand-stack () (declare (xargs :guard t)) 4)
;from analysis of the code

(defund fact-iter-precondition (s)
(declare (xargs :non-executable t))
(and (standard-precondition (fact-iter-address)

(fact-iter-code)
(fact-iter-max-words-of-operand-stack)
s)

;; The routine doesn't work if the argument is the maximum 32-bit
;; unsigned value, since in that case the loop never terminates:
(not (equal 4294967295 (aamp::read-two-local-words 4 s)))))

UNCLASSIFIEDAdvanced Technology Center

Machine Code Proofs Machine Code Proofs –– PostconditionsPostconditions
ExampleExample

;; Factorial, defined in the traditional recursive style
(defun fact (n)

(if (zp n) 1
(* n (fact (1- n)))))

(defun fact-iter-words-of-locals-and-args () (declare (xargs :guard t)) 6)
;from dealloc count pushed just before return

(defun fact-iter-words-of-return-values () (declare (xargs :guard t)) 2)
;from height of operand stack just before return

(defun fact-iter-poststate (s0 s)
(declare (xargs :non-executable t))
(standard-poststate ((0 ;; top return value

2 ;; takes up 2 words
;;the mathematical factorial of the argument:
(fact (gacc::read-data-words 2 (aamp::aamp.denvr s0)

(+ 4 (aamp::aamp.lenv s0))
(aamp::aamp.ram s0)))

))
(fact-iter-max-words-of-operand-stack)
(fact-iter-words-of-locals-and-args)
(fact-iter-words-of-return-values)
s0
s))

UNCLASSIFIEDAdvanced Technology Center

Machine Code Proofs Machine Code Proofs –– Assertions at Assertions at
CutpointCutpoint

(prove-it ;; Proof driver macro
fact-iter ;the name of the routine
:wormhole t
:subroutine-calls nil ;makes for faster proofs
:user-cutpoints
;; List of (PC byte offset . assertion) pairs
((6 . (and

;; First comes an equality claim about the current state, s,
;; in terms of the initial state, s0.
(equal s

(standard-cutpoint-state
:pc 6
:locals (

(4 2 (aamp::read-two-local-words 4 s0))
(2 2 (fact (+ -1 (gacc::read-data-words 2

(aamp::aamp.denvr s0)
(aamp::aamp.lenv s0)
(aamp::aamp.ram s))))))))

;; Precondition still holds (e.g., code has not been modified)
(fact-iter-precondition s0)

;; Asserts that the loop counter at local slot 0 is at most one more
;; than the input argument, N (accessed on the AAMP stack at local slot 4)
(<= (aamp::read-two-local-words 0 S)

(+ 1 (aamp::read-two-local-words 4 S)))

;; Asserts that the loop counter is positive (it starts at 1 and goes upward).
(< 0 (aamp::read-two-local-words 0 S))))) <hints elided>)

UNCLASSIFIEDAdvanced Technology Center

SummarySummary

Rockwell Collins and partners have developed robust
techniques and tools to improve high-assurance
system evaluations by:

• Making use of automated theorem provers to
provide formal proofs as required by EAL7

• Producing executable formal models of computing
platforms that can also be validated by execution
of production tests

• Pioneering techniques for automating hardware,
microcode, and software verification

• Designing and implementing a verifying compiler
for a subset of the Cryptol language
– Currently completing first end-to-end equivalence proofs

for a simple µCryptol program

	A Robust Machine Code Proof Framework for Highly Secure Applications
	Overview
	Rockwell Collins
	The Problem – High-Assurance for Security Applications
	Rockwell Collins AAMP7G CPU
	AAMP7G Formal Verification
	AAMP7G Intrinsic Partitioning �Formal Verification
	Secure, High Assurance Development Environment (SHADE)
	SHADE Summary
	Cryptol
	Why a verifying compiler for µCryptol?
	Example: factorial (mod 28)
	Extended Verification Architecture
	Machine code proofs
	AAMP7G Instruction-Set Formal Model
	Layers in the AAMP7G instruction-level model
	Instruction Abstraction
	We couldn’t have done this 10 years ago…
	Underlying Verification Method – Compositional Cutpoint Technique
	AAMP7G Machine Code Proofs using Compositional Cutpoint Method
	Example Program – Iterative Factorial
	Machine Code Proofs – Preconditions Example
	Machine Code Proofs – Postconditions Example
	Machine Code Proofs – Assertions at Cutpoint
	Summary

