A Robust Machine Code Proof
Framework for Highly Secure
Applications

David Hardin

Advanced Technology Center
Rockwell Collins

Eric Smith
Stanford University

Bill Young
University of Texas at Austin

galois Y JG

Rockwell
SLIDE 1 UNCLASSIFIED Collins

Overview

: WA . il EHEY
| ADVANCED COMPUTING SYSTEMS A 1

® Rockwell Collins Introduction

® AAMP7G Microprocessor
— MILS Certification

¢ SHADE Program
— AAMP7G tools
— Microcryptol Verifying Compiler
— AAMP7G Instruction Set Formal Model
— Compositional Cutpoint Reasoning

® Summary

. ROCkwell
UNCLASSIFIED NI Y Ccolline

Rockwell Collins

J Fowces compuTnc svens N -

A World Leader in Aviation Electronics and Airborne/ Mobile
Communications Systems for Commercial and Military Applications

» Communications
» Navigation
» Automated Flight Control

» Displays / Surveillance

» Aviation Services

» In-Flight Entertainment
» Integrated Aviation Electronics

> Information Management Systems S<s

. ROCkwell
UNCLASSIFIED NI Y Ccolline

http://www.aerospace-technology.com/projects/boeing777/index.html
http://images.google.com/imgres?imgurl=http://plus.maths.org/issue35/features/dartnell/F22.jpg&imgrefurl=http://plus.maths.org/issue35/features/dartnell/index.html&h=225&w=403&sz=28&hl=en&start=15&tbnid=zrCJiZQxuN1o1M:&tbnh=69&tbnw=124&prev=/images%3Fq%3Df22%26svnum%3D10%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://army-gps.robins.af.mil/UE/UEimages/Dagr2apr02V3.jpg&imgrefurl=http://army-gps.robins.af.mil/UE/dagr.html&h=302&w=216&sz=11&hl=en&start=1&tbnid=W8zA3UPnrWl2nM:&tbnh=116&tbnw=83&prev=/images%3Fq%3Dgps%2Bdagr%26svnum%3D10%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://imagecache2.allposters.com/images/pic/PF_NEW%255C08_22_2005_A/PF_994072~Airplane-Boeing-777-200-in-Flight-Posters.jpg&imgrefurl=http://www.allposters.com/-sp/Airplane-Boeing-777-200-in-Flight-Posters_i994072_.htm&h=238&w=350&sz=15&hl=en&start=25&tbnid=sTGsmCKr1uDq4M:&tbnh=82&tbnw=120&prev=/images%3Fq%3Dboeing%2B777%26start%3D20%26ndsp%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN

The Problem — High-Assurance for Security
Applications

CED COMPUTING SYSTEMS TR -
il (LHE 11

¢ Flawed |mplementat|ons can have grave consequences

—So0 NSA performs intensive evaluations of critical
encryption devices

® Evaluation process is difficult
—Increasingly numerous crypto implementations
—Trusted experts are scarce
—Review process is time-consuming and expensive

—Optimized crypto algorithms are complex, easy to
overlook corner cases

® Highest Evaluation Assurance Level requires formal proofs
—Industry has very little practical experience in this area

| .. ROCkwell
UNCLASSIFIED NI Ccolline

Rockwell Collins AAMP7G CPU
-

ADVANCED COMPUTING SYSTEMS

* Developed by RCI Advanced Technology AAMP7 die
Center

« Used in RCI GPS and Information
Assurance products

* High Code Density

* Low Power Consumption (250 mW)
* 100 MHz operation

» Screened for full military temp range
* Implements intrinsic partitioning

Intrinsic partitioning

« Computing Platform Enforces Data
Isolation

- “Separation Kernel in Hardware” &

o ROCKkwell
UNCLASSIFIED NI Y Ccolline

AAMP7G Formal Verification

R TG sysTEus TR

Common Criteria
EAL7 Proof Obligations

Security o
Policy ~& 1 Formal Verification

1 Formal Verification
1 Code-to-Spec Reviews

. Rockwell
UNCLASSIFIED NI Y Collines

AAMP7G Intrinsic Partitioning
Formal Verification
ADVANCED COUPLITING SYSTEWS T e

E2 —
B T,
iy o, =
. T ks
g [:
A =
= X

Program Accomplishments

= Developed formal description of separation for
uniprocessor, multipartition system

= Modeled trusted AAMP7G microcode

= Constructed machine-checked proof that
separation holds of AAMP7G model, using ACL2

= Model subject of intensive code-to-spec review kcrc ==

= Satisfies NSA MILS formal methods evaluation s ity B4
: o gency —

requirements patterned after Common Criteria

EAL7+ with respect to ADV

*NSA MILS certificate granted in May 2005

*AAMP7G can concurrently process
Unclassified through Top Secret Codeword
information

* RCI IR&D funded
» Capability developed in multiyear RCI
formal methods research program

bIoo Rockwell

WAdVanced Technology Center I Y S EE R mnnme 5 collins

Secure, High Assurance Development
Environment (SHADE)

MO -

Program Objectives

= Provide a “nuts-and-bolts” partitioned
development environment.

= Develop tools and techniques to provide formal

analysis at the instruction level for the AAMP7 _
processor TR T

= Develop a verifying compiler for an “embeddable” AAMP7G development board
subset of the Cryptol cryptographic language A ——

targeting the AAMP7

= Demonstrate a convenient, high-assured
toolchain path from high-level algorithm
description to load image.

RCI subcontractors: Galois Connections,
University of Texas at Austin

Eclipse-based AAMP7G development
environment

| o ROCkwell
UNCLASSIFIED NI Y Ccolline

User
Interface

|

GenV

AAMPY |e

Code

Configuration

|

Linker/
Loader/

/Debugger

. ADVANCED COMPUTING SYSTEMS

SHADE Summary

Cryptol
Spec

Generate

UNCLASSIFIED

ITTRETV T e

TR

Rockwell
Collins

& SHADE - Eclipse SDK

AAMP7G Partition Views

B[i=1E

File Edit Refactor Mavigate Search Project CodePro Run Window Help
i w e M- ER [| serSHADE N
= =
| BAMPT Disassembly | AAMPF Memary | @ AAMPT Partition Schedules &3 o M|
Schedule Mame] WCE Address | Partition Marmne I Mk WCE I W J Tirne Count]
|=ICold Reset 0
Ox00000040 mini_rke__ startup O=0000007C 0 1]
O=0000007C rmini_rke__ startup O=00000065 1 2000
Ox000000ES mini_rke_ startup O000000F4 2 2000
Ox000000F4 mini_rke__startup 000000072 3 2000
Cold Reset 1
Cold Reset 2
WWarm Resst
Power Down
| Console | AAMPT History B o el = = e e e e 4 g =20
| | Partition Name Y # | Status | Lacation lcemv |pc | oeEmv | LEmy | Time Count | ContralBlock | State |
s | oo [osecs ooad
Boot: _ada_book line & 0x0000 0x98CA 0xBASO
Ada_Mainiada_main__main line 34 0x0000 0x9556 0xBASE
Mini_Rke:mini_rte_ startup line 300 Ox0000 0x9117 0xBASE
5_-I-_.<:;'.} mini_rkte_ startup Continue (suspen. .. Ox0000 QxaBAC 0x0001 0Ox26B3 2000 Ox0000a000 Ox0002004C
|+ ﬁé"' mini_rke_ startup Continue (suspen. ., 0x0000 OxeB80 0x0000 0OxE23C 2000 000006000 0x00020075
+-:~'.’r‘ﬁ mini_rke__startup Conkinue (current) 0x0000 0OxEBS4 0x0001 0x6235 2000 Ox0000EQOD 0x00020044
Problems | Properties | Tasks | 4@ A&MP7 Partition Access Rights 52 AA8MPT Target Monitor Sé}.‘? T =
] Pattition Mame I W] Regiong | Low Address] High address] Source Mode J Type Mode J Execute Mode I .
& mini_rte__startup 0 0 0x00008000 0x000098DF TAU/DataiCode Read/Fetch Ert/ExeciUser
& mini_rte__skartup u} 1 0x00013000 0x0001759B TALData Write/Read Ert[ExeciUser
& mini_rte__skartup 1 0 0x00004000 Ox0000BEDS TAU[Data/Code Read/Fetch Ert[ExeciUsear
&/ mini_rte__startup 1 1 Ox00023000 Ox0002759F TAlData Write/Read ErrfExeciUser
& mini_rte__startup z i Ox00006000 Ox00007E77 TAU/DataCode Read/Fetch Err/ExecUser
& mini_rte__startup z 1 Ox00015000 Ox0001C59F TAlData Write/Read ErrfExeciUser
« mini_rte__startup 3 i Ox0000EQODD Ox0000FDZE TAU/DataCode Read/Fetch ErrfExeciUser
& mini_rte__startup 3 1 0x00010000 Ox0001051E TAU/DataCode Read/Fetch ErrfExeciUser
& mini_rte__startup 3 z Ox000Z5000 Ox0002C59F TAlData Write/Read ErrfExeciUser

CE s e L L L L & 1 1

Collins

Ili

T

BETe

[st

ST

e

CEEDSS

sw ||| |
FAdvaniced Technology Center [N C SRR iy

| F9v |

Refactor

Navigate

Search

Project

Bl & || & e oray
T £9Team Synchronizing |se SHADE | [(4 Resource

Run Window Help

-

L A=
I 1=* CryptolExampl
b =fac
I» == FibonacciBinar
b = > JanusSPARK
[» =F MicroCryptolEx
1= MicroCryptolE»
= [bin
=l EET lis
|= EET.mac
EET.obj
fac.axe

= fac.lec

= fac.lis

=l fac.map
fac.obj
=l fibs.lis

=] fibs.mac
fibs.obj
TEA.axe
TEA.bin
=l TEA.lec
2 TEALlIS
= TEA.mac

= TEA.map
TEA.ohj
I» & src
[» (= trace
[.project
[1= >MicroCryptolT

?E-N%i»l =H

{7 [

El console 2 |

B BHl % Bv Ci» = O

ACL2 Formal Model Interaction (Read only)

(24 32)

AAMP I>(READ-BLOC

(0 0)

AAMP 1>(READ-BLOC

(5 0)

AAMP !>(READ-BLOC

(255 0)

AAMP 1>(READ-BLOC

(5 0)

AAMP 1>(READ-BLOC

(0 0)
AAMP 1>

=

K

130938

130940

130040 5T)

130042 ST)

ACL2 session

[*

[+

iz

AAMP7 Memowi Error Log | © AAMP7 Disassembly 2 |

Address: 0x 00002 1DE| PC: ox21DE CENV: Symboﬂc Name:|UNKNOWN

Byte Offset |By‘te Address |Mnemoru’c |0perand5

0x0000 0x000010EF.L GRUD

0x0002 0x000010FO.L LIT16 0x0500

0x0005 0x000010F1.H SKIPNZ

0x0006 0x000010F2.L REFDL.3 Disassemb|y
0x0007 0x000010F2.H LIT16 0x0100

0x000A 0x000010F4.L SKIP

M NNNEL MeNNNNTNEA I REEML 1

Pmbiem5| Properties iTasks |1C AAMPT Target Monitor &2 |

RZswfden| =0

Status | Halted

| Configuration

CENV
<

DENV

LENV

TOS

OxFFC3

SKLM

\[AAMPS] 0 MHz

Current VM

Status

Initializing
Initialization

g

Stepped target controller 1 instruction
Stepped target controller 1 instruction
Stepped target controller 1 instruction
Stepped target controller 1 instruction
Stepped target controller 1 instruction
Stepped target controller 1 instruction
Stepped target controller 1 instruction
Stepped target controller 1 instruction
Stepped target controller 1 instruction

Console

-

R

4]

A

[+]

-

Byte Address

@§3v='ﬁ

Value |Symbo!

[=] Ox0001FF7A

OxD001FF7A
0x0001FF7C
0x0001FF7E
Ox0001FF86
0x00020184
-| Ox0001FFB2

[+

[+

H

[+

| [Accum Stack 2 words I

Frame

0x0005 Accum O
0x0000 Accum 1
Mark
Locals 255 words
Frame

Frame

Process Stack

4

AAMP7G ACL2
Formal Model
Integration with
Eclipse AAMP7G
Tools

LR & - T L % 1 B 0 1

Collins

Cryptol

' .,_"u@iuttEd COMPUTING SYSTEMS il |||"|||"||[||||||T|li| 1

® Galois’ domaln -specific language for cryptography algorithms
http://www.cryptol.net

® Cryptol features:

Purely functional

Size-indexed bitvector types, no limits on bitvector size
Lazy infinite streams

[
o
[
® Not Turing-complete

® uCryptol

Cryptol subset, tailored for systems with constrained memory
Formal semantics

Designed for verification

Creating a verifying compiler targeting the AAMP7G

See paper in HCSS06 Proceedings

. ROCkwell
UNCLASSIFIED NI Y Ccolline

Why a verifying compiler for uCryptol?
V2 MR -

) COMPUTING SYSTEMS

Cryptogr”aphic systems need to be correct
— NSA is ademanding customer
Cryptographic systems are difficult, expensive to certify

— A verifying compiler could markedly reduce code-to-spec review costs and
reduce time-to-market for cryptographic devices

Reference Cryptol specifications for common crypto algorithms are
available

A domain-specific language, such as Cryptol, seems to present lower
risk than attempting a verifying compiler for a general-purpose
programming language

Cryptol is a Galois Connections design, so we can state its
specification precisely

The AAMP7G is an “easy” code generation target (think JVM)

The AAMP7G is a Rockwell Collins design with a precise specification

Theorem prover technology has matured sufficiently to make this
program feasible

| .. ROCkwell
UNCLASSIFIED NI Ccolline

Example: factorial (mod 28)
O -

fac - BA32 -> BAS: ldx :
fac 1 = facs @0 i y

where { N
rec
1dx - B8N iInT; 1

ANCED COMPUTING SYSTEMS

1dx = [1] ## [x + 1 | x <- 1dx];
and
facs : B8N InT;
facs = [1] ## [x * y | x <- facs facs
| v <- idx];
}; A - v
1
Stream values:
idx. =1[1, 2, 3, 4, 5, 6, 7, 8, .]
facs = [1, 1, 2, 6, 24, 120, 208, 176, .]
Rockwell

UNCLASSIFIED NI Ccolline

Extended Verification Architecture
T e

Focus of this talk

COMPUTING SYSTEMS

A

' N\
SHADE
Compiler
front-end _ middle-end _ generate
uCryptol | transforms | indexed transforms | canonical code | AAMPY
program »| program »| program »| program
shallow shallow shallow deep
embeddin embeddin embeddin embeddin
HOLCF J 9 ACL2 J J
A A A A
il- AAMP7
HOLCF first-order | translate | first-order ta".
. . - . - . _ | recursive |, _ state
functions [» functions » functions [< > . < >)
functions machine

k J
Y
deep embedding of ACL2 in HOL

| .. ROCkwell
UNCLASSIFIED NI Ccolline

Machine code proofs
LT e

® If machine starts at a state satisfying program’s
precondition (entrypoint assertion), then

—Partial correctness: if the machine ever reaches an
exitpoint state, then the first exitpoint reached
satisfies the program’s postcondition (exitpoint
assertion).

—Termination: the machine will eventually reach an
exitpoint
® However, we don’t want to
—write and verify a VCG

—manually define a clock function

® computes for each program state exactly how many steps
are needed to reach the next exitpoint
ockwell

—
UNCLASSIFIED NI Ccolline

"“'ﬂ-h".. 'l-n.-__i:?-—rf_.l 5 P | — —
s ﬁw NCED COMPUTING SYSTEMS

aﬂﬁ"‘d‘
._:-__--.-.Eln--a‘ Instruction-Set Formal Model

AT -

CED ! M"UTING SYSTEMS

® Provides instruction-level simulator for the AAMP7

® Written in ACL2
—~100 KSLOC with all RCl support books
—~500 MB Lisp heap required

® Can be used as a processor simulator, as well as a
vehicle for proof
—Validated by loading AAMP processor diagnostic tests
Into (simulated) memory, and running the model
® Models complex instruction set, including
exception handling, trap handling, thread context
switching, floating point, etc.

| .. ROCkwell
UNCLASSIFIED IR Ccolline

Layers in the AAMP7G instruction-level
model

LT

START STATE END STATE

Thread Context Switches

ADVANCED COMPUTING SYSTEMS

O O R ®

Subroutine Invocations

Basic Blocks
> O e

Abstracté Instruction Steps

; A ;

Concret§e Instructfon Steps

' QT 0 '

Rockwell
Collins

FAdvaniced Technology Center [N C SRR iy

Instruction Abstraction
“E* ANCED COMPUTING SYSTEMS

o R -

® Concrete Instruction set level similar to microcode
Implementation

® Abstract level models the overall effect of
executing the instruction without necessarily
modeling every microstep, e.g.:

(defun vm-addu-expected-result (st)
(modify st

:pc (inc-pc 1 st)

'tos (inc-tos 1 st)

:memtmp8 *addu-opcode*

:memtmp (get-stack-word 1 st)

:ram (modify-ram st :stack-word 1 (+ (get-stack-word O st)
(get-stack-word 1 st))

)

o ROCkwell
UNCLASSIFIED NI Ccolline

AT -

Utilizes ACL2 single threaded object (stobj) to model CPU state; stobj
updates are performed “in place”, greatly reducing garbage generation
at model execution time

GACC (Generalized Accessor) library used to model memory, same as
used in AAMP7 separation proofs

Underlying memory implementation now uses Jared Davis’ fast
memories, described at this workshop
— Results in 20x speedup on short simulation runs; higher on longer runs
— 4000 instructions/sec simulating complex instruction set with simulated
memory management unit
New bitvector library, “super-ihs”, extends ACL2 Integer Hardware
Specification (IHS) library
We make extensive use of David Greve’'s Parameterized Congruences
(“nary”), also described at this workshop

Partial correctness technique depends on defpun, first discussed by
Manolios and Moore in 2000

Rockwell

UNCLASSIFIED IR Ccolline

 ADVANCED COMPUTING SYSTEMS

Sound and automatic theorem proving technique
for generating verification conditions from a
small-step operational semantics

Inspired by J Moore presentation at HCSS 2004

Cutpoints and their state assertions for a given
subroutine must be specified

Symbolic simulation of processor model takes us
from cutpoint to cutpoint, until we reach
subroutine exit

Compositionality: Once cutpoint proof is done for
a given subroutine, we don’t have to reason
about it again if it's called by another subroutine

No Verification Condition Generator required
See Verification Condition Generation via
Theorem Proving

John Matthews, J Moore, Sandip Ray, Daron
Vroon, 2006 (LPAR’06, to appear)

Has been used it to verify a 600-line JVM program
iImplementing a generic CBC-mode encryption

UNCLASSIFIED

Underlying Verification Method -
Compositional Cutpoint Technique

AT -

Entry

'

Cutpoint

Exit

TTTE T e

Rockwell

Collins

AAMP7G Machine Code Proofs using

~ Compositional Cutpoint Method
L SR e sres R -

® Preconditions, e.g.

— Code to be proved is loaded into memory

— Input parameter is within range for a given algorithm
® Postconditions

— e.g., fact(x) on top of stack after running AAMP7G machine code for
factorial

® Frame Conditions

— e.g., Only local variables and operand stack memory needed to
iImplement factorial are modified by executing AAMP machine code
for factorial

® Compositional Cutpoint Proof Technique

— No Verification Condition Generator required
® Generation of the above information can be done mostly automatically
® See paper in Proceedings for more details

. Rockwell
UNCLASSIFIED NI Ccolline

NI -

:; Proc Header --
:; 4 words of locals

:; LIT4 O
;; LIT4 1
;; ASNDL O --- localO is a counter from 1 up to N
;7 LIT4A4 0O --- local?2 is initialized to 1
;; LIT4 1
#xc2 > ASNDL 2
; L2 loop top ———————————————————— CUTPOINT
#x30 :; REFDL O
#x34 :; REFDL 4
; 1T local0 > N, goto L
#xab
#x0e ;> GRUD
#x5b ;2 SKIPNZI
#x0e ;; L (+14)
#x30 :; REFDL O
#x32 :; REFDL 2
#xab
#x2a ;> MPYUD
#xc2 ;7 ASNDL 2 ——- local2 = local2 * localO
#x30 :; REFDL O
#x10 ;; LIT4 O
#x11 ;; LIT4 1
#xab
#x28 ;> ADDUD
#xcO ;; ASNDL O —- i1ncrement localO
; go to L2
#x19 :; LIT8SN
#x13 ;. L2 (-20)
#x59 ;; SKIP
; L: return local2
#x32 ;. REFDL 2
#x16 ;; LIT4 6
> RETURN Rockwell

. #x5F

UNCLASSIFIED NI Y Ccolline

Machine Code Proofs — Preconditions
Example

ADURNCED COMPUTII S1STENS RN -

(defun fact-iter-max-words-of-operand-stack () (declare (xargs :guard t)) 4)
;from analysis of the code

(defund fact-iter-precondition (s)
(declare (xargs :non-executable t))
(and (standard-precondition (fact-iter-address)
(fact-iter-code)
(fact-iter-max-words-of-operand-stack)
s)
;; The routine doesn't work if the argument is the maximum 32-bit
;; unsigned value, since in that case the loop never terminates:
(not (equal 4294967295 (aamp::read-two-local-words 4 s)))))

. Rockwell
UNCLASSIFIED NI Y Ccolline

achine Code Proofs — Postconditions
Example

l ADVANCED COMPUTING SYSTEMS LT

;; Factorial, defined in the traditional recursive style
(defun fact (n)

(if(zpn)1l
(* n (fact (1- n)))))

(defun fact-iter-words-of-locals-and-args () (declare (xargs :guard t)) 6)
;from dealloc count pushed just before return

(defun fact-iter-words-of-return-values () (declare (xargs :guard t)) 2)
;from height of operand stack just before return

(defun fact-iter-poststate (s0O s)
(declare (xargs :non-executable t))
(standard-poststate ((O ;; top return value
2 ;; takes up 2 words
;;the mathematical factorial of the argument:
(fact (gacc::read-data-words 2 (aamp::aamp.denvr s0)
(+ 4 (aamp::aamp.lenv s0))
(aamp::aamp.ram s0)))

)

(fact-iter-max-words-of-operand-stack)
(fact-iter-words-of-locals-and-args)
(fact-iter-words-of-return-values)

sO

s))

. ROCkwell
UNCLASSIFIED NI Y Ccolline

Machine Code Proofs — Assertions at

Cutpoint
_ ADVANCED COMPUTING SYSTEMS MR -

(prove-it :; Proof driver macro
fact-iter ;the name of the routine
:wormhole t
:subroutine-calls nil ;makes for faster proofs
:user-cutpoints
;; List of (PC byte offset . assertion) pairs
(6. (and
;; First comes an equality claim about the current state, s,
;; in terms of the initial state, sO.
(equal s
(standard-cutpoint-state
‘pc 6
:locals (
(4 2 (aamp::read-two-local-words 4 s0))
(2 2 (fact (+ -1 (gacc::read-data-words 2
(aamp::aamp.denvr s0)
(aamp::aamp.lenv s0)
(aamp::aamp.ram s))))))))

;; Precondition still holds (e.g., code has not been modified)
(fact-iter-precondition s0)

;; Asserts that the loop counter at local slot 0 is at most one more
;; than the input argument, N (accessed on the AAMP stack at local slot 4)
(<= (aamp::read-two-local-words 0 S)

(+ 1 (aamp::read-two-local-words 4 S)))

;; Asserts that the loop counter is positive (it starts at 1 and goes upward).

... Rockwell
UNCLASSIFIED NI Y Ccolline

Summary
LT e

Rockwell Collins and partners have developed robust
techniques and tools to improve high-assurance
system evaluations by:

® Making use of automated theorem provers to
provide formal proofs as required by EAL7

® Producing executable formal models of computing
platforms that can also be validated by execution
of production tests

® Pioneering techniques for automating hardware,
microcode, and software verification

® Designing and implementing a verifying compiler
for a subset of the Cryptol language

— Currently completing first end-to-end equivalence proofs
for a simple puCryptol program

CED CC MPUTING SYSTEMS

| .. ROCkwell
UNCLASSIFIED IR Ccolline

	A Robust Machine Code Proof Framework for Highly Secure Applications
	Overview
	Rockwell Collins
	The Problem – High-Assurance for Security Applications
	Rockwell Collins AAMP7G CPU
	AAMP7G Formal Verification
	AAMP7G Intrinsic Partitioning �Formal Verification
	Secure, High Assurance Development Environment (SHADE)
	SHADE Summary
	Cryptol
	Why a verifying compiler for µCryptol?
	Example: factorial (mod 28)
	Extended Verification Architecture
	Machine code proofs
	AAMP7G Instruction-Set Formal Model
	Layers in the AAMP7G instruction-level model
	Instruction Abstraction
	We couldn’t have done this 10 years ago…
	Underlying Verification Method – Compositional Cutpoint Technique
	AAMP7G Machine Code Proofs using Compositional Cutpoint Method
	Example Program – Iterative Factorial
	Machine Code Proofs – Preconditions Example
	Machine Code Proofs – Postconditions Example
	Machine Code Proofs – Assertions at Cutpoint
	Summary

