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ABSTRACT In recent years, deep learning has greatly improved the ability of wheatear detection. However, 

there are still three main problems in wheatear detection based on unmanned aerial vehicle (UAV) platforms. 

First, dense wheat plants often overlap, and the wind direction will blur the pictures, which obviously inter-

feres with the detection of wheatears; second, due to the different maturity, color, genotype, and head orien-

tation, the appearance will also be different; third, UAV needs to take images in the field and conduct real-

time detection, which requires the embedded module to detect wheatears quickly and accurately. Given the 

above problems, we studied and improved YoloV4, and proposed a robust method for wheatear detection 

using UAV in natural scenes. For the first problem, we modified the network structure, deleted the feature 

map with a size of 19×19, and used k-means algorithm to re-cluster the anchors, and we proposed a method 

of prediction box fusion. For the second problem, we used the pseudo-labeling method and data augmentation 

methods to improve the generalization ability of the model. For the third problem, we simplified the network 

structure, replaced the original network convolution with the improved depthwise separable convolution, and 

proposed an adaptive ReLU activation function to reduce the amount of calculation and speed up the calcu-

lation. The experimental results showed that our method can effectively mark the bounding of wheatears. In 

test sets, our method achieves 96.71% in f1-score, which is 9.61% higher than the state of the art method, and 

the detection speed is 23% faster than the original method. It can be concluded that our method can effectively 

solve the problems of wheatear detection based on the UAV platform in natural scenes. 

INDEX TERMS Wheatear detection, improved YoloV4, UAV, object detection, deep learning

I. INTRODUCTION 

Wheat is a kind of cereal crop widely planted all over the 

world, and it is one of the staple foods of human beings. It is 

particularly important to effectively monitor the growth of 

wheat and make scientific management decisions in a 

modern society of rapid population growth. The manual 

detection method is time-consuming, laborious, the 

observation area is small, and the accuracy is biased; 

moreover, with the increase of planting scale, it becomes 

more and more infeasible. UAV single sorties operation time 

is long, the coverage is very wide, with high efficiency and 

flexibility, easy to operate, and other advantages, so it has 

been widely used in the agricultural field [1]-[3]. In order to 

effectively analyze the growth of wheat, the wheatear 

detection equipment based on UAV platform can collect 

wheat images in the field and detect the wheatears in the 

images in real-time. With these detection results, farmers can 

estimate wheat density and the size of wheatears, assess 

wheat health and maturity, and make appropriate 

management decisions accordingly. Therefore, it is of great 

significance and application value for research on a wheatear 

detection model which is suitable for UAV platform with 

good performance. 

The accuracy and speed of wheatear detection are the 

primary tasks and the main design difficulty of wheatear 

detection model, and they are directly related to the work 

efficiency of wheatear detection UAV. At present, crop 

detection using UAV is mainly based on spectral remote 

sensing technology [4]-[6]. Although it can detect the overall 

situation of crops within a certain scope, it cannot accurately 
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detect each wheat plant, and there are great limitations in 

light environment and angle when shooting. Our goal is to 

accurately detect wheatears, to more accurately judge the 

wheat growth and health status. With the development of 

science and technology, more and more object detection 

methods are being proposed. Due to different sunlight 

exposure, maturity, genotype and head orientation, the color, 

and shape of wheatears will differ, and there will be 

overlapping of wheatears caused by dense plants. All these 

will affect the accuracy of wheatear detection. In practical 

applications, due to hardware limitations, it is often necessary 

to sacrifice accuracy to ensure the inference speed of the 

detector. Therefore, the balance between the effectiveness and 

efficiency of the target detector must be considered. 

YoloV4 [7] integrates various advanced technologies 

based on YoloV3 [8] and provides the best trade-off in terms 

of speed and accuracy. To solve the previous problems, we 

have conducted in-depth research on the various sub-

modules of yolov4, so that the improved method can 

accurately mark the wheatears in the images taken by the 

UAV in the field, and its performance is better than that of 

YoloV4. We proposed a robust wheatear detection method 

using UAV in natural scenes. The main contributions of this 

paper include the following four points: 

1) We used improved depthwise separable convolution to 

replace the original network convolution, to reduce the 

number of parameters and speed up the calculation. 

2) Based on YoloV4, the network architecture was 

adjusted. According to the characteristics of wheatear 

objects, the feature map with a resolution size of 19 × 19 

was deleted, and the k-means algorithm was adopted to 

cluster the bounding boxes to replace the original anchors, 

which simplify the network structure and improves the 

performance. 

3) We proposed an adaptive ReLU activation function, 

which determines the appropriate activation function 

according to all input elements. It does not increase the depth 

and width of the network, and is more accurate than ReLU 

and faster than Mish. 

4) We proposed a method of prediction box fusion, which 

was adopted to solve the problem that all predicted bounding 

boxes are inaccurate in the test stage, and improved the 

detection accuracy under overlapping condition. 

The rest of this paper is structured as follows: in chapter 

two, we reviewed the work related to our research content; 

in chapter three, we introduced in detail the improved 

methods in this paper; in chapter four, we introduced the data 

sets, evaluation indicators, and tricks used in the experiment, 

and conducted the ablation study; in chapter five, we 

designed a large number of contrast experiments and 

analyzed the experimental results; in chapter six, we 

summarized the research work of this paper. 

 

 

II. RELATED WORK 

A. DETECTION OF CROPS 

Wheatear detection is an important means to monitor wheat 

growth and health. The main methods are artificial field 

detection and automatic wheatear detection based on images. 

Due to the time-consuming, laborious, and subjectivity of 

artificial detection methods, they are not popular in today's 

rapid development of agriculture. Image-based detection 

technology has been widely recognized in crop detection in 

recent years due to its strong real-time performance and 

robustness [9]-[12]. Generally, there are two methods for 

image-based object detection: the traditional manual feature-

based object detection method [13]-[14] and the deep 

learning-based object detection method [15]-[17]. 

Traditional object detection methods are generally divided 

into three steps: region selection, feature extraction of 

candidate region, and classifier classification [18]. For 

example, Li et al. combined the texture features of wheatears 

with neural networks to detect wheatears in a laboratory 

environment with whiteboard background [19], while Zhou et 

al. combined multi-feature optimization and twin support 

vector machine to detect wheatears [20]. This kind of method 

can detect the wheatears in the image, but it uses manual 

features to represent the object features, so it has poor 

robustness. The different colors and shapes of wheatears will 

cause serious deviation in the results of these methods. 

Moreover, the method based on the sliding window region 

selection strategy will lead to many redundant calculations, 

and the whole process has high complexity. 

With the development of deep learning, a variety of object 

detection methods have been proposed. The object detection 

method based on deep learning can extract complex feature 

hierarchies from images through self-learning [21], which can 

effectively solve the problem of the poor performance of 

manual feature extraction methods and has been widely used 

in agricultural crop growth and health monitoring. Object 

detection methods based on deep learning can be divided into 

two categories: two-stage object detection method and one-

stage object detection method. The two-stage object detection 

method divides the object detection into two stages, that is, the 

region proposal network (RPN) is used to extract the candidate 

object information, and then the detection network is used to 

predict and identify the location and category of the candidate 

object. For example, Lootens used machine learning based on 

UAV images to automatically count wheatears [22], but this 

method cannot accurately mark the wheatears in the image. 

Ma et al. combine DCNN and FCN to segment wheat ears [23], 

this method is divided into two stages, the first stage uses 

DCNN for coarse segmentation, and the second stage uses 

FCN for fine segmentation, its accuracy is good, but the speed 

is too slow. Madec et al. proposed an ear density estimating 

method by using Faster-RCNN and RGB images of high 

spatial resolution [24], Wang et al. combined FCN and Harris 

Corner Detection to detect wheatears in the field [25], but  
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FIGURE 1.  The overall network structure of YoloV4. 
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FIGURE 2.  The overall network structure of our method. 

 

these two methods were focusing on counting the number of 

wheatears. Although they have high detection accuracy and 

strong generalization, due to there are many regional 

suggestions, high requirements for equipment performance, 

and low detection efficiency, they cannot meet the real-time 

requirements. The one-stage object detection method uses the 

regression method based on deep learning to detect the object 

and obtains the boundary box and object type directly from the 

image, which greatly improves the speed of object detection. 

For example, Yang et al. carried out field wheatear detection 

based on YoloV3 [26]. This kind of method has higher 

detection accuracy, stronger generalization ability, and higher 

detection speed. However, for the detection of wheatears, in 

the outdoor field, wheatears are often covered or overlapped, 

In this case, the accuracy of these methods is greatly reduced. 

If it is applied to the wheatear detection UAV, the detection 

results will mislead the wheat managers and make wrong 

decisions. 

B. INTRODUCTION TO YOLOV4 

YoloV4 is the fourth iteration of Yolo [27]. It improves the 

image pyramid to feature the pyramid and integrates various 

advanced algorithms. Compared with YoloV3, YoloV4 has 

better detection performance for occluded and overlapped 

objects. Since the main difficulty of wheatear detection is the 

overlapping and occlusion of wheatears, YoloV4 is more 

suitable as the wheatear detection module embedded in 

wheatear detection UAV than YoloV3. The network structure 

of YoloV4 is shown in Figure 1. Next, we will introduce the 

Backbone, Neck, and Head modules of YoloV4. 

1) The Backbone module is mainly used to extract rich 

information features from the input image. The Backbone of 

YoloV4 is based on the YoloV3 backbone network and the 

experience of Cross Stage Partial Networks (CSPNet) [28]. 

CSPNet solves the problem of repeated gradient information 

in the Backbone of other large-scale convolutional neural 

network framework and integrates the gradient changes into 

the feature map from the beginning to the end. Therefore, the 

parameters and FLOPS values of the module are reduced, 

which not only ensures the reasoning speed and accuracy but 

also reduces the module size. 

2) The Neck module is mainly used to generate feature 

pyramids to enhance the module's detection of objects with 

different scales to identify the same object with different sizes 

and scales. Based on the idea of Path Aggregation Network for 

Instance Segmentation (PANET) [29], the Neck of YoloV4 

enhanced information dissemination based on the framework 

of Mask R-CNN [30] and FPN [31]. 

3) The Head module is mainly used in the final detection 

part. YoloV4 uses the Head of YoloV3 in the Head module. It 

applies anchor on the feature map and generates the final 

output vector with class probabilities, object values, and 

bounding box. These feature vectors with different scaling 

scales are used to detect objects of different sizes. 

III. PROPOSED METHOD 

In this chapter, we will describe our improvement points in 

detail, and illustrate their advantages by comparing them with 

the methods in the original network, and we will conduct the 

ablation study to verify the rationality of these improvements 

in chapter four. The network structure of our method is shown 

in Figure 2. 

A.  BACKBONE NETWORK 

Convolution layer is an important part of the whole neural 

network. It can automatically extract complex feature  
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FIGURE 3.  (a) Original standard convolution, (b) Depthwise separable 
convolution, (c) Improved depthwise separable convolution. 

 

hierarchies from images. However, there are too many 

parameters, and the calculation is complex in traditional 

convolution. To speed up the calculation and save the 

calculation cost, we proposed an improved depthwise 

separable convolution to replace the traditional convolution. 

The structure comparison is shown in Figure 3. 

In Figure 3, we set the number of input channels as 3 and 

the number of output channels as 256. The traditional 

convolution is directly connected with a 3 × 3 × 256 

convolution kernel, parameters are 3 × 3 × 3 × 256 = 6912; 

The improved depthwise separable convolution is completed 

in three steps: 1×1 Convolution process, 3×3 depthwise 

convolution process, and 1×1 convolution process. The 

number of parameters is 1 × 1 × 1 × 256 + 3 × 3 × 3 +

3 × 1 × 1 × 256 = 1051, which is much less than that of the 

traditional method. This method greatly improves computing 

efficiency. In addition, the 1 × 1  convolution is added to 

increase the depth of the network and add nonlinearity without 

increasing the receptive field. 

B. IMPROVED FEATURE FUSION STRUCTURE 

YoloV4 uses the structure of feature pyramid network PANET 

to fuse the deep level feature information with the shallow 

feature information and uses the multi-scale fusion method to 

predict the location and category on the multi-scale feature 

map. However, the three-scale feature fusion method adopted 

by YoloV4 network structure has adverse effects on small 

objects such as wheatears, the semantic loss of feature map 

with a resolution size of 19 × 19 is serious, which easily leads 

to the loss of small objects. Considering that the resolution of 

the feature map will directly affect the small object detection 

and the overall performance, we modify the resolution of three 

scales of the feature map from 19 × 19, 38 × 38, 76 × 76 to  

YoloV4 Our Method

(a) (b)
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FIGURE 4.  Comparison between the original method (a) and the im-
proved (b) network structure. 
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FIGURE 5.  The original method (a) and modified (b) anchor comparison 
for different resolution feature maps. 

 

38 × 38, 76 × 76. Base on the original network structure, we 

have added two channels, as shown by the orange dashed line 

in Figure 4, which can fuse more features without increasing 

the computational cost. The modified network structure is 

shown in Figure 4. 

The feature maps of YoloV4 with different sizes have three 

anchors respectively, and larger feature maps use smaller 

anchors to get more edge information of the object. However, 

the anchors defined by the original YoloV4 network and the 

hierarchical structure of the network cannot be well applied to 

the research object of this paper. So, we used the k-means 

algorithm to cluster the wheatear dataset and replace the 

original network anchors with the clustered anchors to 

improve the accuracy of the predicted bounding boxes. Based 

on the modification of the above network, we set the k-means 

clustering algorithm with the clustering category as  6, and 

new anchors obtained are (19 × 28), (23 × 17), (31 ×

25), (31 × 38), (45 × 49), (59 × 51) , the anchor structure 

comparison of different resolution feature maps after 

clustering is shown in Figure 5. 

C.  ADAPTIVE RELU ACTIVATION FUNCTION  

The selection of activation functions is critical for deep 

learning network. Based on ReLU, we proposed an adaptive 

activation function, which determines the appropriate 

activation function according to all input elements. Compared 

with Mish, it has fewer calculations, and compared with ReLU, 

it has higher accuracy. The calculation of the ReLU function 

is shown in Equation (1). 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �𝑥𝑥, 𝑥𝑥 ≥ 0

0, 𝑥𝑥 < 0
 (1) 

And it can be generalized as Equation (2). 
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FIGURE 6.  The function used for comparison is (a), the adaptive ReLU 
function is (b). 

 

 𝑦𝑦𝑖𝑖 = max�𝑎𝑎𝑙𝑙𝑗̇𝑗𝜒𝜒𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑗𝑗� (2) 

Where 𝑥𝑥 is the input vector, for the input vector 𝑥𝑥𝑖𝑖 of the ith 

channel, the activation is calculated as 𝑦𝑦𝑖𝑖 = max{𝑥𝑥𝑖𝑖 , 0} . 

Based on Equation (2), we propose an adaptive ReLU 

activation function, which is a further extension of ReLU, its 

calculation is shown in Equation (3). 𝑦𝑦𝑖𝑖 = 𝑓𝑓𝜽𝜽(𝒙𝒙)(𝑥𝑥𝑖𝑖) = max�𝑎𝑎𝑖𝑖𝑗𝑗(𝒙𝒙)𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑗𝑗(𝒙𝒙)� , 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾    (3) 

Where 𝒙𝒙 = {𝑥𝑥𝑖𝑖} are all input elements, 𝑖𝑖 is the number of 

channels, and 𝑗𝑗 is the number of functions, function 𝜽𝜽(𝒙𝒙) =

[𝑎𝑎11, … ,𝑎𝑎𝑖𝑖1, … ,𝑎𝑎1𝑗𝑗 , … ,𝑎𝑎𝑖𝑖𝑗𝑗 , … , 𝑏𝑏11, … , 𝑏𝑏𝑖𝑖1, … , 𝑏𝑏1𝑗𝑗 , … , 𝑏𝑏𝑖𝑖𝑗𝑗]𝑇𝑇 , 𝑎𝑎𝑖𝑖𝑗𝑗  and 𝑏𝑏𝑖𝑖𝑗𝑗  are the output of function 𝜽𝜽(𝒙𝒙)  and are the sum of 

initialization and residual, and its calculation is shown in 

Equation (4). 

 

 𝑎𝑎𝑖𝑖𝑗𝑗(𝒙𝒙) = 𝛼𝛼𝑗𝑗 + 𝛾𝛾𝑎𝑎∆𝑎𝑎𝑖𝑖𝑗𝑗(𝒙𝒙),  𝑏𝑏𝑖𝑖𝑗𝑗(𝒙𝒙) = 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑏𝑏∆𝑏𝑏𝑖𝑖𝑗𝑗(𝒙𝒙)  (4) 

Where 𝛼𝛼𝑗𝑗 and 𝛽𝛽𝑗𝑗 are the initial values of 𝑎𝑎𝑖𝑖𝑗𝑗, 𝛾𝛾𝑎𝑎 and 𝛾𝛾𝑏𝑏 are 

the scalars controlling the residual range. For example, if 𝑗𝑗 =

2,𝛼𝛼1 = 1,𝛼𝛼2 = 𝛽𝛽1 = 𝛽𝛽2 = 0, corresponding to ReLU, the 

default 𝛾𝛾𝑎𝑎 and 𝛾𝛾𝑏𝑏 are 1 and 0.5, respectively. 

The adaptive ReLU does not increase the depth and width 

of the network, but can effectively improve the performance 

of the model. Through the test, compared with ReLU, the 

accuracy is improved by 4.3%, and the speed is increased by 

3.4% compared with mish. The function comparison image is 

shown in Figure 6. 

D.  METHOD OF PREDICTION BOX FUSION 

During the testing phase, when we input the image to be 

detected into the model, we get a set of predicted bounding 

boxes. For images containing many wheatears, the predicted 

bounding boxes produced on a single wheatear object may not 

be accurate due to the overlap of wheatears. To solve this 

problem, we propose a method of prediction bounding box 

fusion. This method uses information from all predicted 

bounding boxes to solve the problem of inaccuracy, as shown 

in Figure 7. We set the confidence of a fusion box to the 

average confidence of all the boxes that constitute it. The 

calculation is shown in Equation (5).The coordinates of the 

fusion box are the weighted sum of the coordinates of each  

NMS

 

FIGURE 7.  Defining the predicted bounding boxes using method of 
prediction box fusion. 

 

prediction bounding box, where the weight is the confidence 

of the box. The calculation is shown in Equation (6) and (7). 

Boxes with high confidence must have a greater impact on the 

fusion box coordinates, not boxes with low confidence. By 

testing on this test set, this method improved the accuracy of 

the bounding box by 8.3% compared with the NMS method.  

 𝐶𝐶 =
𝐶𝐶1+𝐶𝐶2+⋯+ 𝐶𝐶𝑛𝑛𝑛𝑛   (5) 𝑿𝑿𝟏𝟏 =

𝐶𝐶1𝑋𝑋11+𝐶𝐶2𝑋𝑋12+⋯+𝐶𝐶𝑛𝑛𝑋𝑋1𝑛𝑛𝐶𝐶1+𝐶𝐶2+…+𝐶𝐶𝑛𝑛 , 𝑿𝑿𝟐𝟐 =
𝐶𝐶1𝑋𝑋21+𝐶𝐶2𝑋𝑋22+⋯+𝐶𝐶𝑛𝑛𝑋𝑋2𝑛𝑛𝐶𝐶1+𝐶𝐶2+…+𝐶𝐶𝑛𝑛  (6) 𝒀𝒀𝟏𝟏 =

𝐶𝐶1𝑌𝑌11+𝐶𝐶2𝑌𝑌12+⋯+𝐶𝐶𝑛𝑛𝑌𝑌1𝑛𝑛𝐶𝐶1+𝐶𝐶2+…+𝐶𝐶𝑛𝑛 , 𝒀𝒀𝟐𝟐 =
𝐶𝐶1𝑌𝑌21+𝐶𝐶2𝑌𝑌22+⋯+𝐶𝐶𝑛𝑛𝑌𝑌2𝑛𝑛𝐶𝐶1+𝐶𝐶2+…+𝐶𝐶𝑛𝑛  (7) 

 Where 𝑛𝑛 is the number of prediction boxes before fusion, 𝐶𝐶𝑛𝑛 is the confidence of each prediction bounding box, 𝑿𝑿𝟏𝟏, 𝑿𝑿𝟐𝟐, 𝒀𝒀𝟏𝟏, 𝒀𝒀𝟐𝟐 are the coordinate values of the fusion box, and 𝐶𝐶𝑛𝑛𝑋𝑋1𝑛𝑛, 𝐶𝐶𝑛𝑛𝑋𝑋2𝑛𝑛,  𝐶𝐶𝑛𝑛𝑌𝑌1𝑛𝑛, 𝐶𝐶𝑛𝑛𝑌𝑌2𝑛𝑛 are the product of the coordinate value 

of each corresponding prediction box and the confidence of 

each corresponding box. 

IV. EXPERIMENTS 

We give a flowchart of this method based on the above 

improvements, as shown in Figure 8. In this experiment, based 

on Intel i7-8750H CPU and NVIDIA GTX 1080 GPU, we 

build a Darknet deep learning framework with Python 3.7 

development environment under Linux operating system. The 

training and detection program of wheatear detection network 

model based on YoloV4 was written in Python language.  

A. DATA SET ANALYSIS 

Our experiment uses the Global Wheat Head Detection 

(GWHD) [32] as the data set. It contains 4,700 high-resolution 

RGB images and 190,000 labelled wheatears collected from 

several countries around the world at different growth stages 

with a wide range of genotypes. We use 3300 images as the
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FIGURE 8.  The training and detecting process of the wheatear detection method. 
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FIGURE 9.  (a) Original image, (b) Image after using HSV, (c) Image after 
brightness conversion, (d) Image after Cutout, (e) Image for Cutmix, (f) 
image for Mosaic. 

 

training set for the experiment and 1400 images as the test set. 

We analyzed the samples in the data set. Due to the different 

shooting environment, some samples have bright colors and 

some are dim; due to different maturity periods and types, the 

color and appearance of wheatears are different, some have 

wheat awns, some do not, some are green, and some are 

yellow; due to the different shooting height and angle, the 

number of wheatears in the image is different. 

B. DATA AUGMENTATION 

In deep learning, enough training samples are usually required. 

The larger the number of samples, the better the trained model 

and the stronger the generalization ability. However, in actual 

training, training samples are always limited, and it is 

impossible to capture an image for every real-world scene. 

Therefore, it is necessary to augment the existing training data 

to generalize to other situations, thereby allowing the model to 

adapt to a wider range of situations. We used some methods to 

expand the training samples. The effect is shown in Figure 9. 

The specific methods are as follows: 

1) HSV channel color conversion. 

2) Brightness and contrast conversion. 

3) Horizontal flip, vertical flip, grayscale conversion, and 

random cropping. 

4) Using the Cutout [33] method, randomly cut some areas 

of the sample and fill them with 0 pixels, and the result of the 

classification remains unchanged; use the Cutmix [34] method 

to cut some areas without filling 0 pixels, but randomly fill in 

the regional pixel values of other data in the training data set, 

and the classification results are distributed in a certain 

proportion, which can effectively prevent overfitting. 

5) Using the Mosaic method [7], four training images are 

combined into one image according to a certain ratio to enrich 

the background of the detected object, so that the model can 

learn to recognize the object in a smaller range. In addition, 

batch normalization calculates activation statistics from 4 

different images on each layer. This significantly reduces the 

need for a large mini-batch size, it can use one GPU to achieve 

better results. 

C. SELECTION OF TRICKS 

This article used several tricks to improve the performance of 

our model, as shown below: 
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Larger Batch Size Using a larger batch size can improve the 

stability of training and get better results. Here we change the 

training batch size from 64 to 192, and adjust the training 

schedule and learning rate accordingly. 

EMA When training a model, it is often beneficial to maintain 

moving averages of the trained parameters. Evaluations that 

use averaged parameters sometimes produce significantly 

better results than the final trained values [35]. The 

Exponential Moving Average (EMA) compute the moving 

averages of trained parameters using exponential decay. The 

calculation for each parameter is shown in Equation (8). 

 𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸 = 𝜆𝜆𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸 + (1 − 𝜆𝜆)𝑊𝑊  (8) 

where 𝜆𝜆  is the decay. We apply EMA with decay 𝜆𝜆  of 

0.9998 and use the shadow parameter 𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸 for evaluation. 

Pseudo-Labelling Based on the optimized model getting 

during the training stage, we used the Pseudo-Labelling [36] 

method on the test set to further optimize the model to improve 

its generalization ability under complex test data. Pseudo-

Labelling is defined by Semi-supervised learning. The core 

idea of Semi-supervised learning is to improve the 

generalization ability of the model in the supervised process 

by using labeled data. Pseudo-Labelling is a process that uses 

a trained model to make predictions on unlabeled data, and 

samples are screened based on the predicted results and re-

input into the model for training. 

D. EVALUATION INDICATORS 

In this experiment, we used f1-score and the average precision 

of a single image (Avg-P) evaluation indexes to evaluate our 

method and other comparison methods. 

The calculation formula of f1-score(F1) is as Equation (9). 

 𝑃𝑃 =
𝑇𝑇𝑇𝑇(𝑡𝑡)𝑇𝑇𝑇𝑇(𝑡𝑡)+𝐹𝐹𝑇𝑇(𝑡𝑡)

, 𝑅𝑅 =
𝑇𝑇𝑇𝑇(𝑡𝑡)𝑇𝑇𝑇𝑇(𝑡𝑡)+𝐹𝐹𝐹𝐹(𝑡𝑡)

, 𝐹𝐹1 =  
2𝑇𝑇𝑃𝑃𝑇𝑇+𝑃𝑃 (9) 

In formula (9), 𝑃𝑃 is the accuracy rate, 𝑅𝑅 is the recall rate, 𝑇𝑇𝑃𝑃 is the number of true positive samples, 𝐹𝐹𝑃𝑃 is the number 

of false positive samples, and 𝐹𝐹𝐹𝐹  is the number of false 

negative samples. When a single predicted object matches a 

ground-truth object whose 𝐼𝐼𝐼𝐼𝑅𝑅 is higher than the threshold, a 

true positive is calculated. False positive means that the 

predicted object has no related ground truth objects. False 

negative means the basic real object without relevant 

prediction. The 𝐼𝐼𝐼𝐼𝑅𝑅  computational formulas for predicted 

bounding boxes and ground truth bounding boxes is shown as 

Equation (10). 

 𝐼𝐼𝐼𝐼𝑅𝑅(𝐴𝐴,𝐵𝐵) =
𝐸𝐸∩𝐵𝐵𝐸𝐸∪𝐵𝐵 (10) 

The calculation method of Avg-P is: Scan a series of 𝐼𝐼𝐼𝐼𝑅𝑅 

thresholds by measurement and calculate an average accuracy 

value at each point. The threshold range is 0.5 to 0.75, and the 

step size is 0.05. In other words, when the threshold is 0.5, if 

the intersection of the predicted object and the ground truth 

object is greater than 0.5, the predicted object is regarded as a 

“hit”. If there are no real objects on the ground at all in a given 

image, any number of predictions (false positives) will result  

TABLE 1.  The results of the ablation study. 

 

 Methods F1% Avg-p% FPS 

A YOLOV4 88.23 62.75 57 

B 
A + Improved depthwise sep-

arable convolution 
88.19 63.21 64 

C 

B + Modified network and 

anchors re-clustered by k-

means 

92.15 69.19 70 

D D + Adaptive ReLU 93.31 70.05 72 

E 
E + method of prediction box 

fusion 
96.71 77.81 72 

 

in an image score of zero and be included in the average 

accuracy. This indicator can not only evaluate whether the 

detection result is accurate, but also the accuracy of the final 

output bounding box. The calculation method is as Equation 

(11). 

 𝐴𝐴𝐴𝐴𝐴𝐴–𝑃𝑃 =
1

|𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑙𝑙𝑜𝑜𝑟𝑟|
� 𝑇𝑇𝑇𝑇(𝑡𝑡)𝑇𝑇𝑇𝑇(𝑡𝑡)+𝐹𝐹𝑇𝑇(𝑡𝑡)+𝐹𝐹𝐹𝐹(𝑡𝑡)𝑡𝑡  (11) 

E. ABLATION STUDY 

In this part, we present the effectiveness of each module in an 

incremental manner. The reason is that each improved method 

is not completely independent. Some improved methods are 

effective when applied alone, but they are not effective when 

combined together. Since there are too many combinations of 

various improved methods, it is difficult to conduct a 

comprehensive analysis. Therefore, we carry out an ablation 

study to prove the rationality of our method combination, the 

results are shown in Table 1. 

A →  B First of all, we replace the original YoloV4 

traditional convolution with the improved depthwise separable 

convolution. We found that compared with the traditional 

convolution, although the accuracy is not improved, the 

calculation speed is faster. 

B → C We try to modify the network structure and delete 

the 19 × 19  feature map to make the modified network 

structure simpler, and used anchors clustered by K-means 

algorithm , to make it more suitable for the characteristics of 

the small wheatear target. We can see that f1-score, avg-p and 

FPS have all been significantly improved. 

C →  D We use adaptive ReLU to replace the original 

activation function, which not only does not increase the depth 

and width of the network, but also can effectively improve the 

performance of the model. We found that accuracy and speed 

have been improved. 

E → F After using the method of prediction box fusion 

method, we found from the avg-p that the accuracy has been 

greatly improved. It shows that this method can greatly 

improve the problem which all prediction boxes are inaccurate 

when wheat ears are dense. 
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This study shows that the combination of our six 

improvement methods has greatly improved the accuracy and 

speed compared with the original method. 

V. ANALYSIS OF EXPERIMENTAL RESULTS 

In this section, we compared our method with previous related 

methods (Method of original YoloV4 [7], method of Zhu et al. 

[10], method of Madec et al. [24], and method of Yang et al. 

[26]). The models of these methods were all obtained in the 

same environment using the same training strategy. We used 

the number of wheatears in a single image, different lighting 

environments and wheat maturity periods were respectively as 

control variables to verify the performance of our method in 

wheatear detection in the field. 

A. COMPARISON OF DETECTION RESULTS UNDER 

DIFFERENT NUMBERS OF WHEATEARS 

In the actual detection process of the wheatear detection UAV, 

due to the shooting angle, distance, and other factors, the 

number of wheatears in the pictures taken are different. When 

the number of wheatears is small and the volume is large, the 

detection object is clear, complete, and less overlapping, 

which is convenient for detection. However, in actual 

situations, due to the increase in the number of objects and the 

decrease in size, overlap and occlusion may occur, making 

detection difficult. To this end, we established contrast 

experiments under different numbers of wheatears, which are: 

wheatear detection under sparse numbers, wheatear detection 

under normal numbers, and wheatear detection under dense 

numbers, respectively. We compared the wheatear detection 

performance of various methods under different numbers of 

wheatears. 

In the test set of this experiment, we selected 360 pictures 

of the same wheat species and a similar light environment, 

containing 18,732 wheatears, and divided them into three 

groups according to the number of wheatears in a single image. 

There were 120 pictures with the number of wheatears less 

than 10, 120 pictures with the number of wheatears between 

30 and 60, and 120 pictures with more than 80 wheatears. 

We carried out three experiments with several different 

methods, each time taking 75 pictures randomly selected from 

each test set as the experimental test set. We calculated the 

parameters rate, and the recall rate to get the f1-Score in each 

experiment. Finally, we averaged three types of results to 

obtain a comprehensive result, as shown in Table 2. 

As can be seen from Table 2, our method shows superior 

performance. When the number of wheatears is sparse, all 

methods have good performance. When the number of wheat-

ears increases from less than 10 to more than 40, the method 

of Zhu et al. [10] performed the worst. The f1-score of our 

method was relatively stable, and the methods of other people 

had a significant decline. However, when the number of 

wheatears increased to more than 80, the f1-score of our 

method dropped by 5%, while the others' methods dropped by 

about 10%. Because the wheat is dense in the image and there 

are many occlusions, there are many wheatears that are not  

<10

30-60

>80

(a) (b) (c) (d) (e)

 

FIGURE 10.  Detection results of different methods when the numbers 
of wheatears are different: (a) our method, (b) YoloV4, (c) method of Zhu 
et al., (d) method of Madec et al., (e) method of Yang et al.. 

TABLE 2.  Detection results of different methods with different numbers 
of wheatears. 

 

Number  Method 
F1% 

1 2 3 Average 

<10 

Our Method 98.47  98.53  98.46  98.49  

YoloV4 [7] 96.33  96.37  96.42  96.37  

Zhu et al. [10] 93.62  93.55  93.49  93.55  

Madec et al. [24] 96.27  96.19  96.22  96.23  

Yang et al. [26] 95.31  95.36  95.34  95.34  

30-60 

Our Method 96.73  96.76  96.69  96.73  

YoloV4 [7] 90.57  90.53  90.55  90.55  

Zhu et al. [10] 83.31  83.38  83.37  83.35  

Madec et al. [24] 91.17  91.16  91.17  91.17  

Yang et al. [26] 88.23  88.19  88.21  88.21  

>80 

Our Method 91.35  91.42  91.37  91.38  

YoloV4 [7] 88.63  88.61  88.63  88.62  

Zhu et al. [10] 76.12  76.15  76.13  76.13  

Madec et al. [24] 82.31  82.35  82.32  82.33  

Yang et al. [26] 78.27  78.31  78.29  78.29  

Average 

Our Method 95.52  95.57  95.51  95.53  

YoloV4 [7] 89.51  89.50  89.53  89.52  

Zhu et al. [10] 84.35  84.36  84.33  84.35  

Madec et al. [24] 89.92  89.90  89.90  89.91  

Yang et al. [26] 87.27  87.29  87.28  87.28  

 

detected. Through a comprehensive analysis of the results, we 

can conclude that our method is more suitable for different 

wheatear numbers. The test results are shown in Figure 10. 

B. COMPARISON OF DETECTION RESULTS IN DIFFER-

ENT LIGHT ENVIRONMENTS 

In the experiment of this chapter, we used different lighting 

environments as control variables, with the light varies from 

bright to dim due to different shooting conditions. Under 

normal light conditions, the wheatears are clearly visible, and 

the detection is simple. However, there are also dim and bright 

conditions, which make detection difficult. To this end, we set 

up contrast experiments on wheatear detection under different 

shooting conditions to compare the wheatear detection 

performance of these methods under a different light. 

In the test set of this experiment, we selected 360 pictures 

with the same species and the number of wheatears in a single  
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FIGURE 11.  Wheatear detection results by different methods under dif-
ferent lighting conditions: (a) our method, (b) YoloV4, (c) method of Zhu 
et al., (d) method of Madec et al., (e) method of Yang et al.. 

TABLE 3.  Wheatear detection results by different methods under differ-
ent lighting conditions. 
 

Light Method 
F1% 

1 2 3 Average 

normal 

Our Method 96.13 96.15 96.17 96.15  

YoloV4 [7] 90.63 90.67 90.66 90.65  

Zhu et al. [10] 83.49 83.52 83.51 83.51  

Madec et al. [24] 91.34  91.36  91.32  91.34  

Yang et al. [26] 88.18  88.15  88.18  88.17  

dim 

Our Method 94.76 94.75 94.79 94.77  

YoloV4 [7] 90.13 90.15 90.14 90.14  

Zhu et al. [10] 80.73 80.75 80.71 80.73  

Madec et al. [24] 89.42  89.46  89.39  89.42  

Yang et al. [26] 84.34  84.37  84.35  84.35  

bright 

Our Method 94.61 94.58 94.59 94.59  

YoloV4 [7] 90.14 90.11 90.09 90.11  

Zhu et al. [10] 79.82 79.88 79.84 79.85  

Madec et al. [24] 88.18  88.14  88.17  88.16  

Yang et al. [26] 83.86  83.83  83.84  83.84  

Average 

Our Method 95.17  95.16  95.18  95.17  

YoloV4 [7] 90.30  90.31  90.30  90.30  

Zhu et al. [10] 81.35  81.38  81.35  81.36  

Madec et al. [24] 89.65  89.65  89.63  89.64  

Yang et al. [26] 85.46  85.45  85.46  85.46  

 

picture ranging from 35 to 55, totally containing 17,382 

wheatears. We divided the pictures into three groups 

according to the lighting conditions. There were 120 pictures 

in normal light, 120 in dim light, and 120 in bright light. 

The experimental method is the same as the previous 

chapter, and the statistical results are shown in Table 3. 

Table 3 shows that these methods can achieve good results 

under normal light conditions, but their detection performance 

is reduced when the light is dim or bright. Because the 

brightness is insufficient when the light is dim, and the texture 

of the wheatears is not clear when the light is bright, some 

wheatears will be directly eliminated, resulting in a decrease 

in f1-score. But on the whole, our method has more 

advantages and can adapt to different lighting scenarios. The 

detection results are shown in Figure 11. 

S1

S2

S3

(a) (b) (c) (d) (e)

 

FIGURE 12.  Detection results of different methods at various maturity 
stages of wheat: (a) our method, (b) YoloV4, (c) method of Zhu et al., (d) 
method of Madec et al., (e) method of Yang et al.. 

TABLE 4.  Detection results of different methods at various maturity 
stages of wheat. 

 

Wheat 

species 
Method 

F1% 

1 2 3 Average 

S1 

Our Method 96.18  96.13  96.15  96.15  

YoloV4 [7] 90.15  90.08  90.13  90.12  

Zhu et al. [10] 82.84  82.86  82.83  82.84  

Madec et al. [24] 91.27  91.24  91.26  91.26  

Yang et al. [26] 83.84  83.86  83.86  83.85  

S2 

Our Method 94.67  94.64  93.68  94.33  

YoloV4 [7] 89.42  89.45  89.43  89.43  

Zhu et al. [10] 79.75  79.77  79.74  79.75  

Madec et al. [24] 88.91  88.95  88.93  88.93  

Yang et al. [26] 81.53  81.57  81.52  81.54  

S3 

Our Method 93.35  93.37  93.35  93.36  

YoloV4 [7] 88.95  88.97  88.93  88.95  

Zhu et al. [10] 78.24  78.21  78.25  78.23  

Madec et al. [24] 88.35  88.37  88.31  88.34  

Yang et al. [26] 81.27  81.24  81.23  81.25  

Average 

Our Method 94.73  94.71  94.39  94.61  

YoloV4 [7] 89.51  89.50  89.50  89.50  

Zhu et al. [10] 80.28  80.28  80.27  80.28  

Madec et al. [24] 89.51  89.52  89.50  89.51  

Yang et al. [26] 82.21  82.22  82.20  82.21  

C. COMPARISON OF DETECTION RESULTS UNDER 

DIFFERENT MATURITY CONDITIONS 

In the experiment in this chapter, the wheat maturity period is 

used as the control variable. Due to the different maturity 

periods, the color and appearance of wheatears vary as well. 

We established contrast experiments for wheatear detection at 

different maturity stages to compare the detection 

performance of various methods at various maturity stages. 

In the test set in this experiment, we selected 360 pictures 

with a similar light environment and the number of wheatears 

in a single picture between 35 and 55, including 17,425 

wheatears, which were divided into three groups according to 

the different maturity of wheat, each group contained 120 

images. 

The experimental method is the same as the previous 

chapter, and the statistical results are shown in Table 4. 
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TABLE 5.  Test results of different methods under the test set data. 

 

Method Avg-P FPS 

YoloV4 [7] 62.75 57.39 

Zhu et al. [10] 53.64 8.53 

Madec et al. [24] 71.32 12.46 

Yang et al. [26] 56.46 21.62 

Our Method 77.68 72.13 

 

It can be seen from Table 4 that our method can maintain 

relatively stable performance in different maturity stages, and 

it still has a comparative advantage to adapt to the scenarios of 

different maturity stages. The detection results are shown in 

Figure 12. 

In summary, the method of Zhu et al. [10] and method of 

Yang et al. [26] are difficult to detect in natural scenes such as 

dense wheatears and dim light, and the f1-scores scores are 

low; YoloV4 and Method of Madec et al. [24] have poor 

detection results when the wheatears are dense, and our 

method has advantages under various conditions. Three sets of 

comparative experiments show that our method can adapt to 

natural scenes and can detect wheatears more accurately. 

The wheatear detection model based on the UAV platform 

not only requires accurate detection of wheatears but also 

requires the accuracy of the detection results and detection 

speed. To this end, we finally designed a set of contrast 

experiment and tested the models trained by different methods 

on the test set and calculated their Avg-P scores and FPS. The 

results are shown in Table 5. 

It can be seen from Table 5 that although the method of 

Madec et al. [24] also has high accuracy, its speed is too slow. 

Our method has obvious advantages in speed and accuracy. 

Therefore, our method is more suitable as an embedded model 

of wheat detection UAV. 

VI. CONCLUSION 

Based on YoloV4, we have made improvements and proposed 

a robust wheatear detection method, which is suitable for 

UAV to detect wheatears in the field. This method can 

maintain excellent performance in natural scenes, including 

overlap, occlusion, light changes, different colors, and shapes. 

We have conducted a large number of comparative 

experiments, our method achieves 96.71%, 77.68%, and 72 on 

the three indicators of f1-score, avg-p, and FPS, respectively. 

The results show that our method is more suitable for wheatear 

detection based on UAV platform than existing methods. It 

has faster detection speed, higher detection accuracy, and 

better generalization ability. It can be used to estimate wheat 

density and spike size, and evaluate wheat health and maturity 

in large wheat fields by UAV. For our future research, we 

intend to explore a new architecture to further optimize 

wheatear detection (in terms of speed and accuracy of the 

bounding box). We also plan to extend the solution to the 

detection of crops with ears, such as the ear of rice. Due to the 

different shapes of crop ears, this brings new challenges. 

REFERENCES 
[1] V. Czymmek, R. Schramm and S. Hussmann, “Vision Based Crop 

Row Detection for Low Cost UAV Imagery in Organic Agriculture,” 

in Proc. IEEE Int. Instrum. Meas. Tech. Conf. (I2MTC), Dubrovnik, 

Croatia, Mar. 2020, pp. 1-6. 

[2] H. Xiang and L. Tian, "Development of a low-cost agricultural remote 

sensing system based on an autonomous unmanned aerial vehicle 

(UAV)", Biosyst. Eng., vol. 108, no. 2, pp. 174-190, 2011. 

[3] B. H. Y. Alsalam, K. Morton, D. Campbell and F. Gonzalez, "Auton-

omous UAV with vision based on-board decision making for remote 

sensing and precision agriculture", Proc. IEEE Aerosp. Conf., pp. 1-

12, Mar. 2017. 

[4] H. Zheng, X. Zhou, T. Cheng, X. Yao, Y. Tian, W. Cao, and Y. Zhu, 

“Evaluation of a UAV-based hyperspectral frame camera for moni-

toring the leaf nitrogen concentration in rice.” In Proc. IEEE Int. Ge-

osci. Remote Sens. Symp. (IGARSS), July. 2016, pp. 7350-7353. 

[5] S. Yang, L. Hu, H. Wu, W. Fan and H. Ren, "Estimation Model of 

Winter Wheat Yield Based on Uav Hyperspectral Data," In Proc. I-

EEE Int. Geosci. Remote Sens. Symp. (IGARSS), Japan, 2019, pp. 

7212-7215. 

[6] D. Stroppiana et al., "Rice yield estimation using multispectral data 

from UAV: A preliminary experiment in northern Italy," In Proc. I-

EEE Int. Geosci. Remote Sens. Symp. (IGARSS), Milan, 2015, pp. 

4664-4667. 

[7] A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, “YOLOv4: Optimal 

Speed and Accuracy of Object Detection,” 2020, arXiv:2004.10934. 

[Online]. Available: https://arxiv.org/abs/2004.10934 

[8] J. Redmon, A. Farhadi, “Yolov3: An incremental improvement,” 201

8, arXiv:1804.02767. [Online]. Available: http://arxiv.org/abs/1804.

02767 

[9] D. Zhang, Z. Wang, N. Jin, C. Gu, Y. Chen and Y. Huang, "Evaluation 

of Efficacy of Fungicides for Control of Wheat Fusarium Head Blight 

Based on Digital Imaging," in IEEE Access, vol. 8, pp. 109876-

109890. 

[10] Y. Zhu, Z. Cao, H. Lu, Y. Li, and Y. Xiao, “In-field automatic obser-

vation of wheat heading stage using computer vision,” Biosyst. Eng. 

vol. 143, pp. 28-41, Mar. 2016. 

[11] J. A. Fernandez-Gallego, S. C. Kefauver, N. A. Gutiérrez, M. T. Nieto-

Taladriz, and J. L. Araus, “Wheat ear counting in-field conditions: 

high throughput and low-cost approach using RGB images,” Plant 

Methods , vol. 2018, no. 1, pp. 22-34, Mar. 2018. 

[12] J. Wu, G. Yang, X. Yang, B. Xu, L. Han and Y. Zhu, " Automatic 

counting of in situ rice seedlings from UAV images based on a deep 

fully convolutional neural network ", Remote Sens., vol. 11, no. 6, pp. 

691-710, Mar. 2019. 

[13] P. Viola and M. Jones, "Rapid Object Detection Using a Boosted Cas-

cade of Simple Features", in Proc. IEEE Int. Conf. Comput. Vis. Pat-

tern Recognit. (CVPR), 2001, vol. 1, pp. 511-518. 

[14] P. Felzenszwalb, D. McAllester and D. Ramanan, "A Discriminatively 

Trained Multiscale Deformable Part Model", Proc. IEEE Comput. 

Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 1-8, Jun. 2008. 

[15] R. Girshick, "Fast R-CNN", Proc. IEEE Int. Conf. Comput. Vis., pp. 

1440-1448, 2015. 

[16] J. Dai, Y. Li, K. He and J. Sun, "R-FCN: Object detection via region-

based fully convolutional networks", Proc. Conf. Adv. Neural Inf. 

Process. Syst., pp. 379-387, 2016. 

[17] T. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, “Focal Loss for 

Dense Object Detection,” in Proc. IEEE Int. Conf. Comput. Vis. 

(ICCV), Oct. 2017, pp. 2999-3007. 

[18] Z. Zhao, P. Zheng, S. Xu and X. Wu, “Object Detection With Deep 

Learning: A Review,” IEEE Trans. Neural Netw. Learn. Syst, vol. 30, 

no. 11, pp. 3212-3232, Nov. 2019. 

[19] Q. Li, J. Cai, B. Berger, M. Okamoto, and S. J. Miklavcic, “Detecting 

spikes of wheat plants using neural networks with laws texture en-

ergy,” Plant Methods, vol. 13, no. 1, p. 83, Oct. 2017. 

[20] C. Zhou, D. Liang, X. Yang, H. Yang, J. Yue, and G. J. Yang, “Wheat 

ears counting in field conditions based on multi-feature optimization 

and TWSVM,” Frontiers Plant Sci. vol. 9, p. 1024, Jul. 2018. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031896, IEEE Access

 

VOLUME XX, 2017 9 

[21] Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, 

“Deep learning for brain MRI segmentation: state of the art and future 

directions,” J. Digit. Imag.,vol. 30, no. 4, pp. 449-459, 2017. 

[22] J. A. Fernandez‐Gallego, P. Lootens, I. Borra‐Serrano, V. Derycke, 

G. Haesaert, I. Roldán‐Ruiz, J. L. Araus, and S. C. J. T. P. J. Kefauver, 

“Automatic wheat ear counting using machine learning based on 

RGB UAV imagery,” The Plant Journal, 2020. 

[23] J. Ma, Y. Li, K. Du, F. Zheng, L. Zhang, Z. Gong, and W. Jiao, ‘‘Seg-

menting ears of winter wheat at flowering stage using digital images 

and deep learning,’’ Comput. Electron. Agricult., vol. 168, Jan. 2020, 

Art. no. 105159. 

[24] S. Madec et al., “Ear density estimation from high resolution RGB im-

agery using deep learning technique,” Agric. For. Meteorol., vol. 264, 

pp. 225–234, 2019. 

[25] D. Wang et al., “Combined Use of FCN and Harris Corner Detection 

for Counting Wheat Ears in Field Conditions,” IEEE Access, vol. 7, 

pp. 178930-178941, 2019. 

[26] Y. Yang, X. Huang, L. Cao, L. Chen and K. Huang, “Field Wheat Ears 

Count Based on YOLOv3,” in Proc. Int. Conf. Artif. Intell. Adv. 

Manuf. (AIAM), Oct. 2019, pp. 444-448. 

[27] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look 

Once: Unified, Real-Time Object Detection,” in Proc. IEEE Conf. 

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779-788. 

[28] C. Wang, H. Mark Liao, Y. Wu, P. Chen, J. Hsieh and I. Yeh, “CSPN

et: A New Backbone that can Enhance Learning Capability of CNN,”

 2019, arXiv:1911.11929. [Online]. Available: http://arxiv.org/abs/1

911.11929 

[29] S. Liu, L. Qi, H. Qin, J. Shi and J. Jia, “Path Aggregation Network for 

Instance Segmentation,” in Proc. IEEE Int. Conf. Comput. Vis. Pat-

tern Recognit. (CVPR), jun. 2018, pp. 8759-8768. 

[30] K. He, G. Gkioxari, P. Dollár and R. Girshick, “Mask R-CNN,” in 

Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), Oct. 

2017, pp. 2961-2969. 

[31] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, 

“Feature Pyramid Networks for Object Detection,” in Proc. IEEE Int. 

Conf. Comput. Vis. Pattern Recognit. (CVPR),  Oct. 2017, pp. 936-

944. 

[32] E. David, S. Madec, P. Sadeghi-Tehran, H. Aasen, B. Zheng, S. Liu, 

N. Kirchgessner, G. Ishikawa, K. Nagasawa, and M. Badhon, “Global 

Wheat Head Detection (GWHD) dataset: a large and diverse dataset 

of high resolution RGB labelled images to develop and benchmark 

wheat head detection methods,” 2020, arXiv:2005.02162. [Online]. 

Available: http://arxiv.org/abs/2005.02162 

[33] T. DeVries, G. W. Taylor, “Improved regularization of convolutional 

neural networks with cutout” 2017, arXiv:1708.04552. [Online]. 

Available: http://arxiv.org/abs/1708.04552 

[34] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo and J. Choe, “CutMix: 

Regularization Strategy to Train Strong Classifiers With Localizable 

Features,” 2019, arXiv:1905.04899. [Online]. Available: 

http://arxiv.org/abs/1905.04899. 

[35] M. Tan, R. Pang, and Q. V. Le, ‘‘EfficientDet: Scalable and efficient 

object detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern 

Recognit., Jun. 2020, pp. 10781–10790. 

[36] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised 

learning method for deep neural networks,” in Proc. Workshop Chal-

lenges Represent. Learn. (ICML), vol. 3, 2013, pp. 2-7. 

 

 
 
 
 
 
 
 

MING-XIANG HE is currently a Professor with the 

College of Computer Science and Engineering, 

Shandong University of Science and Technology, 

China. He is currently a member of the National 

Virtual Simulation Experiment Center of Shandong 

University of Science and Technology. His current 

research interests include image processing, artifi-

cial intelligence, database system 
 
 
 

 
 

PENG HAO is currently pursuing the master’s de-

gree in software engineering from Shandong Uni-

versity of Science and Technology, China. His cur-

rent research interests include deep learning and ob-

ject detection and text recognition. 

 
 
 
 
 
 

 
 

YOU-ZHI XIN is currently pursuing the master’s de-

gree in software engineering from Shandong Univer-

sity of Science and Technology, China. His current 

research interests include deep learning and object 

detection and text recognition. 


