
IJDAR (2010) 13:121–131
DOI 10.1007/s10032-009-0111-y

ORIGINAL PAPER

A robust model for on-line handwritten japanese text recognition

Bilan Zhu · Xiang-Dong Zhou · Cheng-Lin Liu ·
Masaki Nakagawa

Received: 7 April 2009 / Revised: 18 November 2009 / Accepted: 14 December 2009 / Published online: 16 January 2010
© Springer-Verlag 2010

Abstract This paper describes a robust context integra-
tion model for on-line handwritten Japanese text recogni-
tion. Based on string class probability approximation, the
proposed method evaluates the likelihood of candidate seg-
mentation–recognition paths by combining the scores of
character recognition, unary and binary geometric features,
as well as linguistic context. The path evaluation criterion
can flexibly combine the scores of various contexts and is
insensitive to the variability in path length, and so, the opti-
mal segmentation path with its string class can be effectively
found by Viterbi search. Moreover, the model parameters
are estimated by the genetic algorithm so as to optimize the
holistic string recognition performance. In experiments on
horizontal text lines extracted from the TUAT Kondate data-
base, the proposed method achieves the segmentation rate
of 0.9934 that corresponds to a f-measure and the character
recognition rate of 92.80%.

Keywords On-line Japanese text recognition ·
String recognition · Integrated segmentation and
recognition · Path evaluation

B. Zhu (B) · X.-D. Zhou · M. Nakagawa
Department of Computer Science, Tokyo University of Agriculture
and Technology (TUAT), Tokyo 184-8588, Japan
e-mail: zhubilan@cc.tuat.ac.jp

X.-D. Zhou
e-mail: xdzhou@cc.tuat.ac.jp

M. Nakagawa
e-mail: nakagawa@cc.tuat.ac.jp

C.-L. Liu
National Laboratory of Pattern Recognition (NLPR),
Institute of Automation, Chinese Academy of Sciences,
100190 Beijing, China
e-mail: liucl@nlpr.ia.ac.cn

1 Introduction

With pen input devices of large writing areas such as tablet
PCs, electronic whiteboards and digital pens (e.g., Anoto
pen), people tend to write texts continuously with little con-
straints. This urges the need of handwritten text (character
string) recognition. Compared to isolated character recog-
nition, handwritten text recognition faces the difficulty of
character segmentation because characters cannot be reliably
segmented before they are recognized. Moreover, in continu-
ous handwriting, characters tend to be written more cursively.

Character segmentation of continuous Chinese/Japanese
handwriting is difficult due to the facts that the space between
characters is not obvious, many characters comprise multiple
radicals with internal gaps, and some characters are con-
nected in cursive writing. Dissection methods (such as [1–4])
attempt to segment characters solely according to geometric
layout features (gaps, character size/position and inter-rela-
tionship). Without character recognition cues and linguistic
context, characters cannot be segmented unambiguously by
dissection. A feasible way to overcome the ambiguity of seg-
mentation is the so-called integrated segmentation and recog-
nition [5], which is dichotomized into implicit segmentation
and explicit segmentation [6]. Implicit segmentation meth-
ods (also called segmentation-free methods [7]), mostly com-
bined with hidden Markov model (HMM)-based recognition,
simply slice the string pattern into frames of equal length
and label the sliced frames (primitive segments), which are
concatenated into characters during recognition. Such meth-
ods do not incorporate the character shape information suf-
ficiently. Explicit segmentation, attempting to split character
patterns at their true boundaries and to label the split char-
acter patterns, can better utilize the character shapes into
recognition. It is usually accomplished in two steps: over-
segmentation and path evaluation-search. The string pattern

123

122 B. Zhu et al.

is over-segmented into primitive segments such that each
segment composes a single character or a part of a character.
The segments are combined to generate candidate character
patterns (forming a candidate lattice [8]), which are evalu-
ated by character recognition incorporating geometrics and
linguistic context.

In over-segmentation-based string recognition, how to
evaluate the candidate characters (lying on paths in the can-
didate lattice) is a key issue. A desirable criterion should
make the path of correct segmentation have the largest score.
Unlike HMM-based recognition that classifies a unique
sequence of feature vectors (each for a frame) on a string,
the candidate lattice of over-segmentation has paths of dif-
ferent lengths, each corresponding to a different sequence of
feature vectors, thus the comparison of different paths can-
not be based on the Bayesian decision theory as for HMM-
based recognition. Instead, candidate character recognition
and context scores are heuristically combined to evaluate the
paths. Such heuristic evaluation criteria can be divided into
summation-based ones [9–13] and normalization-based ones
[5,14,15]. A summation criterion is the summation of char-
acter-wise log-likelihood or the product of probabilistic like-
lihood. Since the likelihood measure is usually smaller than
one, the summation (product) criterion is often biased to paths
with fewer characters, and so, tends to over-merge charac-
ters. On the other hand, the normalized criterion, obtained by
dividing the summation criterion by the number of segmented
characters (segmentation length), tends to over-split char-
acters. Another problem of normalized criterion is that the
optimal path is not guaranteed by Viterbi search or dynamic
programming (DP), because the criterion is not monotonic
with the extension of path length.

To better utilize the character shape information in HMM-
based recognition while preserving the monotonicity of path
evaluation criterion, the variable duration HMM of Chen
et al. [16] obtains the state emission probability on a can-
didate character formed by concatenating multiple frames
and replaces the emission probabilities of all these frames.
In effect, this corresponds to weighting each candidate char-
acter with its number of primitive segments in over-segmen-
tation-based recognition, and leads to improved recognition
accuracy and search efficiency [17]. The over-segmentation-
based method proposed in Yu et al. [17] uses the number
of primitive segments to weight the character recognition
scores in a summation criterion to overcome the effect of
segmentation length. However, it only weights the character
recognition score, and does not explain why the scores of
geometric features and linguistic context are not weighted.
The path evaluation criteria in Yu et al. [17] cannot be derived
from either labeling primitive segments or labeling character
patterns. So, we need a method to decide whether to weight
each factor using the number of primitive segments or not
and give the weighting degree automatically.

In this paper, we present a robust context integration
model for on-line handwritten Japanese text recognition. By
labeling primitive segments, the proposed method not only
can integrate the character shape information into recogni-
tion by introducing some adjustable parameters, but also is
insensitive to the number of segmented character patterns
because the summation is over the primitive segments. More-
over, by optimizing with the genetic algorithm (GA), we can
control whether to weight each factor using the number of
primitive segments or not and get the weighting degree auto-
matically. The proposed model evaluates the likelihood of
candidate segmentation and its string class by combining the
scores of character recognition, geometric features (char-
acter pattern sizes, inner gaps, single-character positions,
pair-character positions, candidate segmentation points), and
linguistic context. With the proposed path evaluation crite-
rion, the optimal path can be efficiently found by Viterbi
search. Experimental results on horizontal text lines extracted
from the TUAT database of HANDS-Kondate_t_bf-2001-11
(hereafter, Kondate) [18] demonstrate the superiority of our
proposed string recognition model.

The rest of this paper is organized as follows: Sect. 2
gives an overview of our handwritten text recognition system.
Section 3 describes the over-segmentation scheme and Sect. 4
details the string recognition model. Section 5 describes the
parameter optimization method. Section 6 presents the exper-
imental results and Sect. 7 offers our concluding remarks.

2 Processing flow

For on-line handwritten Japanese text recognition, our inte-
grated segmentation and recognition system has three major
steps. The input is a handwritten character string or text line
composed of a sequence of strokes.

Step 1: over-segmentation. Each off-stroke (pen lift
between two consecutive strokes) is classified into two
classes (segmentation point (SP) and non-segmentation
point (NSP)) or undecided according to some geometric
features. A segmentation point separates two characters at
the off-stroke, while a non-segmentation point indicates
the off-stroke is within a character. The off-strokes with
low classification confidence are “undecided” points. The
group of consecutive strokes between two adjacent seg-
mentation/undecided points is a primitive segment, and
one or more consecutive primitive segments form a candi-
date character pattern.
Step 2: candidate lattice construction. By character clas-
sification, each candidate character pattern is associated
with a number of candidate classes with confidence scores.
The combination of all candidate patterns and character

123

A robust model for on-line handwritten japanese text recognition 123

Fig. 1 Segmentation–recognition candidate lattice

classes is represented by a segmentation–recognition
candidate lattice (Fig. 1), where each arc denotes a
segmentation point and each node denotes a character class
assigned to a candidate pattern.
Step 3: string recognition. The segmentation paths and
corresponding string classes in the candidate lattice are
evaluated by combining the scores of candidate characters
and between-character compatibilities (geometric and lin-
guistic contexts). By searching the candidate lattice with
the Viterbi algorithm, the optimal path with maximum
score gives the final result of character segmentation and
recognition. We intend to improve the path evaluation cri-
terion such that the optimal path better corresponds to the
correct segmentation and recognition.

3 Over-segmentation

We previously proposed an over-segmentation method using
an SVM classifier to classify off-strokes into segmenta-
tion and non-segmentation points [18]. It extracts multi-
dimensional features such as the distance and overlap
between adjacent strokes from off-strokes, and the SVM
classifier gives fairly high classification accuracy. However,
this method often misclassifies true segmentation points as
non-segmentation ones when adjacent strokes are overlap-
ping heavily, and misclassifies non-segmentation points as
segmentation ones when adjacent strokes are spaced largely.

Misclassified segmentation points

Misclassified non-segmentation points

True SP True SP True SP True SP
True SP

True SP True SP

Fig. 2 Examples of misclassified off-strokes

Some examples of misclassification are shown in Fig. 2. It
is hence necessary to leave off-strokes undecided when they
cannot be classified reliably. Reducing misclassification via
un-decision of some off-strokes can improve the string rec-
ognition rate though undecided segmentation points compli-
cate the candidate lattice and consequently the computation
of string recognition.

To minimize un-decision and mean while minimize the
misclassification between segmentation and non-segmenta-
tion points, we herein use an improved two-stage classifica-
tion scheme. First, we use two geometric features to classify
the off-strokes into non-segmentation points and hypotheti-
cal ones. Then, an SVM classifier is used to decide some of
the hypothetical segmentation points as segmentation points.
The process is detailed as follows.

3.1 Hypothetical segmentation

We generate hypothetical segmentation points by extract-
ing two features for each off-stroke: horizontal distance and
intersecting length.

The horizontal distance feature has been used in Zhu and
Nakagawa [18]. It is calculated from two bounding boxes,
one for all the strokes preceding the off-stroke (denoted by
B Bp_all) and one for the succeeding strokes (denoted by
B Bs_all). A distance DBx is defined as

DBx = le f t_bound(B Bs_all) − right_bound(B Bp_all)

(1)

The horizontal distance feature fd is calculated by

fd = DBx/acs (2)

where acs is the average character size, which is estimated
by measuring the longer side length of the bounding box of
each stroke, sorting the lengths of all the strokes and taking
the average of the larger 1/3 of them.

For calculating the intersecting length feature, consider
the group of all strokes preceding the off-stroke (denoted by

123

124 B. Zhu et al.

0A

D

O

B

C

EG

F

H

f

Black: True segmentation points
Gray: True non-segmentation points

non-segmentation
points

d

fi

segmentation points

Fig. 3 Setting thresholds for hypothetical segmentation

Sp_all) and the group of all succeeding strokes (denoted by
Ss_all). For a pair of stroke sp ∈ Sp_all and ss ∈ Ss_all, if they
intersect at a point p, calculate the length on sp from p to the
right end of sp (denoted by l p) and the length on ss from p
to the left end of ss (denoted by ls). The intersecting length
between sp and ss is defined as

l(sp, ss)

=
⎧
⎨

⎩

− min(l p, ls)/ max
(length and ss, length of ss), if sp and ss intersect

0, otherwise

(3)

and accumulated as

Lsum =
∑

sp∈Sp_all

∑

ss∈Ss_all

l(sp, ss) (4)

The overall intersecting length fi for an off-stroke is then
defined as

fi =
⎧
⎨

⎩

Lsum, if Lsum < 0
fd , else if fd > 0
0, otherwise

(5)

Figure 3 shows the distribution of the horizontal distance
feature and the intersecting length feature on off-strokes of
a set of training string samples. It is shown that segmenta-
tion points and non-segmentation ones are well separated by
these two features. As shown in Fig. 3, we classify off-strokes
as hypothetical segmentation (undecided) points if their val-
ues of horizontal distance feature are greater than 0 or they
are in the area of OABCDE, and as non-segmentation points
otherwise. After this, we modify the classified non-segmen-
tation points between two successive hypothetical segmen-
tation points in the area of OFGH as undecided points, if the
width between the two successive hypothetical segmentation
points divided by acs is greater than a threshold.

Up to now, the off-strokes are classified into non-
segmentation points and hypothetical segmentation points.
The non-segmentation points are excluded from further con-
sideration (the string pattern cannot be split at a non-segmen-
tation point), while the hypothetical segmentation points are
further classified using an SVM classifier.

3.2 SVM classification

The hypothetical segmentation points are classified using an
SVM classifier on 20 geometric features, among which 18
have been presented in Zhu and Nakagawa [18] as shown in
Appendix. Another two features are the intersecting length
feature fi defined in Sect. 3.1 and a newly introduced width
feature. The width feature of a hypothetical segmentation
point is defined as the width of a box bounding the strokes
from the immediately preceding hypothetical segmentation
point to the immediately succeeding one, and divided by the
average character size acs.

We train the SVM using training patterns of off-strokes
with the target value of segmentation points set to 1 and
that of non-segmentation points to −1. On hypothetical seg-
mentation points of test string patterns, the SVM outputs are
transformed to probability values (as detailed in Sect. 4.2),
which are then combined into the criterion of candidate seg-
mentation-recognition paths.

From SVM classification, we can select some hypothet-
ical segmentation points as segmentation points for which
the SVM output is greater than a threshold and the width
feature values are greater than a threshold. At the decided
segmentation points, the adjacent primitive segments cannot
be merged to form candidate character patterns. The reduc-
tion in hypothetical segmentation points simplifies the can-
didate segmentation lattice and improves the efficiency of
string recognition.

Keeping all the remaining off-strokes (hypothetical seg-
mentation points) as undecided, segmentation points will
incur computation burden. The first stage employs a sim-
ple heuristics to eliminate false segmentation boundaries.
The SVM classifier increases processing time, but it elim-
inates them further and improve the recognition rate when it
is reflected into the path evaluation function [13].

4 String recognition model

In the candidate lattice, it is inappropriate to score the paths
using posterior probabilities of characters, because different
paths may have different numbers of characters. We herein
present an evaluation model that combines multiple features
and is theoretically independent of the length of segmentation
paths.

123

A robust model for on-line handwritten japanese text recognition 125

4.1 Path evaluation

Representing a character string pattern as a sequence of prim-
itive segments: X = s1, . . . , sm , which is partitioned into
character patterns Z = z1, . . . , zn , where each candidate pat-
tern contains ki primitive segments: zi = s ji , . . . , s ji +ki −1.
The segmented character patterns are assigned classes
C = C1, . . . , Cn . To evaluate the score of string X in respect
to string class C, we extract features for scoring the primitive
segments (or candidate patterns) and between-segment (or
between-character) compatibilities. The features are listed
below:

– Bounding box feature bi

– Inner gap feature qi

– Shape feature si or zi

– Unary position feature pu
i of single segment (or character)

– Binary position feature pb
i between adjacent segments (or

characters)
– Between-segment gap feature gi , which is to be classified

as segmentation point or non-segmentation point.

Denoting by b, q, X, pu , pb, g for the sequences of fea-
tures of primitive segments, the posterior probability of string
class is given by:

P(C|X) = P
(

C|b, q, X, pu, pb, g
)

= p
(
b, q, X, pu, pb, g|C)

P(C)

p
(
b, q, X, pu, pb, g

) (6)

Omitting the string class-independent denominator and rea-
sonably assuming independence between different features,
the string class can be equivalently evaluated by

f (X, C) = log p
(

b, q, X, pu, pb, g|C
)

P(C)

= log P(C) (7)

+
m∑

i=1

⎡

⎣
log p(bi |ci)+log p(qi |ci)+log p(si |ci)

+ log p(pu
i |ci) + log p(pb

i |ci−1, ci)

+ log p(gi |ti)

⎤

⎦

where ci denotes a character class or a hypothetical cate-
gory of primitive segment (we call it hyper-category), and
ti denotes SP or NSP. Note that one or more consecutive ci

form a character class C j .
The linguistic prior P(C) is represented by the tri-gram

of hyper-categories for primitive segments P(ci |ci−2ci−1).
Since the tri-gram of hyper-categories is difficult
to obtain, we approximate the tri-gram of hyper-categories
P(ci |ci−2ci−1) by that of character classes P(Ci |Ci−2Ci−1),
where Ci includes ci :

log P(C) =
m∑

i=1

log P(ci |ci−2ci−1)

=
n∑

i=1

⎡

⎣ log P(c ji |c ji −2c ji −1)

+
ji +ki −1∑

j= ji +1

log P(c j |c j−2c j−1)

⎤

⎦

≈
n∑

i=1

⎡

⎣λ11 log P(Ci |Ci−2Ci−1) + λ12

×
ji +ki −1∑

j= ji +1

P(Ci |Ci−2Ci−1) + λ1

⎤

⎦

=
n∑

i=1

{[λ11+λ12(ki −1)]

× log P(Ci |Ci−2Ci−1)+λ1} (8)

where λ11 and λ12 are weighting parameters, and λ1 is a bias
for balancing the number of characters. We approximate the
transition probability of start segment of a character pattern
and that of non-start segment using different weights for their
varying effects.

Similarly, we approximate the probabilities of the fea-
tures extracted from primitive segments by the probabilities
of those extracted from candidate character patterns and use
different weights for the start segment and non-start segment
of the other features, obtaining the path score:

f (X, C)

=
n∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

∑6
h=1 [λh1 + λh2 (ki − 1)] log Ph

λ71 log P(g ji |S P) + λ72
∑ ji +ki −1

j= ji +1 log P(g j |N S P)

⎫
⎪⎪⎬

⎪⎪⎭

+ nλ (9)

where Ph, h = 1, . . . , 6, stand for P(Ci |Ci−2Ci−1),

p(bi |Ci), p(qi |Ci), p(zi |Ci), p(pu
i |Ci) and p(pb

i |Ci−1Ci),
respectively. λ in Eq. (9) embraces all the bias terms for
h = 1, . . ., 6. Note that si is replaced by zi here because the
probability p(si |ci) is approximated by p(zi |Ci).

The weighting parameters λh1, λh2(h = 1 ∼ 7) and λ

are selected using a GA to optimize the string recognition
performance on a training dataset.

The path score in Eq. (9) is accumulated over the prim-
itive segments, and hence, is insensitive to the number of
segmented character patterns. Thus, the optimal path can be
found by Viterbi search (dynamic programming).

The path evaluation scorer of Nakagawa et al. [11] and
that of Yu et al. [17] can be viewed as a special case of
the proposed one in Eq. (9) by setting λh1 = 1, λh2 = 0
(h = 1 ∼ 7) and λ = 0 for Nakagawa et al. [11], and by

123

126 B. Zhu et al.

1 2 3

o o
4

of text line
bp
1

p p

z z z

1
o

3

vertical center

b bp
2

bp
3

up
1 up

2
up
3

o
2

o
5

Fig. 4 Some geometric features

q

d
v

q
i2

q
i3

q
i4

q
i5

q
i6

Vertical projection

q
i1

d
v

q
i2

q
i3

q
i4

q
i5

q
i6

Horizontal projection

q
i1

=0
q

i2
d

v
/acs

q
i3

=0
=

q
i4

=0
q

i5
=0

q 6 =0i

Fig. 5 Features of character pattern inner gap

setting λ41 = λ42, λh2 = 0 (h = 1 ∼ 3, 5 ∼ 7), and λ = 0
for Yu et al. [17], respectively.

4.2 Evaluation of terms

The tri-gram probability P(Ci |Ci−2, Ci−1) is calculated on
a text corpus. It is reduced to unigram or bi-gram when Ci

is the first or second character of a sentence. The tri-gram
is smoothed to overcome the imprecision of training with
insufficient text [19]:

P ′(Ci |Ci−2, Ci−1)

= β1 P(Ci |Ci−2, Ci−1) + β2 P(Ci |Ci−1) + β3 P(Ci) + β4,

(10)

where the weights (subject to β1 + β2 + β3 + β4 = 1) are
obtained by using a different text corpus.

The values of geometric features bi , qi , pu
i and pb

i are
normalized with respect to the average character size acs for
scaling invariance. Several geometric features are shown in
Fig. 4.

The feature vector bi comprises the height and width of
the bounding box of each character pattern.

The feature vector qi comprises six values as shown in
Fig. 5. The first three values represent the horizontal gaps
of three vertical slits (partitioned from vertical projection),
and the last three ones represent the vertical gaps of three
horizontal slits (from horizontal projection).

The feature vector pu
i comprises the vertical lengths from

the center line to the top and bottom of the bounding box.The
feature vector pb

i has two elements measured from the bound-
ing boxes of two adjacent character patterns: the vertical
distances between the upper bounds and between the lower
bounds. p(pb

1 |C1, C0) is set as 1. To reduce the cardinal-
ity of p(pb

i |Ci−1Ci), we cluster the character classes into six
super-classes according to the mean vector of the unary posi-
tion features of each class on training samples. p(pb

i |Ci−1Ci)

is then replaced by p(pb
i |C ′

i−1, C ′
i), where C ′

i−1, C ′
i are the

super-classes.
The geometric feature vectors bi , qi , pu

i and pb
i are trans-

formed to log-likelihood scores (to be used in Eq. (9)) using
quadratic discriminant function (QDF) classifiers. This is
similar to the way that is found in Zhou et al. [15].

The character shape score p(zi |Ci) is given by a character
recognizer, which is detailed in Sect. 6.

The feature vector gi comprises multiple features measur-
ing the relationship between two primitive segments adjacent
to a candidate segmentation point. We approximate p(gi |SP)

and p(gi |NSP) using a SVM classifier. The SVM output
is warped to obtain probabilities p(oi |SP) and p(oi |NSP),
where oi is the output of the SVM for gi . The warping func-
tion is obtained from the distribution of SVM outputs on a
validation dataset. p(o1|SP) is set as 1.

To warp the SVM outputs, we first obtain the histograms
of outputs p(oi |SP) and p(oi |NSP), then take the cumulative
probabilities p′(oi |SP) and p′(oi |NSP):

p′(oi |S P) =
Oi∑

l=−∞
p(l|S P)

p′(oi |N S P) =
∞∑

l=Oi

p(l|N S P) (11)

p′(oi |SP) and p′(oi |NSP) are then fitted by two sigmoi-
dal functions, with the parameters estimated by minimizing
squared errors. This is similar to the method of Platt [20] but
uses a different criterion for sigmoidal parameter estimation.

5 Parameter optimization

We train the weighting parameters λh1, λh2 (h = 1 ∼ 7) and
λ by a GA using training data of character string patterns to
maximize the recognition rate on training data. To do this, we
treat each one of λh1, λh2 (h = 1 ∼ 7) and λ as an element
of a chromosome. The parameters are estimated by GA in
following steps:

(1) Initialization: Initialize N chromosomes with random
values from 0 to 1, average fitness of the N chromo-
somes fold as 0 and time t as 1.

123

A robust model for on-line handwritten japanese text recognition 127

(2) Crossover: Select two chromosomes at random from N
chromosomes. Cross the elements between two random
positions to produce two new chromosomes. Repeat
until obtaining M new chromosomes.

(3) Mutation: Change each element of N+M chromosomes
with a random value from −1 to 1 at a probability Pmut.

(4) Fitness evaluation: Evaluate fitness in terms of the rec-
ognition rate on training data with the weight values
encoded in each chromosome.

(5) Selection: Decide the roulette probability of each
chromosome according to its fitness. First select
two chromosomes with the highest fitness, and then
select chromosomes using the roulette until obtaining
N new chromosomes. Replace the old N chromosomes
with the new ones.

(6) Iteration: Obtain the average fitness of the new N chro-
mosomes fnew. If (fnew− fold < threshold) occurs nstop

times or t > T, return the chromosome of the highest
fitness. Otherwise, set fnew to fold, increment t, and go
to step 2.

We set N as 50, M as 100, Pmut as 0.03, nstop as 25 and T as
10,000.

For evaluating the fitness of a chromosome, each train-
ing string pattern is searched for the optimal path evaluated
using the weight values in the chromosome. To save compu-
tation, we first set each weight value as 1 and select the top
100 recognition candidates (segmentation-recognition paths)
for each training string. We then train the weight parame-
ters by GA using the selected 100 recognition candidates of
each training string pattern. After some iterations, we use the
updated weight values to re-select top 100 recognition candi-
dates for each training string pattern. We repeat recognition
candidate selection three times.

6 Experiments

For evaluating the proposed character string recognition
model, we trained the character recognizer and geometric
scoring functions using a Japanese on-line handwriting data-
base Nakayosi [21,22]. The character recognizer combines
off-line and on-line recognition methods by normalizing the
recognition scores to conditional probabilities p(zi |Ci) [21].
For the geometric scores, four quadratic discriminant func-
tion (QDF) classifiers are trained for p(bi |Ci), p(qi |Ci),

p(pu
i |Ci) and p

(
pb

i |Ci−1, Ci
)
, respectively.

For scoring linguistic context, we prepared an initial tri-
gram table from the year 1993 volume of the ASAHI newspa-
per and the year 2002 volume of the NIKKEI newspaper. We
estimated the smoothing parameters β1, β2, β3, β4 using the
Nakayosi database. The data size of the tri-gram was reduced

Table 1 Statistics of training/test text lines

Text # Character # Character # Characters
lines patterns classes per line

Training 10,174 104,093 1,106 10.23

Test 3,511 35,686 790 16.89

Table 2 Results of text line recognition using two over-segmentation
schemes

Performance Method

Two-stage classification One-stage classification
scheme scheme

Test

f 0.9934 0.9740

Cr (%) 92.80 88.94

Tav_rec_tl 1.32 (s) 0.99 (s)

to 6MB by suppressing non-occurring terms, neglecting a
small number of occurrences and quantizing the logarithm
values of tri-gram probabilities.

For training the weight parameters and evaluating the
performance of character string recognition, we extracted
horizontally written text lines from the database Kondate
collected from 100 people. We used 75 persons’ text lines
for training the SVM classifier for the candidate segmenta-
tion point probability and the weighting parameters of path
evaluation score. After training, we used the text lines of the
remaining 25 persons for testing. The statistics of the training
and test are listed in Table 1. The experiments were imple-
mented on a Pentium (R) 4 2.80 GHz CPU with 512 MB
memory.

First, we compare the performance for over-segmentation
by our method (two-stage classification scheme) proposed
in this paper and that by direct decision according to the
SVM output (one-stage classification scheme) presented in
Zhu and Nakagawa [18]. For fair comparison, both methods
use the same path evaluation criteria by our model proposed
in this paper. The over-segmentation method by one-stage
classification extracts 19 features (18 features presented in
Zhu and Nakagawa [18] plus the intersecting length feature)
from off-strokes and applies the SVM to the extracted fea-
tures to classify each off-stroke into a segmentation point,
a non-segmentation point and an undecided point. We use a
character segmentation measure f (F-measure of segmenta-
tion point detection), the character recognition rate Cr , and
average string recognition time Tav_rec_tl to evaluate the per-
formance of text line recognition. Table 2 shows the results.

From Table 2, we can see that the over-segmentation
method proposed in this paper improves the character
recognition and segmentation accuracy remarkably, although
it consumes more processing time than the one-stage

123

128 B. Zhu et al.

classification scheme. The method by two-stage classifica-
tion scheme leaves many of off-strokes undecided to reduce
misclassification, so that it can improve the recognition per-
formance, though undecided segmentation points complicate
the candidate lattice and consequently the computation of
string recognition.

We also compare the performance of three path evalua-
tion criteria: our model proposed in this paper (Proposed),
the one presented in Nakagawa et al. [11] added weighting
parameters as shown in Eq. (12) (Method 1) and the one pre-
sented in Zhou et al. [15] as shown in Eq. (13) (Method 2).
For fair comparison, all the three methods use the same tri-
gram for language context and same classifiers for character
recognition and geometric context. The weighting parame-
ters λh1, λh2 (h = 1 ∼ 7), λi (i = 1 ∼ 7) and λ were
optimized using the genetic algorithm for each method. The
three methods combines the same seven terms in Eq. (9) for
path evaluation, but Method 1 does not use the term related
to ki (number of primitive segments composing a character
pattern), Method 2 normalizes the path score of Method 1
using the number of segmented characters.

f ′(X, C)

=
n∑

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ1 log P(Ci |Ci−1, Ci−2) + λ2 log P(bi |Ci)

+λ3 log P(qi |Ci) + λ4 log P(zi |Ci)

+λ5 log P(pu
i |Ci) + λ6 log P(pb

i |Ci , Ci−1)

+λ7 log P(g ji |S P)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ nλ

(12)

f ′′(X, C)

= 1

n

n∑

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

λ1 log P(Ci |Ci−1, Ci−2) + λ2 log P(bi |Ci)

+λ3 log P(qi |Ci) + λ4 log P(zi |Ci)

+λ5 log P(pu
i |Ci) + λ6 log P(pb

i |Ci , Ci−1)

+λ7 log P(g ji |S P)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(13)

For Method 2, we use beam search for finding the optimal
paths in the candidate lattice, because the path score is not
cumulative with the character sequence. For the proposed
method and the Method 1, the optimal paths are found by
Viterbi search. For all the three methods, the candidate lattice
retains 10 candidate classes for each character pattern.

To justify weighting parameter optimization by GA, we
also draw a comparison between the proposed character
recognition rate optimization by GA (CR-GA) and the mini-
mum classification error (MCE) criterion [23] optimized by
stochastic gradient decent [24] (MCE-SGD). MCE-SGD is
to find the optimal parameter vector λ by minimizing the fol-
lowing difference between the scores of the most confusing

Table 3 Results of text line recognition by three path evaluation
methods

Performance Method

Proposed Method 1 Method 2

CR-GA

Training

f 0.9941 0.9906 0.9850

Cr (%) 92.65 91.68 91.12

Tav_rec_tl 1.31 (s) 1.32 (s) 1.32 (s)

Test

f 0.9934 0.9903 0.9827

Cr (%) 92.80 91.94 91.07

Tav_rec_tl 1.32(s) 1.33 (s) 1.33 (s)

MCE-SGD

Training

f 0.9940 0.9910 0.9855

Cr (%) 92.25 91.57 90.89

Tav_rec_tl 1.31 (s) 1.32 (s) 1.32 (s)

Test

f 0.9937 0.9905 0.9824

Cr (%) 92.34 91.77 90.66

Tav_rec_tl 1.33 (s) 1.33 (s) 1.33 (s)

string class and that of the correct one:

LMCE(λ, X) = σ(max(ScoreIncorrect) − ScoreCorrect)

σ (x) = (1 + e−x)−1

Scorecorrect = score of the correct path

in the candidate lattice (14)

Scoreincorrect = scores of incorrect paths

in the candidate lattice

Table 3 shows the string recognition results of the three
path evaluation methods. For reference, the trained weight
values of Eq. (9) by CR-GA are as follows:
(λ11,λ12,λ21,λ22,λ31,λ32,λ41,λ42,λ51, λ52, λ61, λ62, λ71,

λ72, λ) = (0.351, 0.000, 0.265, 0.001, 0.199, 0.000, 1.000,

0.641, 0.009, 0.000, 0.100, 0.000, 0.323, 0.120, 0.100).

From the weighting parameters obtained by GA, we can
see that except the character recognition score p(zi |Ci) and
the non-segmentation point score p(gi |NSP), the other geo-
metric features and linguistic context are not weighted with
the number of primitive segments (λh2 = 0). This implies
that except the character recognition score and the non-
segmentation point score, the other geometric features and
linguistic context are almost independent of the number of
primitive segments of character pattern.

From the results, we can see that either by CR-GA or by
MCE-SGD, our proposed path evaluation model improves

123

A robust model for on-line handwritten japanese text recognition 129

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 6 Examples of recognition errors. The text below each string pat-
tern is the recognition result, followed by ground-truth. i It has a seg-
mentation error

the character recognition and segmentation accuracy. The
Method 1 tends to over-merge characters because a shorter
character sequence tends to have larger evaluation score than
a longer one. On the other hand, the Method 2 (normal-
ized path score) is biased to longer strings, and so, tends to
over-split characters. Our proposed model overcomes these
problems, and the path score is insensitive to the number of
segmented characters. The three methods consume nearly the
same processing time. The parameter optimization method
CR-GA yields better string recognition performance than the
MCE-SGD. This can be attributed to the local optimum of
gradient descent for MCE-SGD. The CR-GA directly opti-
mizes the character recognition rate (which is not differen-
tiable) on training data and achieves a global optimum.

Figure 6 shows some examples of misrecognition and
mis-segmentation given by the proposed model. For each
example, the upper line is the written text, and the lower
line is the recognition result followed by the correct result
(ground-truth) where the recognition errors are highlighted
by underlines. We observed two major sources causing seg-
mentation-recognition errors.

(1) Problem of character recognition: Fig. 6a–e show rec-
ognition errors due to character recognition, where the
correct answers are not within the top 10 candidate
classes output by the character recognizer for each char-
acter pattern. To solve this, we need to improve the

character recognition accuracy. Increasing the number
of candidate classes can reduce the missing of correct
class, but seriously complicates the search space of can-
didate lattice.

(2) Problems of path evaluation and over-segmentation:
Fig. 6 f–i show recognition errors due to path evaluation
and over-segmentation. Correct character answers are
within the top 10 candidate classes but the path evalua-
tion fails to find the correct one. To solve this, we should
improve the accuracy of the linguistic context score and
the geometric features scores, and that of over-segmen-
tation.

7 Conclusion

In this paper, we presented a robust on-line handwritten Japa-
nese character string recognition model that can evaluate the
likelihood of candidate segmentation and its corresponding
string class by combining the scores of character recognition,
geometric and linguistic contexts. With the path evaluation
criterion balanced by the primitive segment number for the
scores associated with the candidate character patterns on
the path, the proposed text recognition model can effectively
overcome the variable length of candidate segmentation.
With the model parameters optimized by GA, the proposed
system outperforms the other popular path evaluation criteria
in our experiments. The optimized weighting parameters jus-
tify the fact that only the character recognition score and the
non-segmentation point score are dependent on the primitive
segmentation number of candidate character patterns.

To further improve the segmentation and recognition per-
formance is the aim of our future work. This can be achieved
by incorporating more effective geometric features, exploit-
ing better geometric context likelihood functions and weight-
ing parameter learning methods and improving the accuracy
of character recognizer. To speed up recognition is another
dimension of our future work. We should consider effective
methods to remove invalid patterns from the lattice.

Acknowledgments This work was supported in part by Grant-in-Aid
for Scientific Research under contract no. (B)17300031, the R&D fund
for “development of pen & paper based user interaction” under Japan
Science and Technology Agency, and the Natural Science Foundation
of China (NSFC) under contract no.60775004.

Appendix

Geometric features of SVM classifier on over-segmentation
in [18]

First, we define the following terminology:

123

130 B. Zhu et al.

Bbp: Bounding box of the immediately preceding stroke

Bbs : Bounding box of the immediately succeeding stroke

B Bp_all : Bounding box of all the preceding strokes

B Bs_all : Bounding box of all the succeeding strokes

acs: Average character size

DBx : Distance between B Bp_all and B Bs_all to x-axis
DBx = X coordinate of the left position of B Bs_all-X

coordinate of the right position of B Bp_all

DBy : Distance between B Bp_all and B Bs_all to y-axis
DBy = Y coordinate of the top position of B Bs_all-Y

coordinate of the bottom position of B Bp_all

Dbx : Distance between Bbp and Bbs to x-axis
Dbx = X coordinate of the left position of Bbs -X

coordinate of the right position of Bbp

Dby : Distance between Bbp and Bbs to y-axis
Dby = Y coordinate of the top position of Bbs -Y

coordinate of the bottom position of Bbp

Ob: Overlap area between Bbp and Bbs

Dbsy : Distance between centers of Bbp and Bbs to y-axis
Dbsy = Y coordinate of the center of Bbs -Y coordinate of

the center of Bbp

Dbs : Absolute distance of centers of Bbp and Bbs

D fb: Difference between B Bp_all and Bbs
D fb = abs(Y coordinate of the top position of B Bp_all-Y

coordinate of the top position of Bbs)

Then, the following 18 features of off-strokes are extracted
for over-segmentation:

f1: Passing time for the off stroke

f2: DBx / acs

f3: Overlap area between B Bp_all and B Bs_all / (acs)2

f4: Dbx / width of Bbp

f5: Dbx / width of Bbs

f6: Dbx / acs

f7: Dby / height of Bbp

f8: Dby / height of Bbs

f9: Dby / acs

f10: Ob / (width x height of Bbs)

f11: Ob / (acs)2

f12: Dbsy / acs

f13: Dbs / acs

f14: D fb / acs

f15: Length of the off-stroke / acs

f16: Sine value of the off-stroke

f17: Cosine value of the off-stroke

f18: f2 / the maxinum f2in text

References

1. Tseng, L.Y., Chen, R.C.: Segmenting handwritten Chinese char-
acters based on heuristic merging of stroke bounding boxes
and dynamic programming. Pattern Recognit. Lett. 19(10), 963–
973 (1998)

2. Zhao, S., Chi, Z., Shi, P., Yan, H.: Two-stage segmentation of
unconstrained handwritten Chinese characters. Pattern Recog-
nit. 36(1), 145–156 (2003)

3. Liang, Z., Shi, P.: A metasynthetic approach for segment-
ing handwritten Chinese character strings. Pattern Recognit.
Lett. 26(10), 1498–1511 (2005)

4. Furukawa, N., Tokuno, J., Ikeda, H.: Online character segmenta-
tion method for unconstrained handwriting strings using off-stroke
features. In: Proceedings of the 10th International Workshop on
Frontiers in Handwriting Recognition, pp. 361–366. La Baule,
France (2006)

5. Liu, C.-L., Sako, H., Fujisawa, H.: Effects of classifier structures
and training regimes on integrated segmentation and recognition
of handwritten numeral strings. IEEE Trans. Pattern Anal. Mach.
Intell. 26(11), 1395–1407 (2004)

6. Cheriet, M., Kharma, N., Liu, C.-L., Suen, C.Y.: Character Rec-
ognition Systems: A Guide for Students and Practitioners. Wiley,
New York (2007)

7. Su, T.-H., Zhang, T.-W., Guan, D.-J., Huang, H.-J.: Off-line
recognition of realistic Chinese handwriting using segmentation-
free strategy. Pattern Recognit. 42(1), 167–182 (2008)

8. Murase, H.: Online recognition of free-format Japanese handwrit-
ings. In: Proceedings of the 9th International Conference on Pattern
Recognition, vol. 2, pp. 1143–1147. Rome, Italy (1988)

9. Fukushima, T., Nakagawa, M.: On-line writing-box-free recogni-
tion of handwritten Japanese text considering character size vari-
ations. In: Proceedings of the 15th International Conference on
Pattern Recognition, vol. 2, pp. 359–363. Barcelona, Spain (2000)

10. Senda, S., Yamada, K.: A maximum-likelihood approach to seg-
mentation-based recognition of unconstrained handwriting text.
In: Proceedings of the 6th International Conference on Document
Analysis and Recognition, pp. 184–188. Seattle, WA (2001)

11. Nakagawa, M., Zhu, B., Onuma, M.: A model of on-line hand-
written Japanese text recognition free from line direction and writ-
ing format constraints. IEICE Trans. Inf. Syst. E 88(D(8), 1815–
1822 (2005)

12. Ding, X., Liu, H.: Segmentation-driven offline handwritten
Chinese and Arabic script recognition. In: Proceedings of the Sum-
mit on Arabic and Chinese Handwriting, pp. 61–73. College Park,
USA (2006)

13. Zhu, B., Nakagawa, M.: On-line handwritten Japanese text recog-
nition by improving segmentation quality. In: Proceedings of the
11th International Conference on Frontiers in Handwriting Recog-
nition, pp. 379–384. Montréal, Canada (2008)

14. Tulyakov, S., Govindaraju, V.: Probabilistic model for segmenta-
tion based word recognition with lexicon. In: Proceedings of the 6th
International Conference on Document Analysis and Recognition,
pp. 164–167. Seattle, WA (2001)

15. Zhou, X.-D., Yu, J.-L., Liu, C.-L., Nagasaki, T., Marukawa, K.:
Online handwritten Japanese character string recognition incorpo-
rating geometric context, In: Proceedings of the 9th International
Conference on Document Analysis and Recognition, pp. 48–52.
Curitiba, Brazil (2007)

123

A robust model for on-line handwritten japanese text recognition 131

16. Chen, M.Y., Kundu, A., Srihari, S.N.: Variable duration hidden
Markov model and morphological segmentation for handwrit-
ten word recognition. IEEE Trans. Image Process. 4(12), 1675–
1687 (1995)

17. Yu, J.-L., Zhou, X.-D., Liu, C.-L.: Search strategies in online hand-
written character string recognition (in Chinese). In: Proceedings of
the 1st Chinese Conference on Pattern Recognition, pp. 299–305.
Beijing, China (2007)

18. Zhu, B., Nakagawa, M.: Segmentation of on-line freely written
Japanese text using SVM for improving text recognition. IEICE
Trans. Inf. Syst. E E91(D1), 105–113 (2008)

19. Mori, H., Aso, H.: Postprocessing for Japanese document recogni-
tion based and 2nd order Markov model (in Japanese). Technical
report of IPS J, NL-94-63, pp. 89–96. (1994)

20. Platt, J.: Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. In: Smola, A.J.,
Bartlett, P., Scholkopf, D., Schuurmanns, D. (eds.) Advances in
Large Margin Classifiers, MIT Press, Cambridge (1999)

21. Oda, H., Zhu, B., Tokuno, J., Onuma, M., Kitadai, A., Nakagawa,
M.: A compact on-line and off-line combined recognizer. In: Pro-
ceedings of the 10th International Workshop on Frontiers in Hand-
writing Recognition, pp. 133–138. La Baule, France (2006)

22. Nakagawa, M., Matsumoto, K.: Collection of on-line handwrit-
ten Japanese character pattern databases and their analysis. Int. J.
Document Anal. Recognit. 7(1), 69–81 (2004)

23. Juang, B.-H., Katagiri, S.: Discriminative learning for minimum
error classification. IEEE Trans. Signal Process. 40(12), 3043–
3054 (1992)

24. Robbins, H., Monro, S.: A stochastic approximation method. Ann.
Math. Stat. 22, 400–407 (1951)

123

	A robust model for on-line handwritten japanese text recognition
	Abstract
	1 Introduction
	2 Processing flow
	3 Over-segmentation
	3.1 Hypothetical segmentation
	3.2 SVM classification

	4 String recognition model
	4.1 Path evaluation
	4.2 Evaluation of terms

	5 Parameter optimization
	6 Experiments
	7 Conclusion
	Acknowledgments
	Appendix
	References

