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A Robust Mixed-Norm Adaptive Filter Algorithm
Jonathon Chambers,Member, IEEE,and Apostolos Avlonitis

Abstract—We propose a new member of the family of mixed-
norm stochastic gradient adaptive filter algorithms for system
identification applications based upon a convex function of the
error norms that underlie the least mean square (LMS) and
least absolute difference (LAD) algorithms. A scalar parameter
controls the mixture and relates, approximately, to the probability
that the instantaneous desired response of the adaptive filter
does not contain significant impulsive noise. The parameter is
calculated with the complementary error function and a robust
estimate of the standard deviation of the desired response. The
performance of the proposed algorithm is demonstrated in a
system identification simulation with impulsive and Gaussian
measurement noise.

I. INTRODUCTION

T HE FAMILY of mixed-norm adaptive filters has recently
been introduced to combine the benefits of established

stochastic gradient adaptive filter algorithms [1]. One such
algorithm combines the least mean square (LMS) and the least
mean fourth (LMF) algorithms. Analysis of this algorithm has
confirmed the advantages found in simulations [2].

In this work, a mixed-norm adaptive filter algorithm is pro-
posed that is suitable for system identification applications in
which the desired response is corrupted by additive impulsive,
or heavy tailed distribution, noise. The system identification
structure is shown in Fig. 1. An alternative algorithm which is
suitable for this problem is the median LMS algorithm, but this
differs in that a block of past gradient terms must be stored [3].
The common input, , to the unknown system and to the
adaptive finite impulse response (FIR) filter is assumed to be
zero-mean Gaussian noise. The unknown system is also an FIR
filter of known order . The output distribution of the unknown
system is therefore zero mean Gaussian, with a fixed, but
unknown, standard deviation. Impulsive measurement noise,

, is added to the output of the unknown system, , to
form the desired response, , with a model of the form
used in [3], that is, , where is a
binary independent identically distributed occurrence process
with , and is the
arrival probability; whereas is a process, with symmetric
amplitude distribution, which is uncorrelated with . The
variance of is chosen to be substantially greater than that
of to represent impulsive noise. The mean value of
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Fig. 1. System identification structure.

is zero and its variance is given by

var var

A robust estimate of the standard deviation of the Gaussian
component of the desired response can be made through an
outlier trimmed sliding window. In this window, the most
recent values of the desired response are ordered in terms of
their amplitude, i.e.,
where represents the vector transpose operation and
ord in which the elements of are algebraically ordered
from smallest to largest, the minimum and maximum values
of which are discounted by application of a diagonal trimming
matrix, Diag that nullifies the first
and last elements of; and finally, the remainder are used to
make a sample estimate of the standard deviation of the form

(1)

This estimate is next used to guide the mixture in the
new robust mixed-norm (RMN) adaptation algorithm. This
algorithm combines the conventional least mean square (LMS)
and least absolute deviation (LAD), otherwise known as the
sign-error LMS or pilot LMS [5], stochastic gradient algo-
rithms. The motivation is that for identical initial convergence
rates the LMS algorithm generally provides a more accurate
final solution, less misadjustment, when there is no impulsive
noise present, but is very sensitive to the presence of outliers;
whereas, with fixed adaptation gain the LAD algorithm is less
accurate, with higher misadjustment, but is more robust to
the presence of outliers [4]. The algorithm is based on the
minimization of the following convex combination of the error
norms

(2)
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Fig. 2. Desired response signal with impulsive noise.

where is the statistical expectation operator and
is the mixing parameter. When 1, (2) reverts to

the error norm for the LMS algorithm, whereas for 0,
(2) becomes the error norm for the LAD algorithm. Careful
choice of thereby provides an algorithm with intermediate
performance between that of LMS and LAD, and a mechanism
to mitigate the disturbance problem of outliers on the LMS
algorithm. The error signal is assumed to be related
to the desired response signal , adaptive filter weight
vector , and input vector in the form

as is the convention in adaptive signal
processing.

II. RMN A LGORITHM

The update equation for the robust mixed-norm (RMN)
algorithm is derived from the following steepest descent type
weight update equation

(3)

where is the weight vector, is the fixed adaptation gain,
and is the instantaneous estimate of the gradient
of the error norm evaluated at the current value of the
weight vector . Differentiation of (2) with respect to
yields the RMN update equation

sign (4)

The convergence properties of this algorithm are controlled
by the adaptation gain parameterand mixing parameter .
An analysis based on [4], in which sign

, for small , where
is the standard deviation of the error sequence, yields the
following sufficient conditions on for convergence of the
mean

(5)

where and are, respectively, the measurement and input
noise powers, and is the length of the adaptive filter.

Fig. 3. Averaged log normalized weight error vector for LAD, LMS, and
RMN algorithms.

The RMN algorithm, with fixed , requires at each iteration
only two more additions than the LMS algorithm, and may
be initialized with a null vector. To complete the definition
of the RMN algorithm it is necessary to relate the outlier
trimmed sliding window standard deviation estimate to the
mixing parameter . The time-varying nature of the standard
deviation estimate implies that the mixing parameter is a
function of the sample index. The selection of is based
upon the following probability, where has a symmetric
distribution, and is positive:

Prob

Prob

where is the distribution of the desired response. Spe-
cializing this to the case that has a zero-mean Gaussian
distribution with standard deviation equal to the estimate in
(1) yields

erfc (6)

where erfc is the complementary error function. The prob-
ability that the instantaneous desired response contains signif-
icant impulsive noise is then approximated as . The
underlying concept is that the LMS algorithm is progressively
replaced by the LAD algorithm as the likelihood of an outlier
increases. The value of this can be supported by considering
the weight propagation equation for the RMN algorithm. With
the definition that the weight error vector, ,
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Fig. 4. Averaged log normalized weight error vector for LAD, LMS, and
RMN algorithms in impulsive noise environment.

where is the optimal Wiener solution, (4) becomes

sgn (7)

If the adaptive filter is assumed to be close to the optimal
solution at time sample, i.e., , the arrival of a large
impulsive noise component, , implies that the second term
will dominate the right hand side of (7), so that

sgn (8)

For the LMS case, i.e., ,
, whereas when the LAD algorithm is used,

, , and the weight error vector
norm is independent of the impulsive noise statistics. Although
the form of (6) is not well suited to real time implementation it
could easily be replaced by a look-up table, or the calculation
of could be restricted to those sample instances for which
the ratio is large.

III. SIMULATIONS

To demonstrate the performance of the RMN algorithm a
system identification simulation similar to that reported in [1]
is used. The desired response signal is formed by inputting
white Gaussian distributed noise of unit power to a nine-tap
FIR filter with coefficients [0.1, 0.2, 0.3, 0.4, 0.5, 0.4, 0.3, 0.2,
0.1] and, to test the algorithms severely, independent Gaussian
distributed noise of fixed variance is added to its output so that
the effective SNR is 0 dB prior to the addition of the impulsive
noise. The impulsive noise is generated from the multiplicative
model with and var . The presence
of the additional Gaussian measurement noise does not violate
the assumptions in the derivation of the RMN algorithm,
because it simply adds an additional independent Gaussian

component to the desired response of the adaptive filter,
and is more representative of a real application. The desired
response so produced is shown in Fig. 2. The length of the
sliding window standard deviation estimator is 10, so
that the probability that more than one significant impulse
lies within the window is very small. The adaptation gain
for the LMS algorithm is set at 0.01, whereas for the RMN
algorithm it is 0.018 and 0.04 for the LAD algorithm; chosen
so that in simulation the initial convergence rates of the three
algorithms were visually identical when no impulsive noise is
present. This is demonstrated in Fig. 3, which shows the log
normalized weight error vector norm as defined by

averaged across ten independent trials. It is clear that the
performance of the RMN algorithm is almost identical to that
of LMS, both much improved on that of the LAD algorithm.
Finally, in Fig. 4, the log normalized weight error vector norm
is shown for simulations with the impulsive noise present and
constant for each trial. It is evident how the behavior of the
conventional LMS algorithm deteriorates, whereas that of the
RMN algorithm is unaffected and remains much improved on
than of the LAD algorithm.

IV. CONCLUSIONS

A new robust mixed-norm adaptive filter algorithm has
been introduced. The combination of error norms yields an
algorithm that is robust to the presence of significant impulsive
noise in the desired response of the adaptive filter while main-
taining good accuracy properties. This performance has been
demonstrated in a system identification simulation. Current
studies are addressing the extension of this work to adaptive
filters applied to predictor structures in which both input and
desired response are corrupted by impulsive noise.
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