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Summary: A treatment regime is a rule that assigns a treatment, among a set of possible treatments, to a patient as

a function of his/her observed characteristics, hence “personalizing” treatment to the patient. The goal is to identify

the optimal treatment regime that, if followed by the entire population of patients, would lead to the best outcome on

average. Given data from a clinical trial or observational study, for a single treatment decision, the optimal regime can

be found by assuming a regression model for the expected outcome conditional on treatment and covariates, where, for

a given set of covariates, the optimal treatment is the one that yields the most favorable expected outcome. However,

treatment assignment via such a regime is suspect if the regression model is incorrectly specified. Recognizing that,

even if misspecified, such a regression model defines a class of regimes, we instead consider finding the optimal regime

within such a class by finding the regime the optimizes an estimator of overall population mean outcome. To take into

account possible confounding in an observational study and to increase precision, we use a doubly robust augmented

inverse probability weighted estimator for this purpose. Simulations and application to data from a breast cancer

clinical trial demonstrate the performance of the method.
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1. Introduction

The area of personalized medicine, which is focused on making treatment decisions for an

individual patient based on his/her clinical, genomic, and other information, is of considerable

current interest. In the simplest case of a single treatment decision, there may be several

treatment options, and formalizing this objective involves defining a decision rule, or regime,

that takes as input an individual’s characteristics and dictates the treatment he/she should

receive from among the options available. The optimal regime is that leading to the greatest

benefit overall in the patient population; i.e., if followed by the entire population, would

result in the most favorable clinical outcome on average.

Deducing optimal treatment regimes using data from a clinical trial or observational study

can be informed by identifying patient covariates that exhibit a qualitative interaction with

treatment assignment in a statistical model for the outcome of interest; i.e., an interaction

in which the treatment effect changes direction depending on covariates. For example, Gail

and Simon (1985) considered data from a trial conducted by the National Surgical Adjuvant

Breast and Bowel Project (NSABP) comparing L-phenylalanine mustard and 5-fluorouracil

(PF) to PF plus tamoxifen (PFT) in patients with primary operable breast cancer and posi-

tive nodes (Fisher et al., 1983). The study investigators found “evidence for a heterogeneity

in response to PFT therapy that is both age and progesterone receptor dependent.” Gail

and Simon proposed a test for qualitative interaction based on partitioning the data into

subsets using covariate values and concluded on its basis that young patients (age < 50

years) with progesterone receptor levels < 10 femtomole/mg cytosol protein (fmol) achieve

better outcomes on PF whereas other patients do better on PFT. However, this approach

does not target formally the goal of identifying the optimal regime.

More recently, there has been vigorous research on methods for estimating optimal treat-

ment regimes based on data from clinical trials or observational studies, where a single deci-
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sion or a series of sequential decisions may be involved (Murphy, 2003; Robins, 2004; Moodie,

Richardson, and Stephens, 2007; Robins, Orellana, and Rotnitzky, 2008; Brinkley, Tsiatis,

and Anstrom, 2009; Zhao, Kosorok, and Zeng, 2009; Henderson, Ansell, and Alshibani, 2010;

Orellana, Rotnitzky, and Robins, 2010; Gunter, Zhu, and Murphy, 2011). In the setting of a

single treatment decision, much of this work involves postulating a model for the regression

of outcome on treatment assignment and covariates and then assigning treatment for a

patient according to which treatment yields the best estimated mean outcome based on the

model and given the patient’s particular covariate values. However, this approach is clearly

predicated on whether or not the assumed model is correctly specified.

In this article, we focus on the case of a single decision and take an alternative view,

considering such a posited regression model as a mechanism for defining a class of treatment

regimes but recognizing that the model may in fact be misspecified. Assuming without loss of

generality that larger outcomes are preferred, we then base estimation of the optimal regime

on maximizing directly an estimator for the overall population mean outcome under regimes

in the class. Specifically, we maximize across all regimes in the class a suitable doubly robust

augmented inverse probability weighted estimator (e.g., Bang and Robins, 2005). This esti-

mator takes account of possible confounding in the case of data from an observational study

via estimated propensity scores and exploits the postulated outcome regression relationship

to gain precision. As we demonstrate, this approach leads to estimated optimal regimes

that can achieve comparable performance to those based on correctly specified outcome

regression models; outperform those based on simpler mean estimators; and, because of the

double robustness property, are protected from misspecification of either the propensity score

model or the outcome regression model.

In Section 2, we define a framework in which we may formalize the problem. We introduce

the proposed methods in Section 3, and we demonstrate their performance in simulation

studies in Section 4 and by application to the NSABP data in Section 5.
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2. Framework

Consider a clinical trial or observational study with n subjects sampled from the patient

population of interest. Suppose there are two treatment options, e.g., control and experi-

mental treatment in a clinical trial, and let A, taking values 0 or 1 in accordance with the

two options, denote observed treatment received. Let X be a vector of subject characteristics

ascertained prior to treatment, and let Y be the observed outcome of interest, where, as in

Section 1, we assume larger values of Y are preferred. The observed data are then (Yi, Ai, Xi),

i = 1, . . . , n, independent and identically distributed (iid) across i. The goal is to use these

data to estimate the optimal treatment regime, defined as follows.

In this context, a treatment regime is a function g that maps values of X to {0,1}, so that

a patient with covariate value X = x would receive treatment 1 if g(x) = 1 and treatment 0

if g(x) = 0. A simple example for scalar X is g(X) = I(X < 50). To identify formally the

optimal such treatment regime, we define potential outcomes Y ∗(0) and Y ∗(1), representing

the outcomes that would be observed were a subject to receive treatment 0 or 1, respectively.

As is customary (e.g., Rubin, 1978), we assume that Y = Y ∗(1)A+Y ∗(0)(1−A), so that the

observed outcome is the potential outcome that would be seen under the treatment actually

received. We also assume {Y ∗(0), Y ∗(1)} independent of A conditional on X; i.e., that there

are no unmeasured confounders. This is trivially true in a randomized clinical trial but is

an unverifiable assumption in an observational study (e.g., Robins, Hernán, and Brumback,

2000). Thus, for a = 0, 1, E{Y ∗(a)} represents the overall population mean were all patients

in the population to receive treatment a, and, under these assumptions, it is straightforward

to deduce that E{Y ∗(a)} = EX [E{Y |A = a, X}], where the outer expectation EX(·) is taken

with respect to the marginal distribution of X.

Note that, for arbitrary treatment regime g, we can thus define the potential outcome

Y ∗(g) = Y ∗(1)g(X)+Y ∗(0){1−g(X)} that would be observed if a randomly chosen subject
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from the population were to be assigned treatment according to g, where we suppress the

dependence of Y ∗(g) on X. If G is the class of all such treatment regimes, then we may define

the optimal regime, gopt, as the one leading to the largest value of E{Y ∗(g)} among g ∈ G; i.e.,

gopt(X) = arg maxg∈G E{Y ∗(g)}. Under the above assumptions, writing µ(a, X) = E(Y |A =

a, X), a = 0, 1, it is straightforward to show that

E{Y ∗(g)} = EX [µ(1, X)g(X) + µ(0, X){1 − g(X)}],

and hence the optimal treatment regime is given by

gopt(X) = I{µ(1, X) > µ(0, X)};

i.e., the optimal regime assigns the treatment that yields the larger mean outcome conditional

on the value of X. Here, the strict inequality follows from the convention that, in the event

µ(1, X) = µ(0, X) and viewing treatments 0 and 1 as control and experimental, respectively,

a conservative strategy would be to prefer the control.

3. Robust method

To exploit the developments in the previous section, an obvious approach is to posit a

regression model for µ(A, X) = E(Y |A, X), for example, a parametric model µ(A, X; β)

for finite-dimensional parameter β, and to estimate β by β̂ obtained via some appropriate

method; e.g., least or generalized least squares. Assuming the model is correctly specified,

so that µ(A, X) = µ(A, X; β0) for some β0, the optimal regime is then g(X, β0), where

g(X, β) = I{µ(1, X, β) > µ(0, X, β)}, and it is natural to estimate the optimal treatment

regime by ĝopt
reg(X) = g(X, β̂), which we denote as the regression estimator. An obvious

estimator for the overall mean outcome under the optimal regime, E{Y ∗(gopt)}, is then

n−1

n∑

i=1

[ µ(1, Xi, β̂)ĝopt
reg(Xi) + µ(0, Xi, β̂){1 − ĝopt

reg(Xi)} ]. (1)

Of course, whether or not ĝopt
reg is a credible estimator for the true optimal regime gopt depends

critically on whether or not the model µ(A, X; β) is correct. If it is not, then treatment
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assignment on its basis will not lead to E{Y ∗(gopt)}, nor will (1) be an appropriate estimator

for this maximum achievable mean outcome.

A posited model µ(A, X; β), whether correct or not, may be viewed as defining the class

of treatment regimes indexed by β, Gβ, say, with elements of the form g(X, β). In fact, in

many instances, only a subset of elements of X and β may define the regime, and the class

may be simplified. E.g., if µ(A, X; β) = exp{β0 + β1X1 + β2X2 + A(β3 + β4X1 + β5X2)}, it is

straightforward to show that elements in the class are of the form I(β3 + β4X1 + β5X2 > 0),

which may be rewritten in terms of η0 = −β3/β5 and η1 = −β4/β5 as either I(X2 > η0+η1X1)

or I(X2 < η0 +η1X1) depending on the sign of β5. This suggests considering directly regimes

of the form gη(X) = g(X, η) in a class Gη, say, indexed by a parameter η. In the event

the regimes in Gη are derived from a regression model µ(A, X; β), as above, η = η(β) is a

many-to-one function of β, and Gη will contain gopt if µ(A, X; β) is correct. Thus, estimating

the value ηopt = arg maxη E{Y ∗(gη)} defining the regime gopt
η (X) = g(X, ηopt) will yield an

estimator for gopt. For complex regression models involving high-dimensional X, the resulting

regimes may be difficult to interpret or implement broadly; e.g., if some elements of X are

not routinely collected in practice. Then, alternatively, it may be desirable to specify directly

a class of regimes indexed by a parameter η and depending on a key subset of elements of X

based on clinical practice, cost, and interpretability, without reference to a regression model.

In this case, gopt may or may not be in Gη. However, although the regime gopt
η defined by ηopt

may not be the same as gopt, when attention focuses on the feasible class Gη, estimation of

gopt
η is still of considerable interest. When the regimes in Gη are derived from a misspecified

regression model, η(β̂) may or may not converge in probability to ηopt, and the resulting

estimator for the optimal regime based on β̂ can exhibit very poor performance, as we

demonstrate in Section 4 (see also Qian and Murphy, 2011, Section 3), suggesting the need

for an alternative approach to estimation of ηopt.
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Based on these considerations, our approach is to identify an estimator for E{Y ∗(gη)}

and to maximize it directly in η to obtain an estimator η̂opt for ηopt and thus an estimator

ĝopt
η (X) = g(X, η̂opt) for gopt

η . To this end, for fixed η, let Cη = Ag(X, η)+(1−A){1−g(X, η)},

so that, when Cη = 1, Y = Y ∗(gη), so that Y ∗(gη) is observed; otherwise, if Cη = 0,

then Y ∗(gη) is “missing.” By analogy to a standard missing data problem as in Cao et al.

(2009), we can conceive of “full data” {Y ∗(gη), X} and “observed data” {Cη, CηY
∗(gη), X} =

{Cη, CηY,X}. Note that Y ∗(gη) is a function of {Y ∗(1), Y ∗(0), X}, and Cη is a function of

{A, X}. Under the assumptions in Section 2, as {Y ∗(1), Y ∗(0)} is independent of A condi-

tional on X, it follows that Y ∗(gη) is independent of Cη conditional on X, which corresponds

to the assumption of “missing at random,” so that pr{Cη = 1|Y ∗(gη), X} = pr(Cη = 1|X).

Let π(X) = pr(A = 1|X) denote the propensity score for treatment. It is then straightforward

to obtain pr(Cη = 1|X) = πc(X; η) = π(X)g(X, η) + {1 − π(X)}{1 − g(X, η)}.

In a randomized trial, π(X) is known and is ordinarily a constant; in an observational

study, π(X) is unknown. In the latter case, as is customary, we may posit a parametric

model π(X; γ), such as the logistic regression model π(X; γ) = exp(γT X̃)/{1 + exp(γT X̃)},

X̃ = (1, XT )T ; and estimate γ via the maximum likelihood (ML) estimator γ̂ based on the

iid (Ai, Xi), i = 1, . . . , n. We may thus estimate πc(X; η) by πc(X; η, γ̂) = π(X; γ̂)g(X, η) +

{1 − π(X; γ̂)}{1 − g(X, η)}. Note that, although the restricted class Gη may depend on X

only through a specific subset of its elements, in an observational study the propensity score

model π(X, γ) should be developed based on all of X to ensure that confounding is addressed.

Following the missing data analogy, we now identify estimators for E{Y ∗(gη)}. For fixed

η, the simple inverse probability weighted estimator (IPWE) is given by

IPWE(η) = n−1

n∑

i=1

Cη,iYi

πc(Xi; η, γ̂)
= n−1

n∑

i=1

Cη,iYi

π(Xi; γ̂)Ai{1 − π(Xi; γ̂)}1−Ai
. (2)

As in the missing data context, the estimator (2) is consistent for E{Y ∗(gη)} if π(X; γ), and

hence πc(X; η, γ), is correctly specified, but may not be otherwise.
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Following Robins, Rotnitzky, and Zhao (1994) and Cao et al. (2009), an alternative es-

timator that offers protection against such misspecification and improved efficiency is the

doubly robust augmented inverse probability weighted estimator (AIPWE)

AIPWE(η) = n−1

n∑

i=1

{
Cη,iYi

πc(Xi; η, γ̂)
−

Cη,i − πc(Xi; η, γ̂)

πc(Xi; η, γ̂)
m(Xi; η, β̂)

}

. (3)

In (3), m(X; η, β) = µ(1, X, β)g(X, η)+µ(0, X, β){1−g(X, η)} is a model for E{Y ∗(gη)|X} =

µ(1, X)g(X, η) + µ(0, X){1− g(X, η)}, where µ(A, X; β) is a model for E(Y |A, X), and β̂ is

an appropriate estimator for β as before. The estimator (3) possesses the double robustness

property; i.e., it is consistent for E{Y ∗(gη)} if either of π(X; γ), and hence, πc(X; η, γ),

or µ(A, X; β), but not both, is misspecified. Note that, while the regression estimator (1)

may be used to estimate E{Y ∗(gη)} for any arbitrary gη, regardless of whether or not gη

is derived from a regression model, its consistency hinges critically on correct specification

of a model for E(Y |A, X). Likewise, the estimator (2) requires a correct model for π(X; γ).

Thus, relative to these approaches, (3) offers protection against mismodeling of these key

quantities. Finally, as shown by Robins et al. (1994), the second term in (3) “augments” the

estimator IPWE(η) so as to increase asymptotic efficiency; if π(X; γ) is correctly specified,

then the efficient estimator of form (3) is obtained when the regression model is also correct.

If µ(A, X; β) is correctly specified, the regression estimator may achieve greater large-sample

precision; however, as we demonstrate in Section 4, the gain can be modest.

An estimator for ηopt and hence for gopt
η may be obtained by maximizing AIPWE(η) in (3)

in η to obtain η̂opt and thus ĝopt
η (X) = g(X, η̂opt). A corresponding estimator for E{Y ∗(gopt

η )},

the population mean outcome using the optimal restricted treatment regime, may found as

AIPWE(η̂opt). Analogous estimators based on IPWE(η) may also be obtained; in Section 4,

we show that those based on AIPWE(η) exhibit superior performance.

Standard errors for these estimators for E{Y ∗(gopt
η )} may be obtained under regularity

conditions based on an argument sketched in Web Appendix A. Letting Q(η) = E{Y ∗(gη)}

as a function of η, and denoting either estimator by Q̂(η) for arbitrary η, it is shown that
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n1/2{Q̂(η̂opt) − Q(ηopt)} = n1/2{Q̂(ηopt) − Q(ηopt)} + op(1), (4)

so that the asymptotic variance of the left hand side of (4) can be approximated by that

of the leading term on the right, which can be estimated by the usual sandwich technique

(Stefanski and Boos, 2002).

In the situation of a series of sequential decisions, Robins et al. (2008) and Orellana et al.

(2010) also consider treatment regimes gη, say, in a restricted class Gη indexed by a parameter

η and propose methods to estimate the optimal regime within the class. These authors

motivate their approach in the context of HIV infection, where the goal is to determine the

optimal threshold CD4 count η such that, if at any point a subject were to exhibit CD4 count

below η, he/she would be administered antiretroviral therapy. Similar to our approach, the

optimal η maximizes Q(η) for some outcome of interest. In this more complex time-dependent

setting, however, Q(η) may be difficult to estimate because the number of subjects in the data

treated in accordance with gη for any fixed η may be quite small. Accordingly, in contrast

to our approach, where we maximize an estimator Q̂(η) in η directly, these authors posit a

marginal structural mean model for Q(η), M(η, τ), say, in terms of a parameter τ ; e.g., a

quadratic model M(η, τ) = τ0 + τ1η + τ2η
2. The estimator τ̂ is obtained via (augmented)

inverse probability weighted estimating equations; see Web Appendix B, and the optimal η

is then estimated as arg maxη M(η, τ̂). In the next section, we compare our approach to this

method in the one decision problem.

4. Simulation Studies

We have carried out several simulation studies to evaluate the performance of the proposed

methods, each involving 1000 Monte Carlo data sets. We report results here for two scenarios;

further results for these and other scenarios are presented in Web Appendices C and D.

For the first scenario, for each data set, we generated n = 500 observations (Yi, Ai, Xi),

i = 1, . . . , n , where Xi = (Xi1, Xi2)
T and Xi1 and Xi2 were independent and uniformly
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distributed on (−1.5, 1.5); given Xi, Ai were Bernoulli with success probability satisfying

logit{pr(A = 1|X)} = −1.0 + 0.8X2

1
+ 0.8X2

2
, logit(u) = log{u/(1 − u)}; and outcomes

were generated as Yi = µ(Ai, Xi) + ǫi for ǫi standard normal and µ(A, X) = exp{2.0 −

1.5X2

1
− 1.5X2

2
+ 3.0X1X2 + A(−0.1 − X1 + X2)}. It is straightforward to deduce that the

optimal treatment regime gopt(X) = I(X2 > X1 + 0.1), a hyperplane in two dimensional

space. Via Monte Carlo simulation with 106 replicates, we obtained E{Y ∗(gopt)} = 3.71,

E{Y ∗(0)} = 3.02, and E{Y ∗(1)} = 3.14. Thus, while the strategy of administering treatment

1 to the entire population results in improved mean outcome relative to giving treatment 0

to the entire population, there is added benefit to assigning treatment via gopt, which leads

to an 18% increase in mean outcome over treatment 1.

To estimate the optimal regime, we considered the regression estimator and the esti-

mators based on maximizing IPWE(η) in (2) and AIPWE(η) in (3) in η, respectively,

using both correctly and incorrectly specified models µ(A, X; β) and π(X; γ). In particular,

we considered two posited outcome regression models, which we denote as µt(A, X; β) =

exp{β0 + β1X
2

1
+ β2X

2

2
+ β3X1X2 + A(β4 + β5X1 + β6X2)}, corresponding to the correct

specification; and µm(A, X; β) = β0 + β1X1 + β2X2 + A(β3 + β4X1 + β5X2), which is

misspecified. We estimated β in each model by least squares. For π(X; γ), we considered

the correctly specified model logit{πt(X; γ)} = γ0 + γ1X
2

1
+ γ2X

2

2
and an incorrect version

logit{πm(X; γ)} = γ0 + γ1X1 + γ2X2, both of which were fitted via ML. Both outcome

regression models define a class of treatment regimes Gη = {I(η0+η1X1+η2X2 > 0)}, so that

clearly gopt ∈ Gη. Expressed in this form, regimes in Gη do not have a unique representation.

Rather than achieving this by taking the coefficient of one of the covariates equal to 1 and

redefining η, as in the discussion in Section 3, which yields easily interpretable regimes, for

computational convenience in automating the simulations we instead equivalently achieved
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uniqueness by imposing ‖ η ‖= (ηT η)1/2 = 1. In this case, gopt ∈ Gη corresponds to

η = (η0, η1, η2)
T = (−0.07,−0.71, 0.71)T .

Both IPWE(η) and AIPWE(η) are non-smooth functions in η; accordingly, the use of

traditional optimization methods to maximize these quantities in η may be problematic.

Accordingly, we used two approaches to maximization of these quantities: a grid search,

as described in Web Appendix C, and the genetic algorithm discussed by Goldberg (1989)

and implemented in the rgenoud package in R (Mebane and Sekhon, 2011). As noted in the

documentation, the latter “combines evolutionary algorithm methods with a derivative-based

quasi-Newton approach” to address difficult such optimization problems. In our context, we

have found this approach to be computationally efficient in higher dimensions, whereas

a direct grid search quickly becomes infeasible for dimensions greater than two. In our

implementation using the genoud function, we adopted the default settings of all arguments

except we took max=TRUE; optim.method = Nelder-Mead, recommended in the documen-

tation for discontinuous objective functions; and pop.size = 3000, which we determined

to be sufficiently large to achieve satisfactory results via preliminary testing. We took

starting.values = c(0,0,0), and set the Domains matrix to be the 3 × 2 matrix with

columns (−1,−1,−1)T and (1, 1, 1)T , where, each row corresponds to lower and upper bounds

on each element of η, so that the algorithm searched in this region. As above, to identify

a unique estimated ηopt, we imposed the restriction ‖ η ‖= 1, normalizing the value of

η̂opt obtained from genoud for each Monte Carlo data set. We provide further discussion of

selection of these tuning parameters in Web Appendix C.

Table 1 shows the results using the genetic algorithm to carry out the maximization for

the proposed estimators; results using the grid search were almost identical and are given in

Web Appendix C. For the regression estimators, we report η(β̂). For the proposed estimators

based on (2) and (3), results are shown using both correct and incorrect models for the
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propensity score and outcome regression in different combinations. In accordance with the

definitions of Q(η) and Q̂(η), Q̂(η̂opt) for each estimator in the table is the Monte Carlo

average (standard deviation) of the estimated values of the true E{Y ∗(gopt
η )} and thus reflects

how well each approach does at estimating the true achievable mean outcome under the true

optimal regime. In contrast, Q(η̂opt) is a measure of the actual performance of the estimated

optimal regime itself. Namely, for each Monte Carlo data set, the true mean outcome that

would be achieved if each estimated optimal regime were followed by the entire population

was determined by simulation, and the values in this column are the Monte Carlo average

(standard deviation) of these simulated quantities. Hence, the values in this column, when

compared to the true E{Y ∗(gopt
η )} = 3.71, reflect the extent to which the estimated optimal

regime can achieve the performance of the true optimal regime. We also present Monte Carlo

coverage probabilities for 95% Wald confidence intervals for Q(ηopt) constructed using Q̂(η̂opt)

and standard errors obtained as described in Section 3.

To obtain a graphical depiction of the performance of the estimated optimal regimes,

we calculated the ratio Q(η̂opt)/E{Y ∗(gopt)} = Q(η̂opt)/E{Y ∗(gopt
η )} for each Monte Carlo

data set, which gives the proportion of benefit the estimated regime can achieve if used in

the entire population relative to using the true optimal regime. The empirical cumulative

distribution function (cdf) of these ratios for each estimator is presented in Figure 1; by

definition, “good” estimators should admit empirical cdfs that concentrate at 1.00.

From Table 1, the regression estimator based on a postulated outcome regression that

includes the truth yields an estimator for gopt = gopt
η that virtually achieves the performance

of the true optimal regime. However, when the regression model is misspecified, the resulting

estimated regime is far from the optimal and leads to relatively poor performance. In contrast,

the proposed methods based on AIPWE(η) in (3) result in an estimated regime that is

almost identical to gopt on average and performs almost identically to the true optimal regime
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on the basis of mean outcome, regardless of whether or not the propensity score model is

correct. The estimator based on IPWE(η) in (2) also yields an estimated regime close to

the optimal when the propensity model is correct, but, relative to the regression estimator

and AIPWE, is inefficient in estimating the achieved mean outcome under the true optimal

regime, and the resulting estimated regime is outperformed by these competing estimators

in terms of true mean outcome achieved. When the propensity model is misspecified, this

estimator shows a degradation in performance similar to that exhibited by the regression

estimator using an incorrect regression model. The estimator based on AIPWE(η) in (3)

with both propensity and regression model misspecified performs no worse.

The IPWE shows some upward bias in estimation of E{Y ∗(gopt
η )}, and 95% confidence

intervals exhibit undercoverage as a result. Intervals based on the AIPWE show better

performance, with some undercoverage when the regression model is misspecified. In Web

Appendix C, we present results for n = 200 and 1000, which are similar; additional sim-

ulations, not shown, with n = 10000, yielded negligible bias and nominal coverage for all

estimators, suggesting that this is a sample size issue. Because these estimators involve

finding the maximum of a non-smooth function, this behavior is not unexpected.

Figure 1 shows the performance of all estimators under correct and incorrect propen-

sity score models in panels (a) and (b), respectively, and reiterates graphically the poor

performance of the regression estimator under misspecification and the almost identical

performance of the regression estimator under a correct outcome model and the AIPWE

regardless of whether or not the propensity model is misspecified.

[Table 1 about here.]

[Figure 1 about here.]

In the second scenario, for each data set, we again generated (Yi, Ai, Xi), i = 1, . . . , n = 500,

where the elements of Xi = (Xi1, Xi2)
T were independent with Xi1 uniform on (0, 2) and Xi2
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standard normal, and Ai was Bernoulli with logit{pr(A = 1|X)} = −1.0 + 0.5X2

1
+ 0.5X2

2
.

Outcomes were generated as Yi = µ(Ai, Xi) + ǫi for ǫi standard normal and µ(A, X) =

exp[2.0 − 0.2X1 + 0.2X2 + A{2.0 sign(X2 − X2

1
+ 1.0)/(2.0 + |X2 − X2

1
+ 1.0|)}], a rather

complicated relationship with corresponding gopt(X) = I(X2 > X2

1
− 1.0), for which Monte

Carlo simulation using 106 replicates yielded E{Y ∗(gopt)} = 9.50, while E{Y ∗(0)} = 6.21

and E{Y ∗(1)} = 8.16. As it would be unlikely that an analyst would correctly identify

the true relationship µ(A, X), we considered two plausible misspecified working regression

models, µ1(A, X; β) = exp{β0 + β1X1 + β2X2 + A(β3 + β4X1 + β5X2)} and µ2(A, X; β) =

β0 +β1X1 +β2X2 +A(β3 +β4X1 +β5X2), both of which induce the class of treatment regimes

Gη with elements of form I(η0 + η1X1 + η2X2 > 0), where we again take ‖ η ‖= 1. Correct

and incorrect propensity score models were specified as in the first scenario.

Note that here, in contrast to the first scenario, Gη does not contain gopt. Thus, gopt
η

represents the optimal regime within the class Gη but may not achieve the same perfor-

mance as the overall gopt. Via Monte Carlo simulation using 106 replicates, we found that

gopt
η = I(0.66 − 0.67X1 + 0.33X2 > 0) and E{Y ∗(gopt

η )} = 9.33 (< 9.50), so that gopt
η results

in less than a 2% reduction in mean outcome relative to the overall optimal regime.

Table 2 shows results for this scenario, where again the genetic algorithm described previ-

ously was used to implement the estimators based on (2) and (3); results using the grid search

were similar and are shown in Web Appendix C. The regression estimators based on both

incorrect working outcome regression models yield estimated optimal regimes in the class that

are far from achieving the performance of the true optimal regime. In contrast, the proposed

estimators based on both (2) and (3) exhibit better performance, with a considerable gain in

efficiency for those based on AIPWE(η) over that using IPWE(η). Evidently, augmentation

using an incorrect outcome regression model leads to considerable gains over the IPWE

regardless of whether or not the propensity score model is correct. Confidence intervals
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for E{Y ∗(gopt
η )} when the propensity model was correctly specified achieve the nominal

level; not unexpectedly, those based on the AIPWE with misspecified propensity yield poor

performance.

In Figure 2, because the true optimal regime gopt is unachievable if we restrict to the

feasible class Gη, we plot the empirical cdfs of the ratios Q(η̂opt)/E{Y ∗(gopt
η )}, which are now

different from the ratios Q(η̂opt)/E{Y ∗(gopt)}. Because gopt
η and gopt lead to overall mean

outcomes that differ by less than 2%, these ratios are also informative of the performance

of the estimated regimes relative to the true optimal regime. The figure provides graphical

corroboration of the results in Table 2, namely, that the AIPWE may lead to more reliable

inference on the optimal regime than the regression estimator or IPWE, exhibiting the desired

robustness to misspecification of one or both models.

[Table 2 about here.]

[Figure 2 about here.]

Overall, these simulations, along with many others we have conducted, suggest that,

although the regression estimator (1) leads to valid inference on the optimal treatment

regime when the outcome regression model on which it is based in correctly specified, it

can suffer serious degradation of performance if it is not. Likewise, the IPWE based on (2)

can perform poorly if the propensity score model is incorrect. The proposed methods based

on the AIPWE using (3) exhibit robustness to misspecification of both models and lead

to reliable and precise inference on the true optimal regime, either overall or in a class of

interest.

The computational burden associated with our methods is minimal. With η 3-dimensional

and using pop.size = 3000 in the genoud function, processing of one data set took 10–20

seconds; with pop.size = 10000, this took 70–90 seconds. For higher dimensional η, e.g.,

8-dimensional, say using pop.size = 10000, results were achieved in 2–3 minutes. A grid
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search is much less computationally efficient, taking several minutes with 2-dimensional η

and is infeasible for larger dimensions. These results were obtained using R on a PC with an

Intel(R) Core(TM)2 Duo CPU T8300@2.4GHz and 2GB RAM.

In Web Appendix E, we present the results of simulations comparing our methods to the

marginal structural mean model approach of Robins et al. (2008) and Orellana et al. (2010)

discussed at the end of Section 3. In a scenario where the model M(η, τ) is correctly specified,

this approach and ours exhibit comparable performance. When M(η, τ) was incorrect, our

approaches, and in particular AIPWE, showed improved relative performance; this is not

unexpected, as the posited M(η, τ) in practice will be at best an empirical approximation

to Q(η).

In the simulation scenarios discussed here, the treatment assignment mechanism depended

on X, as would be the case in an observational study. Thus, the analyst must model the

propensity score with the risk of misspecifying the true mechanism. In a typical randomized

clinical trial, as in the NSABP study discussed next, the true propensity score does not

depend on X and may be estimated by the sample proportion assigned to treatment 1. In

this setting, then, misspecification of the propensity score is of no concern, and the IPWE

and AIPWE estimators will always be consistent, with the latter being more efficient.

5. Application to the NSABP Trial

We apply the proposed methods to data from the NSABP clinical trial introduced in Sec-

tion 1, with binary outcome Y = 1 if a subject survived disease-free to three years from

baseline, and Y = 0 otherwise; and A = 0 (1) if a subject was randomized to PF (PFT).

We consider estimation of the optimal treatment regime using covariates age (years) and

progesterone receptor level (PR, fmol) based on data from the n = 1276 patients with

complete covariate information. Gail and Simon (1985) applied their testing procedure for

qualitative interaction to these data to conclude that there is evidence supporting the regime
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proposed by Fisher et al. (1983) under which subjects with age < 50 and PR < 10 fmol receive

PF, with all others receiving PFT.

Because the distribution of PR is very skewed, with PR = 0 for some participants, we con-

sider regimes and models involving LPR = log(PR+1), and let X = (X1, X2) = (age, LPR).

For the regression method, we postulated the logistic regression model

µ(A, X; β) = expit{β0 + β1X1 + β2X2 + A(β3 + β4X1 + β5X2)} (5)

for E(Y |A, X) = pr(Y = 1|A, X), where expit(u) = eu/(1 + eu). It is straightforward to

show that (5) induces the class of regimes of form I(β3 +β4X1 +β5X2 > 0). Results of fitting

this model using the R function nlm are presented in Table 3 and show that the interactions

of both covariates with assigned treatment are statistically significant at level 0.05. Taking

β4 > 0 in accordance with the estimate in Table 3, to achieve a unique representation that

is straightforward to interpret in practice, we follow the convention in Section 3 and write

regimes in the class equivalently as I(X1 > η0 + η1X2), where η0 = −β3/β4, η1 = −β5/β4.

Hence, the estimated optimal regime based on the regression estimator is, in obvious notation,

ĝopt
η,reg(X) = I(X1 > 53.2−5.68X2); i.e., I(age > 53.2−5.68×LPR), which dictates that older

patients should receive PFT, where the threshold defining “older” depends on PR level. We

may estimate the value of E{Y ∗(gopt
η )} achieved by the true optimal regime within this class

of regimes by substituting ĝopt
η into any of (1) – (3). As this was a randomized study, for the

latter two estimators, which involve estimates of the propensity score π(X), π(X) may be

estimated directly by the sample proportion assigned to PFT; i.e.,
∑n

i=1
Ai/n for all X. Using

the previous notation Q̂(η̂opt) to denote such estimators for E{Y ∗(gopt
η )}, then, the estimate

based on (1) is Q̂(η̂opt) = 0.673. The estimate based on AIPWE(η) in (3) is Q̂(η̂opt) = 0.679;

recall that this estimator is robust to misspecification of the regression model (5).

To implement the proposed estimators based on maximizing IPWE(η) and AIPWE(η) in

(2) and (3), we used π(X) estimated as above and the ML fit of µ(A, X; β) in (5) in (3). The
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estimated regime using IPWE(η) is ĝopt
η,IPWE(X) = I(X1 > 60.0−8.68X2) = I(age > 60.0−

8.68 × LPR), with associated Q̂(η̂opt) = 0.693 and Wald-type 95% confidence interval using

estimated standard errors obtained as in (4) (0.657, 0.729). The corresponding quantities

using AIPWE(η) are ĝopt
η,AIPWE(X) = I(X1 > 60.0− 7.98X2) = I(age > 60.0− 7.98×LPR),

with Q̂(η̂opt) = 0.695 and 95% confidence interval (0.659, 0.730). The results are virtually

identical, and suggest a close to 70% three-year disease-free survival rate if treatment were to

be assigned in accordance with the optimal regime of this form. Figure 3(a) depicts the three

regimes graphically, superimposed on the observed values of (age, LPR) for all n subjects.

[Table 3 about here.]

To compare to the regime identified by Fisher et al. (1983) and Gail and Simon (1985),

consider the alternative class of regimes defined directly as 1 − I(age < η0 and PR < η1).

As noted above, these authors advocated the regime defined by η0 = 50 and η1 = 10, which,

using the estimator for E{Y ∗(gη)} based substituting this regime in (3) with the estimators

for π(X) and µ(A, X; β) as above, yields estimated mean outcome 0.679 (0.643, 0.715).

Finding η̂opt maximizing IPWE(η) and AIPWE(η) in (2) and (3) yields estimated regimes

ĝopt
η,IPWE(X) = 1 − I(age < 56 and PR < 5), with Q̂(η̂opt) = 0.681 (0.644, 0.717); and

ĝopt
η,AIPWE(X) = 1 − I(age < 60 and PR < 9), with Q̂(η̂opt) = 0.686 (0.651, 0.722), respec-

tively. These estimated regimes are shown in Figure 3(b) along with that identified by the

investigators. All three regimes suggest that PF should be given to younger patients with

low PR levels.

[Figure 3 about here.]

6. Discussion

We have proposed new methods for estimating the optimal treatment regime within a

specified class of regimes at a single decision point, where the class may be defined through
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a postulated model for the regression of outcome on treatment assignment and subject

covariates or based on other considerations, such as practice, cost, or simplicity. The methods

may be applied to data on outcome, treatment received, and baseline covariates from a

clinical trial or observational study. In the latter case, under the assumption of no unmea-

sured confounders, the methods take account of possible confounding through modeling of

the propensity score. Our simulation studies demonstrate that the methods can achieve

comparable performance to those based on direct outcome regression modeling with the

added benefit of robustness to misspecification of either the outcome regression or propensity

model. We have presented the methods for the case of two treatment options, but they may

be adapted straightforwardly to more than two treatments.

The proposed methods may be extended to the case of more than one treatment decision;

we are currently studying them in this setting and will report the results in a future article.

Supplementary Materials

Web Appendices A–E referenced in Sections 3 and 4 are available with this paper at the

Biometrics website on Wiley Online Library.
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Figure 1. Empirical cdfs across 1000 Monte Carlo data sets using correct and incorrect
propensity score (PS) models of the quantities Q(η̂opt)/E{Y ∗(gopt

η )} for each estimator for
the first simulation scenario. RGt and RGm denote the regression estimator with correct and
misspecified model µ(A, X; β), respectively; AIPWEt and AIPWEm denote the estimator
based on (3) with correct and misspecified model µ(A, X; β), respectively; and IPWE denotes
the estimator based on (2).
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Figure 2. Empirical cdfs across 1000 Monte Carlo data sets using correct and incorrect
propensity score (PS) models of the quantities Q(η̂opt)/E{Y ∗(gopt

η )} for each estimator
for the second simulation scenario. RG1 and RG2 denote the regression estimator using
incorrect models µ1(A, X; β) and µ2(A, X; β), respectively; AIPWE1 and AIPWE2 denote
the estimator based on (3) using µ1(A, X; β) and µ2(A, X; β), respectively; and IPWE
denotes the estimator based on (2).
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Figure 3. (a) Estimated optimal treatment regimes of the form I(age > η0+η1LPR) using
the regression estimator (RG), the estimator based on (2) (IPWE), and the estimator based
on (3) (AIPWE). (b) The regime identified by Fisher et al., (1983) and Gail and Simon
(1985) (solid lines) and optimal regimes of the form 1− I(age < η0 and PR < η1) estimated
based on (2) (dotted-dashed lines) and (3) (long dashed lines).
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Table 1

Results for the first simulation scenario using 1000 Monte Carlo data sets with n = 500. For the true optimal regime
gopt = gopt

η within the class Gη, (η0, η1, η2) = (−0.07,−0.71, 0.71) and E{Y ∗(gopt
η )} = 3.71. RGµt and RGµm represent the

regression method using the correct and incorrect outcome regression models; IPWE is the proposed method using (2); and
AIPWEµt and AIPWEµm are the proposed method using (3) and the correct and incorrect outcome regression models,
respectively. The columns η̂

0
, η̂

1
, and η̂

2
show Monte Carlo average estimates, with Monte Carlo standard deviations in

parentheses. The column Q̂(η̂opt) shows Monte Carlo average and standard deviation of the estimated values of the true
E{Y ∗(gopt

η )}, SE shows the Monte Carlo average of sandwich standard errors for this quantity, Cov. shows the coverage of

95% Wald-type confidence intervals for Q(ηopt), and Q(η̂opt) shows the Monte Carlo average and standard deviation of
values E{Y ∗(ĝopt

η )} obtained using 106 Monte Carlo simulations for each data set.

Method η̂
0

η̂
1

η̂
2

Q̂(η̂opt) SE Cov. Q(η̂opt)

RGµt -0.07 (0.02) -0.71 (0.01) 0.71 (0.01) 3.70 (0.14) – – 3.71 (0.00)
RGµm -0.51 (0.26) -0.49 (0.32) 0.46 (0.33) 3.44 (0.18) – – 3.27 (0.19)

PS correct

IPWE -0.07 (0.15) -0.69 (0.11) 0.68 (0.11) 4.01 (0.26) 0.28 86.1 3.63 (0.07)
AIPWEµt -0.07 (0.05) -0.71 (0.03) 0.70 (0.03) 3.72 (0.15) 0.15 94.7 3.70 (0.01)
AIPWEµm -0.06 (0.12) -0.69 (0.12) 0.69 (0.13) 3.85 (0.21) 0.23 91.8 3.66 (0.07)

PS incorrect

IPWE -0.38 (0.22) -0.56 (0.30) 0.55 (0.31) 4.06 (0.22) 0.23 69.4 3.42 (0.20)
AIPWEµt -0.07 (0.05) -0.70 (0.02) 0.70 (0.02) 3.72 (0.15) 0.15 95.2 3.70 (0.01)
AIPWEµm -0.23 (0.22) -0.62 (0.25) 0.61 (0.27) 3.81 (0.18) 0.19 94.1 3.57 (0.20)
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Table 2

Results for the second simulation scenario using 1000 Monte Carlo data sets with n = 500. For the true optimal regime
gopt

η within the class Gη, (η0, η1, η2) = (0.66,−0.67, 0.33) and E{Y ∗(gopt
η )} = 9.33. All other quantities are analogous to

those in Table 1, with µ1 and µ2 denoting the given estimator using the misspecified models µ1(A, X; β) and µ2(A, X; β),
respectively.

Method η̂
0

η̂
1

η̂
2

Q̂(η̂opt) SE Cov. Q(η̂opt)

RGµ1 0.80 (0.03) -0.56 (0.04) 0.20 (0.06) 8.10 (0.27) – – 8.72 (0.17))
RGµ2 0.80 (0.01) -0.55 (0.02) 0.23 (0.04) 8.47 (0.27) – – 8.68 (0.07)

PS correct

IPWE 0.64 (0.05) -0.66 (0.08) 0.36 (0.11) 9.53 (0.52) 0.44 93.8 9.17 (0.18)
AIPWEµ1 0.65 (0.02) -0.67 (0.01) 0.34 (0.05) 9.38 (0.27) 0.28 95.7 9.28 (0.05)
AIPWEµ2 0.66 (0.02) -0.67 (0.02) 0.34 (0.05) 9.39 (0.26) 0.27 95.6 9.29 (0.05)

PS incorrect

IPWE 0.58 (0.13) -0.67 (0.06) 0.42 (0.12) 9.48 (0.32) 0.34 95.0 9.03 (0.35)
AIPWEµ1 0.65 (0.02) -0.67 (0.02) 0.36 (0.05) 8.99 (0.27) 0.27 75.5 9.27 (0.06)
AIPWEµ2 0.65 (0.02) -0.67 (0.02) 0.36 (0.05) 9.10 (0.25) 0.26 84.1 9.27 (0.05)
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Table 3

Results of fitting the logistic outcome regression model (5) for the NSABP data.

Estimate SE Z value p-value
intercept 0.0988 0.4395 0.225 0.82
age 0.0004 0.0081 0.048 0.96
LPR 0.0992 0.0431 2.304 0.02
treatment -1.4580 0.6332 -2.303 0.02
treatment×age 0.0274 0.0117 2.337 0.02
treatment×LPR 0.1555 0.0650 2.394 0.02


