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Abstract
In this study, we consider the problem of healthcare resource management and location plan-
ning problem during the early stages of a pandemic/epidemic under demand uncertainty. Our
main ambition is to improve the preparedness level and response effectiveness of healthcare
authorities in fighting pandemics/epidemics by implementing analytical techniques. Build-
ing on lessons from the Chinese experience in the COVID-19 outbreak, we first develop
a deterministic multi-objective mixed integer linear program (MILP) which determines the
location and size of newpandemic hospitals (strategic level planning), periodic regional health
resource re-allocations (tactical level planning) and daily patient-hospital assignments (oper-
ational level planning). Taking the forecasted number of cases along a planning horizon as
an input, the model minimizes the weighted sum of the number of rejected patients, total
travel distance, and installation cost of hospitals subject to real-world constraints and orga-
nizational rules. Next, accounting for the uncertainty in the spread speed of the disease, we
employ an across scenario robust (ASR) model and reformulate the robust counterpart of
the deterministic MILP. The ASR attains relatively more realistic solutions by considering
multiple scenarios simultaneously while ensuring a predefined threshold of relative regret
for the individual scenarios. Finally, we demonstrate the performance of proposed models
on the case of Wuhan, China. Taking the 51 days worth of confirmed COVID-19 case data as
an input, we solve both deterministic and robust models and discuss the impact of all three
level decisions to the quality and performance of healthcare services during the pandemic.
Our case study results show that although it is a challenging task to make strategic level deci-
sions based on uncertain forecasted data, an immediate action can considerably improve the
response effectiveness of healthcare authorities. Another important observation is that, the
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installation times of pandemic hospitals have significant impact on the system performance
in fighting with the shortage of beds and facilities.

Keywords OR in health services · Location · Robust optimization · Healthcare resource
management · Pandemic management

1 Introduction

Although most infectious diseases are preventable and/or treatable, the recent outbreak of
the COVID-19 pandemic caused by a novel Coronavirus (SARS-CoV-2) showed that they
continue to pose a significant danger to human health and mortality (Silal et al. 2020).
Originated from Wuhan, Hubei province of China, the novel coronavirus was first reported
to the World Health Organization (WHO) at the last day of 2019 by the Wuhan Municipal
Health Commission. At the end of January 2020, WHO reported a total of 7818 confirmed
cases in 19 countries and declared it as a pandemic on March 11th, 2020 (WHO 2020). At
the time this paper was being written (January 22, 2021), the number of confirmed cases
worldwide was declared as approximately 99 million with 2.2 million deaths (WHO 2021).
The high spread speed and severe consequences on several aspects of community’s lifestyle,
including social, economic, environmental, political and other factors makes this pandemic
unique.

During this global healthcare crisis, the health service related supply chains faced both
supply shortages and demand growths which led to the propagation of disruptions. The extra
demand which fluctuates with respect to the pace of the coronavirus spread in the population
created a critical pressure on health systems. The burden caused by the pandemic-induced
state of uncertainty as well as the fast spread speed of the virus have impacted the man-
agement and delivery of public health services, especially in resource-constrained settings
(OECD 2020). For instance, in the Chinese experience, 6% of COVID-19 patients required
ventilatory support after a critical care admission (Yang et al. 2020). However, the quickly
increasing number of patients requiring mechanical ventilation led to the saturation of avail-
able resources such as intensive care unit (ICU) beds, other necessary equipment and trained
healthcare personnel (Lee et al. 2020). Even in the early stages of the pandemic, only 25%
of COVID-19 patients received intubation and ventilation. The situation further worsened
towards the outbreak epicentre and the fatality rate showed a seven-fold increase presumably
related to healthcare resource shortfall (Wu and McGoogan 2020; Ji et al. 2020). Similar
bottlenecks in healthcare resources and their outcomes are also experienced in other hardest
hit European countries such as Germany, Italy, United Kingdom, and Turkey. As a response
to the tsunami of infected cases, the Chinese government implemented a centralized com-
mand and treatment system and strong measures to control sources of infection supported by
community prevention (such as traditional medicine implementations) and control mecha-
nisms (Zheng et al. 2020). At the epicentre of the outbreak, new infectious disease hospitals
with larger capacities are built at strategic locations to accommodate more patients. These
steps taken to fight with the shortage of beds and facilities needed to treat the outbreak are
further supported by lower level decisions (e.g. converting general ward beds to ICU beds,
and general hospitals to critical care hospitals) that are coordinated with local authorities and
hospitals (Xie et al. 2020).

One of the main conclusions derived from studies which assess the hospital capacity man-
agement mechanisms during pandemics (e.g., Sarkar and Chakrabarti 2020; Moghadas et al.
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2020;Verhagen et al. 2020) is that, if no action is taken to plan and expand the supply of health-
care resources, the rapid saturation of health systems is highly probable (Noronha et al. 2020).
Hence, in order to achieve a certain preparedness level in fighting pandemics/epidemics,
health authorities should consider implementing regional resource allocation and patient
redistribution strategies as well as use of alternative healthcare facilities (Sun et al. 2014). As
also stated in Toner and Waldhorn (2006), rather than adopting individual hospital response
plans, such holistic and collaborative approaches both in planning and response phases would
substantially improve the effectiveness of the overall response plan.

Building on lessons from the Chinese experience and response to the COVID-19 out-
break, in this paper we consider an early centralized planning and preparation of healthcare
resources and facilities to ensure adequate health-system resource availability and capacity
for continued care provision, particularly in the context of a pandemic or epidemic scenario.
For this purpose, at the first step, we develop a multi-objective deterministic mixed integer
linear program (MILP) to determine the best regional health resource and patient allocation
plan among hospitals as well as the location and size decisions for newly built healthcare
facilities. Our formulation seeks to minimize (1) the total number of patients that are rejected
by hospitals due to capacity shortage, (2) the total travel distance of patients who are assigned
to a hospital, and (3) the total installation cost of newly opened pandemic hospitals, subject
to several real-world constraints and organizational rules.

Although resource management and location planning models developed for the private
sector (e.g., sole proprietorships, partnerships, privately owned corporations) and the public
sector (e.g., hospitals, police station, fire-fighting, civil defense) share similar objectives (e.g.
maximize some kind of utility), they differ in the way that these objectives and constraints
are formulated. In specific, private owners focus on economic concerns (i.e., system cost and
profit),whereas non-monetary terms such as serving the society as awhole is themain concern
for public DMs (Revelle et al. 1970). Since the problem we tackle is related to public service
and its outcomes have potential impacts on the pandemic response management performance
of governments, we prioritize the society benefit. In other words, we prefer the so-called
socially acceptable or socially preferable course of action and adopt a robust optimization
approach which accounts for the demand uncertainty during the pandemic. Hence, at the
second stage, we propose a robust counterpart of the deterministic model which accounts for
the whole spectrum of possible number of confirmed cases during a pandemic (including the
worst-case) and still ensures a certain level of fairness among all patients. Then, we show
the performance of our modelling approach using real-world data from Wuhan, China. The
results obtained from the case study assist DMs and planners in better understanding the
impact of decisions at various levels to the overall quality of healthcare services and related
practices.

The remainder of this paper is organized as follows: Section 2 provides the related work on
healthcare resource management and healthcare facility location planning and summarizes
the key features and contributions of our study. Section 3 presents the assumptions and formal
problem definition. Section 4 presents the deterministic model and its robust counterpart.
Section 5 includes the numerical results for the case ofWuhan, China, an analysis of solution
characteristics and discussion. Section 6 concludes the paper with a few remarks and possible
future directions.
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2 Related work

In this section, we review the literature related to our research topic. Since there exists a
vast body of papers on healthcare resource management and facility location domain, we
include a selection of the most relevant studies and categorize them into three groups as: (i)
healthcare resource management studies, (ii) healthcare facility location studies during pan-
demics/epidemics, and (iii) studies which incorporate both healthcare resource management
and facility location decisions.

2.1 Healthcare resourcemanagement studies

The concept of healthcare resource management includes activities related to the budgeting
and allocation of resources (medical supplies, equipment, and personnel) which are critical
to accomplish the goals of healthcare facilities. Brandeau (2005) presented a detailed review
on the optimal resource allocation in epidemic settings. Today, healthcare industry generates
large amounts of complex data about patients, disease diagnosis, hospitals resources, medical
devices, etc. The existence of such data enables planners and researchers develop more
efficient and effective decision making tools to manage these resources.

In our review of the literature, we encountered a number of studies which carry out
observational work, e.g., cohort studies, cross-sectional studies, case-control studies, using
real-world data, to assist decision-makers (DMs) in evaluating and enhancing the performance
of healthcare facilities. As an example, considering the limited resources for trauma care
along with other healthcare services, Mwandri et al. (2020) evaluated and identified possible
improvement areas in trauma care management in Tanzanian hospitals. The authors carried
out a cross-sectional study and suggested funding strategies for trauma-care services and
pre-hospital services, adoption of standardized treatment protocols, and central regulation
of clinical crew training. Among the observational studies which tackle healthcare resource
management problems during the COVID-19 outbreak, Lee et al. (2020) considered the
planning and management strategies of critical care resources at a single medical centre in
Singapore in response to the COVID-19 outbreak. The authors proposed the redeployment
of staff and conversion of general ward beds to ICU beds to address the manpower and
patient capacity issues during the pandemic. They also made suggestions such as differential
training programmes, mitigating staff ratios across ill patients, shifting nurses from other
disciplines upon providing critical care training, diverting trained physiotherapists, dieticians,
and pharmacists to ward duty. Similarly, Khichar et al. (2020) discussed the problem of
pandemicpreparedness for theCOVID-19outbreak froma single healthcare centre viewpoint.
They focused on four preparedness criteria as: space management, personnel management,
training, and infection prevention. They also highlighted that the success of a healthcare
management plan is related to the strength and types of early actions undertaken to fight
pandemics.

Administrators of hospitals make routine decisions related to the management of health-
care resources. Some examples include the planning of hospital supplies, number and
schedule of staff, bed planning, etc. (Sharma and Mansotra 2014). Considering that the
quality of these decisions are proportionate to the accuracy of the forecasts of the number
of patients expected as well as their length of stay, some researchers proposed stochastic or
robust modelling frameworks. Among them, Zinouri (2016) implemented a seasonal Autore-
gressive IntegratedMoving Average (ARIMA) time series model to predict daily demand for
surgical operations and proposed a scenario-based mixed integer linear program (MILP) to
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generate nurse schedules with minimummonthly assignment cost. Bai and Zhang (2014), on
the other hand, adopted a more holistic multi-hospital planning approach and considered the
hospital capacity management during pandemics from patients’ behavior perspective. They
proposed a non-linear programming model which represents patients’ behavior in hospital
selection by incorporating travel time and service lead time. Their model aimed at balanc-
ing the health resources and patient loads among hospitals within a region. Considering a
multi-hospital health resource redistribution problemduring pandemics, Savachkin andUribe
(2012) developed a simulation optimization based decision support system which generates
dynamic strategies for distributing limited health resources among hospitals. Their proposed
model basically redistributes resources (e.g. vaccines and antivirals) remaining from previ-
ous allocations in response to changing demand. Similar to our study, the authors consider
daily changes in the demand and solve the optimization problem at the beginning of every
outbreak epoch (episode). Sun et al. (2014) optimized the allocation of healthcare resources
and patients to an existing network of hospitals during an influenza outbreak. The authors
adopted a medium-term planning horizon and proposed a MILP formulation which mini-
mizes the total and maximum travel distance of patients. In their formulation they broke the
entire planning horizon into shorter intervals and updated the disease transmission and other
planning parameters.

In Oueida et al. (2018), the authors proposed a resource preservation net framework using
Petri-net integrated with cloud and edge computing to improve the performance of daily
operations and maintain a stable flow of patients with a focus on non-consumable healthcare
resources (e.g. doctors, nurses, transporters, accountants, receptionists, physicians, techni-
cians) in emergency departments. They also implemented a Discrete Event Simulation (DES)
model to validate the feasibility of their proposed solution to reduce patient wait time and
length of stay. In another similar study which considers staff absenteeism in healthcare units,
Kang et al. (2019) developed a Mixed-Integer Non-Linear Programming (MINLP) based
stochastic Petri-net model to minimize the queue of patients and required resources. They
showed that planning resources with absenteeism improved the performance of healthcare
systems in terms of operational utilization. In Kang et al. (2019) the authors proposed a
MINLPmodel for planning resources in healthcare systems to improve patient’s satisfaction.
The formulation aimed to minimize patient queue and required amount of resources in a
hospital while considering staff absenteeism.

As another important work that considers the resource allocation problem, Long et al.
(2018) developed a two-stage model for determining when and where to assign treatment
units during the outbreak’s early phases of the 2014 West African Ebola outbreak. The first
stage of their model forecasts the number of new cases using a dynamic transmission model.
In the second stage, they implement a linear program (LP) and a deterministic finite-horizon
dynamic programming algorithm which allocate resources over future time periods. Ordu et
al. (2020) proposed a combined forecasting, optimisation and simulation model to determine
the required number of beds and staff to meet the demand with the objective of maximizing
the number of discharged patients. Similar to Oueida et al. (2018), they used a DES model
to capture the uncertainty of the patient pathway within a hospital and an integer linear pro-
gramming (ILP) model to determine optimal resource level in a single hospital. In a recent
study, Du et al. (2020) considered an emerging Cholera outbreak and proposed amulti-period
resource allocation problem. They formulated a nonlinear optimization model which incor-
porates a set of ordinary-differential-equations and updates disease transmission parameters
over time on a rolling horizon basis. They account for the uncertainty in system dynamics
parameters by implementing a scenario-based stochastic programming approach. The authors
also demonstrated the effectiveness of their model on allocation policy suggestions under
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antibiotic treatment and vaccination. Woodul et al. (2019) developed an integrated suscepti-
ble, infected, and recovered (SIR) model and surge capacity model to assess the healthcare
performance of a region during a pandemic. In their model, they do not consider opening
new health centers and adopt a capacitated shortest distance allocation model, i.e., infected
people will attempt to access their second nearest hospital if the nearest hospital’s capacity
is reached. They show the performance of their model on a case study similar to the 1918
Spanish Flu pandemic.

2.2 Healthcare facility location planning studies

In addition to resource management problems at the tactical or operational level, the strategic
planningof healthcare facility locations has attracted considerable attention from theOR&MS
community as well as from practitioners and DMs in the medical and health sectors over
several decades.

Similar to other location problems for public service facilities (e.g. police stations, fire
stations, supply centers for humanitarian aid operations), incorrect healthcare facility loca-
tion decisions have serious impacts on the community beyond cost and basic performance
metrics. Among the recent review papers on healthcare facility location, Ahmadi-Javid et al.
(2017) presented a comprehensive survey that classifies different types of non-emergency
and emergency facilities in terms of location planning. Healthcare facilities that are hard to
access are expected to be associated with increased morbidity and mortality (Ahmadi-Javid
et al. 2017). The impact is further compounded when the planning of resources in facilities
are carried out by conventional inefficient techniques.

Today there exists a vast literature on healthcare facility location models, which can be
traced back as early as to 1970s (see Narula and Ogbu (1979) for an earlier review). For this
reason, in this paper we limit our review of literature pertaining to healthcare facility location
planning studies with the ones which consider location studies during pandemics/epidemics.

Among these studies, Buyuktahtakin et al. (2018) considered the 2014West African Ebola
and proposed a MIP formulation which determines the optimal amount, timing, and location
of healthcare resources over a multi-period planning horizon. Their model aims to minimize
the total number of infections and fatalities within a budget constraint. In a more recent study,
Hashemkhani Zolfani et al. (2020) proposed an inter-criteria correlation (CRITIC) approach,
a well-known Multi-Criteria Decision-Making (MCDM) tool, for selecting the location of a
temporary hospital for COVID-19 patients. To show the applicability of the proposedmethod-
ology, they implemented the decision support framework in Istanbul, Turkey for selecting
the best location among several candidate hospital locations. Ivanov (2020) developed a
simulation-based approach to analyze and predict the impacts of epidemic outbreaks on the
performance of the healthcare network supply chain. The author reports that the timing of
the installing or closing healthcare facilities have significant impact on the system perfor-
mance. Devi et al. (2021) formulated a MILP model for the problem of location-allocation
of temporary testing laboratories during pandemics with the objective of cot and travel time
minimization. In another study, Çakir et al. (2021) utilized a fuzzy MCDM procedure to
determine the optimal locations for mobile pandemic test labs.

2.3 Combined location planning and resource management studies

There also exist a few studies which incorporate location decisions within the resource
management planning framework. Among them, Anparasan and Lejeune (2019) developed
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a deterministic Integer Linear Programming (ILP) epidemic response model which aims
to determine the number, size, and location of healthcare facilities as well as allocation of
medical staff and ambulances to patients for the 2010 cholera outbreak in Haiti. Their model
maximizes the number of patients transferred from triage locations to hospitals. Carr and
Roberts (2010), on the other hand, developed a simulation model integrated with a MILP
optimization model for generating plans for responding large-scale disease outbreaks. In
specific, the authors implemented a deterministic, compartmental population-based model
to simulate the disease spread and call the MILP model when it is necessary to locate new
hospitals. The MILP basically determines the locations of emergency response facilities
and the allocation of patients to those hospitals as well as the number of staff necessary
to maximize the number of patients served. Maleki Rastaghi et al. (2018) proposed a bi-
objective MINLP formulation for a location and allocation problem with capacity planning
decisions to design a healthcare facility network with a referral system. The formulation
seeked to minimize the total network cost (costs associated with new facilities, services, and
distance traveled by patients) and the maximum workload of opened facilities.

In another example, Pouraliakbarimamaghani et al. (2018) proposed a variant of the
Maximal Covering Location Problem (MCLP) to locate hospitals, temporary emergency
unit and warehouses, and allocate patients to hospitals during a mass casualty event. Their
model incorporated three objectives as maximizing demand covered, minimizing distance
between hospitals and centers and minimizing the distance between warehouses and tem-
porary emergency units. They solve the model with the Non-dominated Sorting Genetic
Algorithm (NSGA-II) and the Non-dominated Ranking Genetic Algorithm (NRGA).

Table 1 summarizes the basic characteristics of the aforementioned literature on healthcare
resource management and location planning. The first two columns introduce the paper (year
and authors). The third column categorizes the studies in terms of application domain, i.e.
papers considering healthcare resourcemanagement problems and papers integrating location
planning with healthcare resourcemanagement. The fourth column represents the underlying
setting of the study, e.g., epidemics, pandemics, surgical operations, general services, etc.
The fifth column states if the demand is certain (deterministic) or uncertain, and the sixth
column displays themodelling approach implemented. Column seven summarizes the type of
decisions that are considered in the study, i.e., location, patient allocation, resource allocation,
sizing decisions. Column eight displays the scope of the study, i.e. studies considering a single
hospital or multiple hospitals. Finally the ninth column lists the objectives of the studies.

The table reveals that, although several studies tackled the resource planning and/or hos-
pital location planning problem under different objectives, scopes, and settings, a few of
them considered uncertain demand and handled it explicitly by implementing a stochastic or
robust optimization approach with a centralized decision-making perspective. The number of
studies which consider all three level (strategic, tactical, and operational) decisions related to
the location and sizing of hospitals as well as allocation of resources and patients to hospitals
is limited. To the best of our knowledge, our study is the first one to consider uncertainty
in a multiple scenario setting for a combined hospital site location and healthcare resource
allocation problem.

2.4 Key features and contributions of the study

We summarize the main features and contributions of our work to the literature as follows:

(i) We approach the healthcare resource management problem from a holistic perspective
and considering a centralized command and treatment system,we propose a formulation
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which incorporates strategic, tactical, and operational level decisions. In terms of strate-
gic decisions, we determine the location and size of newly built pandemic hospitals.
The decisions related to resource allocation among city hospitals and patient-hospital
assignments are regarded as tactical and operational level decisions, respectively.

(i i) We propose a deterministic multi-objective MILP formulation which attempts to mini-
mize the weighted sum of number of rejected patients, travel distance, and installation
cost of pandemic hospitals. The MILP allows each decision type to be implemented
at particular intervals (e.g., one time decision for strategic, bi-weekly for tactical, and
daily for operational) in accordance with the governmental and/or organizational rules.

(i i i) Considering that the weights assigned to each term of the objective function are inher-
ently subjective and depend on the preference of the DM(s), we perform a a posteriori
weight analysis where we solve the deterministic model for different weight combi-
nations and carry out a sensitivity analysis with respect to individual and aggregated
objective values.

(iv) The extent of spread speed and transmission as well as the severity of the diseasemay be
unclear during the early stages of a pandemic. Thus, to account for the demand uncer-
tainty and attain a more socially acceptable solution, we employ a robust optimization
modelling approach. In particular, we employ an Across Scenario Robust (ASR) model
which considers multiple scenarios simultaneously while obtaining solutions that keep
the relative regret for each scenario under a predefined threshold.

(v) We demonstrate the performance of our proposed models on the case of Wuhan, China.
Using 51 daysworth of data (i.e., the number of confirmedCOVID-19 cases) as an input,
we solve both deterministic and robust models and discuss the impact of decisions at
various levels to the quality of healthcare services during the pandemic. It should also
be noted that, although we apply our model for the Chinese healthcare system, it can
easily be modified with respect to the special needs and organizational rules of other
countries.

3 Assumptions and problem framework

We consider a set of population centers i ∈ I and a set of city hospitals h ∈ H . During the
COVID-19 pandemic, several governments built temporary and/or permanent pandemic hos-
pitals with different capacities to reduce the burden on city hospitals by providing additional
hospital beds and other resources for patients. Hence, in our problem setting, we assume that
there exist a set of discrete candidate locations denoted as j ∈ J for building new pandemic
hospitals of different sizes denoted as s ∈ S. Considering a resource-limited environment,
we denote the set of resources as r ∈ R and denote the available amount of resources of
type r at each hospital h as Qhr . For a newly established pandemic hospital of size s ∈ S,
the amount of resource of type r ∈ R is denoted as Q̄rs . ICU and non-ICU beds, support
equipment (e.g., ventilators, computed tomography (CT) scan machines), and the critical
care team (e.g., doctors, nurses, lab technicians) are some examples of patient management
resources that stress healthcare facilities and systems during a pandemic, epidemic or other
similar crises.

During theCOVID-19 pandemic,most healthcare systems employed a rapid identification,
diagnostic testing, and isolation of suspected cases in accordancewith their triaging protocols.
Based on their screening results and questionnaires, patients are stratified into COVID-19
risk levels and are admitted to non-ICU or ICU beds. For each patient type, there exist
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different amounts of projected resources required to manage the illness during the pandemic
surge. Hence, in our formulation, we categorize patients into different types depending on the
outcome of their triage levels and define the set of patient types as p ∈ P . We then represent
the specific amount of resources of type r ∈ R required for each patient type p as βpr .
The burden on hospitals is further increased by the incoming regular patients, i.e., patients
who seek medical service in non-COVID areas. Although these visits delay elective care to
mitigate the spread of COVID-19 and create a significant pressure on healthcare systems,
governments are responsible for carrying out public health services in non-pandemic areas.
For this reason, at least a specific ratio of each resource type r ∈ R (denoted by ηr ) should be
allocated to regular patients during the pandemic to maintain a certain level of other health
services.

As a novel influenza virus emerges, the first set of decisions required by the national
authorities involves whether to use a large-scale response and to devote alternative health
resources and facilities to mitigate the impact (Lipsitch et al. 2009). Such responses may
depend on the estimated risk posed by the outbreak in terms of spread speed, the expected
number of cases, mortality rate, and other consequences. Being directly affected by those
strategic-level decision, regional healthcare authorities face tactical level planning problems,
e.g., determining an effective resource allocation plan among regional facilities as well as
operational level problems, e.g., developing patient-hospital assignment and redistribution
strategies. As also indicated previously, to enhance the overall performance of response
actions to suchoutbreaks, regional pandemicplanningmust be linked to upper-level decisions.
Consequently, in our modelling framework, we adopt a collaborative planning and decision-
making approach at various levels to reflect on the nature and timing of decisionsmade during
the initial weeks of the the pandemic/epidemic.

At this point, we consider three basic decision types as: strategic, tactical, and operational.
Strategic decisions correspond to upper-level decisions related to opening new pandemic
hospitals and their size (in terms of beds). During an outbreak, building new pandemic
hospitals with relatively large ICU and non-ICU bed capacities plays an important role in
meeting the growing demand and accommodating patients. Suppose that decisions are made
for a planning horizon of length |T | days and each day in the horizon is indexed as t ∈ T .
We further assume that there exists a specific forecast for the number of cases expected at
each day t ∈ T . In particular, we define dipt as the expected number of patients of type
p ∈ P at population center i ∈ I observed at time period t ∈ T and assume that these values
are available to the DM at time t = 0. Taking the forecast as an input to our model, we
would also like to note that generating forecasts is out of the scope of this study. We refer
the interested reader to (Nikolopoulos et al. 2020; Ordu et al. 2020; Long et al. 2018) as they
present excellent studies on the topic of forecasting during pandemics. In accordance with
real-world implementations, new hospitals are assumed to be fully allocated to pandemic
patients during the outbreak. These strategic decisions are represented via the binary variable
y js which takes a value of 1 is a pandemic hospital of size s is opened at location j and 0
otherwise.

Different from the strategic level decisions, we allow regional healthcare facilities (city
hospitals) to implement tactical level decisions associated with the allocation of resources
among healthcare facilities. These decisions are made regularly at the beginning of each
period of length n days, denoted by t ∈ D|D ⊂ T . For this reason, we define the decision
variable πhrt which refers to the ratio of resources of type r ∈ R at hospital h ∈ H allocated
to pandemic patients at decision time t ∈ D. We assume that resource allocation decisions
remain unchanged between two consecutive decision time periods.
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Fig. 1 Decision structure

Finally, at the lower-level, we incorporate operational decisions with the help of decision
variables λhipt and λ̄ j i pt which denote the ratio of patients of type p ∈ P at location i ∈ I
allocated to a city hospital h ∈ H at time period t ∈ T and to a new pandemic hospital
opened at location j ∈ J at time period t ∈ T , respectively. These decisions are made
daily by regional authorities and are closely related to the available capacity and resources
of nearby hospitals for each population node i .

Figure 1 is a schematic of the main structure of our decision making process. Taking the
forecasted number of patient types as an input to the proposedmathematical model, the figure
shows an exemplary scheme for all three decision levels along a planning horizon of 21 days.
The location and sizing (capacity) decisions for the new pandemic hospitals are made one
time at the beginning of the planning horizon, i.e., at t = 0 and the decision stays in effect
until the end of horizon. Tactical decisions pertaining the resource allocation decision among
city hospitals are updated at the beginning of each 7 day long interval, whereas operational
level decisions of patient allocations occur every day.

4 Formulations

Based on the aforementioned assumptions and the problem framework, we first formulate
a deterministic MILP model for the problem, followed by its robust counterpart. We first
would like to summarize the common notation before moving to the formulations.

Indices and sets

i ∈ I : Set of population centers,
j ∈ J : Set of candidate locations for new pandemic hospitals,
h ∈ H : Set of city hospitals located in the region,
p, p′ ∈ P: Set of pandemic patient types,
r ∈ R: Set of healthcare resource types,
s ∈ S: Set of hospital size levels,
g ∈ G: Set of objectives,
t ∈ T : Set of time periods for operational-level decision making,
D ⊂ T : Subset of time periods for tactical-level decision making,
S j ⊂ S: Subset of hospital size levels that can be installed at location j ∈ J .
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Parameters

c js : Cost of installing a pandemic hospital of size s ∈ S to location j ∈ J ,
dipt : Number of patients of type p ∈ P at location i ∈ I observed at time period

t ∈ T ,
disti j : Distance between locations i ∈ I and j ∈ J ,
distih : Distance between locations i ∈ I and h ∈ H ,
epp′ : Transition probability of a patient type p to type p′ between two consecutive

time periods,
epo: Transition probability of a patient type p to outpatient between two consecutive

time periods,
ls : Days required to build a new pandemic hospital of size s ∈ S,
M : A relatively big number,
n: Number of days between two consecutive tactical-level decisions,
Qhr : Amount of resource of type r ∈ R at hospital h ∈ H ,
Q̄rs : Amount of resource of type r ∈ R at a newly installed pandemic hospital of

size s ∈ S,
αs : Minimum average number of patients that should be allocated to a new pan-

demic hospital of size s ∈ S,
βpr : Amount of resource type r ∈ R used by a patient of type p ∈ P ,
ηr : Minimum ratio of resource type r ∈ R that should be allocated to regular

patients,
γhp0: Number of patients of type p ∈ P at hospital h ∈ H prior to the planning

horizon (i.e. at time 0),
θg: Normalization factor for objective g ∈ G,
wg: Weight of objective g ∈ G.

Decision variables

y js =

{
1, if a pandemic hospital of size s ∈ S j is opened at location j ∈ J ,

0, otherwise,
γhpt = Number of patients of type p ∈ P at hospital h ∈ H during time period t ∈ T ,
γ̄ j pt = Number of patients of type p ∈ P at hospital opened at j ∈ J during time period

t ∈ T ,
λhipt = Ratio of patients of type p ∈ P at pandemic location i ∈ I allocated to hospital

h ∈ H at time period t ∈ T ,
λ̄ j i pt = Ratio of patients of type p ∈ P at location i ∈ I allocated to pandemic hospital

opened at location j ∈ J at time period t ∈ T ,
πhrt = Ratio of resources of type r ∈ R at hospital h ∈ H allocated to pandemic patients

at decision time t ∈ D.

4.1 The deterministic model

Below is the formulation of the deterministic MILP model which we refer to as the model
(D).

Objective function
The model consists of three objectives each of which is aimed to be minimized. The first
objective given by (1) aims to minimize the total number of patients that are rejected by
hospitals due to capacity shortage. The second objective given by (2) aims to minimize the
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total travel distance of patients that are assigned to a hospital. Finally, the third objective (3)
aims to minimize the total installation cost of newly opened pandemic hospitals. We utilize
the linear scalarizing approach to aggregate the objective functions, hence, the aggregated
objective function is formulated as the weighted sum of these objectives as given in (4).

Obj 1 : Φ1 =
∑
i∈I

∑
p∈P

∑
t∈T

dipt

⎛
⎝1 −

∑
h∈H

λhipt −
∑
j∈J

λ̄ j i pt

⎞
⎠ (1)

Obj 2 : Φ2 =
∑
h∈H

∑
i∈I

∑
p∈P

∑
t∈T

diptλhipt distih

+
∑
j∈J

∑
i∈I

∑
p∈P

∑
t∈T

dipt λ̄ j i pt disti j
(2)

Obj 3 : Φ3 =
∑
j∈J

∑
s∈S j

c js y js (3)

min
∑
g∈G

wgθgΦg (4)

In Eq. (4), the weighted objective terms are multiplied by the normalization factors θg .
Utilized for removing the scaling effect caused by incommensurability of the objectives,

normalization factors are computed as θg = 1

/(
zNg − zUg

)
where zNg and zUg represent the

Nadir and the Utopia points of each objective g ∈ G. Nadir and Utopia points essentially
correspond to the maximum and minimum attainable values by these three objective terms,
respectively.

Constraints
Demand satisfaction constraints: Constraint set (5) ensures that the total ratio of patients of
type p ∈ P allocated to all hospitals at time t ∈ T from each demand node i ∈ I is always
less than or equal to 1. The first term of the equation represents the total ratio allocated to city
hospitals and the second term refers to the ratio allocated to the newly established pandemic
hospitals. ∑

h∈H
λhipt +

∑
j∈J

λ̄ j i pt ≤ 1, ∀i ∈ I , p ∈ P, t ∈ T (5)

Constraints for computing the number of patients: Constraint sets (6)–(9) calculate the num-
ber of patients of each type p ∈ P at each city hospital h ∈ H and each newly installed
pandemic hospital during time period t ∈ T . They simply consider the flow of incoming and
outgoing patients and the number of patients remaining from the previous period.

γhp1 =
∑
p′∈P

γhp′0ep′ p −
∑

p′∈P\{p}
γhp0epp′ − γhp0ep0

+
∑
i∈I

dip1λhip1, ∀h ∈ H , p ∈ P (6)

γhpt =
∑
p′∈P

γhp′(t−1)ep′ p −
∑

p′∈P\{p}
γhp(t−1)epp′ − γhp(t−1)ep0

+
∑
i∈I

diptλhipt ,∀h ∈ H , p ∈ P, t ∈ T \ {1} (7)
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γ̄ j p1 =
∑
i∈I

dip1λ̄ j i p1, ∀ j ∈ J ,∀p ∈ P (8)

γ̄hpt =
∑
p′∈P

γ̄ j p′(t−1)ep′ p −
∑

p′∈P\{p}
γ̄ j p(t−1)epp′ − γ̄ j p(t−1)ep0

+
∑
i∈I

dipt λ̄ j i pt ,∀ j ∈ J , p ∈ P, t ∈ T \ {1} (9)

Resource constraints: Constraint set (10) ensures that the amount of resources used by the
patients at city hospitals do not exceed the capacity allocated to pandemic patients. Similarly,
constraint set (11) ensures that the total capacity of the newly installed hospitals are not
exceeded.∑

p∈P

γhptβpr ≤ Qhrπhrt ′ , ∀h ∈ H , r ∈ R, t ′ ∈ D, {t ∈ T |t ′ ≤ t ≤ t ′ + n} (10)

∑
p∈P

γ̄ j ptβpr ≤
∑
s∈S j

Q̄rs y js, ∀ j ∈ J , r ∈ R, t ∈ T (11)

Services for regular patients: Constraint set (12) guarantees that the remaining ratio of each
resource type at city hospitals is greater than the required level for regular patients.∑

h∈H
Qhr (1 − πhrt ) ≥ ηr

∑
h∈H

Qhr , ∀r ∈ R, t ∈ D (12)

Hospital installation constraint: Constraint set (13) ensures that only a single facility can be
installed at a suitable candidate location.∑

s∈S j
y js ≤ 1, ∀ j ∈ J (13)

Time required to build a new hospital: Recall that it takes ls days to build a new pandemic
hospital of size s ∈ S. Therefore, the constraint set (14) ensures that no patient is assigned
to a newly built hospital before its construction is finished.∑

i∈I

∑
p∈P

∑
t |t≤ls

λ̄ j i pt ≤ (
1 − y js

)
M, ∀ j ∈ J , s ∈ S j (14)

Condition to open a new hospital: Constraint set (15) guarantees that a new pandemic hos-
pital can be opened only if the average number of patients allocated to the hospital of size
s ∈ S during the planning horizon is greater than the minimum level αs . In other words,
this constraint enforces an average utilization threshold for a new pandemic hospital to be
installed.

1

|T |
∑
p∈P

∑
t∈T

γ̄ j pt ≥
∑
s∈S j

y jsαs, ∀ j ∈ J (15)

Technical constraints: Constraint set (16) and (17) ensure that patients can be allocated to a
newly opened pandemic hospital at location j only if a hospital is opened at that particular
location and a hospital can be opened if patients are assigned to it.

M
∑
s∈S j

y js ≥
∑
i∈I

∑
p∈P

∑
t∈T

λ̄ j i pt , ∀ j ∈ J (16)

∑
s∈S j

y js ≤ M
∑
i∈I

∑
p∈P

∑
t∈T

λ̄ j i pt , ∀ j ∈ J . (17)
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Variable domains:

y js ∈ {0, 1}, ∀ j ∈ J , s ∈ S j (18)

0 ≤ λhipt ≤ 1, ∀h ∈ H , i ∈ I , p ∈ P, t ∈ T (19)

0 ≤ λ̄ j i pt ≤ 1, ∀ j ∈ J , i ∈ I , p ∈ P, t ∈ T (20)

0 ≤ πhrt ≤ 1, ∀h ∈ H , r ∈ R, t ∈ D (21)

γhpt ≥ 0, ∀h ∈ H , p ∈ P, t ∈ T (22)

γ̄ j pt ≥ 0, ∀ j ∈ J , p ∈ P, t ∈ T (23)

4.2 The robust model

Health resource management and location planning for responding pandemics and/or epi-
demics inherently involve uncertainty due to lack of adequate information regarding problem
parameters on the eve of the outbreak. Parameter uncertainty has been traditionally addressed
with stochastic optimization models, examples of which can be seen widely in humanitar-
ian logistics applications. These models specify closed-form probability distributions for
unknown parameters that rely heavily on historical data. However, such reliable historical
data are scarce and each pandemic/epidemic has sui generis properties that make it some-
what unique. Additionally, stochastic optimization models minimize the expected values
of the objectives over all scenarios while neglecting individual scenarios (Paul and Wang
2019). This approach might lead to large relative regrets for some scenarios while health
resource management and location planning decisions must perform consistently well across
all scenarios. Conversely, robust optimization models focus on worst-case scenarios, which
in return provide solutions that are overly conservative. From the risk perception perspec-
tive, stochastic optimization adapts a risk-neutral approach while robust optimization takes
risk-averse attitude.

Considering the resource-limited environment faced during such crises, the implemen-
tation of solutions obtained for the worst-case scenarios may be demanding for most
organizations in practice. The stochastic framework, on the other hand, has its own advantages
in practice at the cost of probable unsatisfied demand. Hence, with all those aforementioned
aspects of stochastic and robust optimization approaches in our minds, we prefer to utilize the
p-robustness concept of Snyder and Daskin (2006) which essentially provides a compromise
between the two modelling frameworks. Firstly, we define the additional sets, parameters,
and decision variables, then we present the formulation and explain the details of the robust
counterpart of the model (D) which we refer to as the across scenario robust (ASR) model.

Additional indices and sets

ω ∈ Ω: Set of scenarios.

Additional parameters

dω
i pt : Number of patients of type p ∈ P at location i ∈ I observed at time period t ∈ T

in scenario ω ∈ Ω ,
ρω: Probability of occurrence of each scenario ω ∈ Ω ,
ξω∗: Optimal objective function value of the model for scenario ω ∈ Ω ,

τ : Relative regret threshold.

Additional decision variables

γ ω
hpt = Number of patients of type p ∈ P at hospital h ∈ H during time period t ∈ T in

scenario ω ∈ Ω ,
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γ̄ ω
j pt = Number of patients of type p ∈ P at pandemic hospital opened at j ∈ J during time

period t ∈ T in scenario ω ∈ Ω ,
λω
hipt = Ratio of patients of type p ∈ P at location i ∈ I allocated to hospital h ∈ H at time

period t ∈ T in scenario ω ∈ Ω ,
λ̄ω
j i pt = Ratio of patients of type p ∈ P at location i ∈ I allocated to pandemic hospital

opened at location j ∈ J at time period t ∈ T in scenario ω ∈ Ω ,
πω
hrt = Ratio of resources of type r ∈ R at hospital h ∈ H allocated to pandemic patients

at decision time t ∈ D in scenario ω ∈ Ω ,
ξω = Objective function value of themodel (Dω) for a feasible solution indexed byω ∈ Ω .

The model (D) essentially considers a single scenario (in other words, deterministic real-
izations of confirmed cases by period). Assuming that we have |Ω| possible scenarios, we
may generate |Ω| distinct solutions that can be indexed with scenario ω. Being uncertain
about the number of confirmed cases of districts on the eve of an outbreak of a pandemic,
we would like to make sure that our a priori solution is satisfactory to some extent across the
whole spectrum of scenarios. Accordingly, the p-robust model optimizes the expected value
of the objective function across all scenarios while keeping the relative regret level of each
scenario under a predefined threshold.

In the presence of multiple scenarios, the model (D) and its objective function value ξ are
indexed by scenario ω ∈ Ω . Let ξω∗ represent the optimal objective function value of the
model (Dω) for scenario ω. Let {yi j , γ ω

hpt , γ̄
ω
j pt , λ

ω
hipt , λ̄

ω
j i pt , π

ω
hrt } be a feasible solution for

all scenarios. Then this solution is referred to as p-robust for all scenarios such that;

ξω − ξω∗

ξω∗ ≤ τ, ∀ω ∈ Ω (24)

where τ corresponds to the relative regret threshold (Snyder andDaskin 2006). For a particular
fixed value of the relative regret threshold, the (ASR) model can be formulated as follows:

min
∑
ω∈Ω

ρωξω (25)

s.t.:

ξω ≤ (1 + τ)ξω∗, ∀ω ∈ Ω (26)

ξω =
∑
g∈G

wgθ
ω
g Φω

g , ∀ω ∈ Ω (27)

∑
h∈H

λω
hipt +

∑
j∈J

λ̄ω
j i pt ≤ 1, ∀i ∈ I , p ∈ P, t ∈ T , ω ∈ Ω (28)

γ ω
hp1 =

∑
p′∈P

γhp′0ep′ p −
∑

p′∈P\{p}
γhp0epp′ − γhp0ep0

+
∑
i∈I

dω
i p1λ

ω
hip1, ∀h ∈ H , p ∈ P, ω ∈ Ω (29)

γ ω
hpt =

∑
p′∈P

γ ω
hp′(t−1)ep′ p −

∑
p′∈P\{p}

γ ω
hp(t−1)epp′ − γ ω

hp(t−1)ep0

+
∑
i∈I

dω
i ptλ

ω
hipt ,∀h ∈ H , p ∈ P, t ∈ T \ {1}, ω ∈ Ω (30)

γ̄ ω
j p1 =

∑
i∈I

dω
i p1λ̄

ω
j i p1, ∀ j ∈ J , p ∈ P, ω ∈ Ω (31)
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γ̄ ω
hpt =

∑
p′∈P

γ̄ ω
j p′(t−1)ep′ p −

∑
p′∈P\{p}

γ̄ ω
j p(t−1)epp′ − γ̄ ω

j p(t−1)ep0

+
∑
i∈I

dω
i pt λ̄

ω
j i pt ,∀ j ∈ J , p ∈ P, t ∈ T \ {1}, ω ∈ Ω (32)

∑
p∈P

γ ω
hptβpr ≤ Qhrπ

ω
hrt ′ , ∀h ∈ H , r ∈ R, t ′ ∈ D,

{t ∈ T |t ′ ≤ t ≤ t ′ + n}, ω ∈ Ω (33)∑
p∈P

γ̄ ω
j ptβpr ≤

∑
s∈S j

Q̄rs y js, ∀ j ∈ J , r ∈ R, t ∈ T , ω ∈ Ω (34)

∑
h∈H

Qhr (1 − πω
hrt ) ≥ ηr

∑
h∈H

Qhr , ∀r ∈ R, t ∈ D, ω ∈ Ω (35)

∑
s∈S j

y js ≤ 1, ∀ j ∈ J (36)

∑
i∈I

∑
p∈P

∑
t |t≤ls

λ̄ω
j i pt ≤ (

1 − y js
)
M, ∀ j ∈ J , s ∈ S j , ω ∈ Ω (37)

1

|T |
∑
p∈P

∑
t∈T

γ̄ ω
j pt ≥

∑
s∈S j

y jsαs, ∀ j ∈ J , ω ∈ Ω (38)

M
∑
s∈S j

y js ≥
∑
i∈I

∑
p∈P

∑
t∈T

λ̄ω
j i pt , ∀ j ∈ J , ω ∈ Ω (39)

∑
s∈S j

y js ≤ M
∑
i∈I

∑
p∈P

∑
t∈T

λ̄ω
j i pt , ∀ j ∈ J , ω ∈ Ω (40)

y js ∈ {0, 1}, ∀ j ∈ J , s ∈ S j (41)

0 ≤ λω
hipt ≤ 1, ∀h ∈ H , i ∈ I , p ∈ P, t ∈ T , ω ∈ Ω (42)

0 ≤ λ̄ω
j i pt ≤ 1, ∀ j ∈ J , i ∈ I , p ∈ P, t ∈ T , ω ∈ Ω (43)

0 ≤ πω
hrt ≤ 1, ∀h ∈ H , r ∈ R, t ∈ D, ω ∈ Ω (44)

γ ω
hpt ≥ 0, ∀h ∈ H , p ∈ P, t ∈ T , ω ∈ Ω (45)

γ̄ ω
j pt ≥ 0, ∀ j ∈ J , p ∈ P, t ∈ T , ω ∈ Ω (46)

ξω ≥ 0, ∀ω ∈ Ω (47)

Fundamentally, increasing the relative regret threshold (τ ) relaxes the model (ASR)while
decreasing the threshold tightens it. Hence, the choice of relative regret threshold affects the
feasibility of a solution. Small regret for each scenario is desirable, therefore, a solution that
has as small relative regret threshold as possible is seeked. In order to find a bound on τ , we
utilized a practical two-step approach (Paul and Wang 2019). Not guaranteeing to generate
the tightest possible bound τ , this computationally efficient procedure provides reasonable
bounds. Steps of this procedure are given in Fig. 2.

Step 1.1 of the procedure optimizes |Ω| separate deterministic models. Step 1.2 obtains a
stochastic optimization solution that minimizes the expected objective function value across
all scenarios. Based on this solution, the relative regret for each scenario is computed and the
upper bound for the relative regret threshold is set to the maximum relative regret value. In
Step 2 of the procedure, the model (ASR) is tightened by decreasing τUB gradually until the

123



Annals of Operations Research

Fig. 2 Pseudo-code of the procedure

model becomes infeasible. The choice of scaling factor ζ is a subjective decision, however,
can be tuned to obtain more precise upper bounds.

5 Case of Wuhan

We now apply the proposed models to the case of Wuhan where the novel coronavirus was
first reported to the WHO at the last day of 2019. We take the starting day of the planning
horizon as January 27th, 2020, the time when strategic, operational and tactical decisions
are made by the authorities. The planning horizon consists of 51 days for which daily data
of confirmed cases are available. After March 17th, 2020 the number of confirmed cases
diminishes to zero, which marks the end of the planning horizon. In this numerical study, we
treat the empirical daily confirmed case data ofWuhan as the forecasted data at the beginning
of a pandemic. We first provide information regarding the data, then present and discuss the
solutions of the models (D) and (ASR).

5.1 Background and case study data

There are 14 administrative regions in Wuhan that are considered as the demand centers. All
confirmed COVID-19 cases have been reported based on these regions. The breakdown of the
number of confirmed cases with respect to regions and the severity levels (ICU, non-ICU) of
the cases are shown in Fig. 3. Before the outbreak of the pandemic, therewere 36 city hospitals
with different capabilities in Wuhan that provide various types of healthcare to the habitants.
All these hospitals have different resources available in terms of ICU bed, non-ICU bed,
ventilator, computed tomography, Extracorporeal Membrane Oxygenation (ECMO), doctor,
nurse and lab technician. Among 36 city hospitals, six of them do not provide ICU care.
Even though the healthcare personnel have different professions, they can be allocated to
pandemic treatment services based on emerging requirements.

After the outbreak of the pandemic, the administration determined 32 candidate locations
for installing new pandemic hospitals. There are three different pandemic hospital sizes,
namely, small, medium, and large, that can be installed on these locations based on the
acreages. Among the 32 candidate locations, four of them are eligible for installing small
size hospitals while 20 of them for medium and eight of them for large size hospitals. Note
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(a)

(b)

Fig. 3 The breakdown of the number of patients with respect to (a) 14 administrative regions (each color
represents a specific region), and (b) ICU and non-ICU types. (Color figure online)

that a medium (large) size implies that a small (small and medium) size hospital can also
be installed at that location. As expected, hospitals with different sizes have also different
capabilities based on the amount of resources that can be allocated. Locations for the 14
administrative regions, 36 city hospitals, and 32 candidate sites for building new pandemic
hospitals are illustrated in Fig. 4. The standard amount of resources that are allocated to
hospitals with each size are summarized in Table 2.

The time required to install a new pandemic hospital varies according to hospital size. In
the course of the COVID-19 crisis, the Huoshenshan Hospital with a capacity of 1000 beds
was built in nine days between January 23rd, 2020 and February 2nd, 2020 near the Zhiyin
Lake in the Caidian District, Wuhan. The hospital became fully operational on February 3rd,
2020, only 10 days after the construction began (Luo et al. 2020). Similarly, the construction
of another emergency specialty field hospital in response to the COVID-19 pandemic, the
Leishenshan Hospital was completed in only 12 days. Located at No.3 Parking Lot of the
Athletes Village in Jiangxia District, Wuhan, Hubei, this hospital had a capacity of 1600 beds
(Luo et al. 2020). As an earlier example, located in Beijing, Xiaotangshan SARS Hospital
was buit in six days with a capacity of 1000 beds and began operating on the seventh day in
response to the SARS epidemic in 2003 (Yang andCheng 2020). Considering these examples,
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Fig. 4 Administrative regions, city hospitals, and candidate locations for new pandemic hospitals in Wuhan

Table 2 Amount of resources to be allocated to different size pandemic hospitals

r Resource type Hospital size

Small (s = 1) Medium (s = 2) Large (s = 3)

1 ICU Bed 100 400 600

2 Non-ICU Bed 200 800 1200

3 Ventilator 120 480 720

4 Tomography 5 20 30

5 ECMO 2 7 10

6 Doctor 58 233 350

7 Nurse 130 517 775

8 Lab Technician 24 95 143

Table 3 Resources consumed by patients based on severity level

p Patient type Resource type

ICU Bed Non-ICU Bed Ventilator Tomography ECMO Doctor Nurse Lab Technician

1 ICU 1 – 0.8900 0.0417 0.0083 0.2500 0.6250 0.1430

2 Non-ICU – 1 0.0500 0.0139 0 0.1670 0.3300 0.0476

we take the installation times of small (300 beds), medium (1200 beds), and large (1800 beds)
size pandemic hospitals as 4, 11, and 13 days, respectively. Installation cost of each candidate
pandemic hospital is estimated based on the location and size of the hospital. Based on the
estimated figures, the average installation costs of pandemic hospitals are 22,843, 68,678,
and 93,000 ¥ for small, medium, and large size hospitals, respectively.

Each hospitalized patient consumes the hospital resources required for the treatment
according to the severity level. Based on empirical data and experience, the estimated amounts
of daily resources consumed by each type of patient are given in Table 3.
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Table 4 Transition probabilities of patients with different severity levels

Severity level (day t ) Severity level (day t + 1 )

Non-ICU ICU Cured Death

ICU 0.03760 0.90388 0.05560 0.00292

Non-ICU 0.87481 0.04590 0.07840 0.00089

Table 5 Ratio of resources of city hospitals that should be allocated to regular patients

Resource type

ICU Bed Non-ICU Bed Ventilator Tomography ECMO Doctor Nurse Lab Technician

Allocated ratio 18% 15% 18% 30% 15% 18% 18% 40%

Table 4 provides the transition matrix that represents the daily transition probabilities of
patients with different severity levels to the other patient types. These figures are estimated
based on empirical data for the COVID-19 cases in Wuhan. To illustrate, a non-ICU patient
becomes an ICU patient the next day with a probability of 0.0459, while his/her severity
status remains the same with a probability of 0.87481. Cured and death statuses essentially
correspond to the situation where the patient is discharged from the hospital.

Newly installed pandemic hospitals are intended to serve to pandemic patients only. On
the other hand, a particular ratio of resources available at city hospitals should be withheld for
regular type patients as part of the tactical level decisions given at the beginning of each period
of n days. These decisions, where resource allocations for regular patients are determined for
each city hospital via the decision variables πhrt (model (D)) and πω

hrt (model (ASR)), are
given at every 10 days, i.e., on days t ∈ {1, 11, 21, 31, 41}, throughout the planning horizon.
In this regard, to provide sufficient healthcare services to regular patients, the aggregated
resources of the city hospitals withheld for treatments other than pandemic care should meet
a particular ratio determined for each resource type r ∈ R. These ratios determined by the
DMs for each resource type r ∈ R are reported in Table 5.

Recall that in accordance with administrative rules, a new pandemic hospital can be
opened only if the average number of patients allocated to the hospital of size s ∈ S during the
planning horizon is greater than theminimum level αs . The values of these average utilization
thresholds are determined as the 10% of the total bed capacities of different size pandemic
hospitals by the DMs. Therefore, a small size pandemic hospital is installed provided that it
accepts at least 40 patients on average during the planning horizon. Accordingly, the average
utilization thresholds for medium and large size pandemic hospitals are determined as 120
and 180 patients, respectively.

5.2 Themodel (D) solution

In this section, we present the numerical results of the model (D). We consider three objec-
tives in the problem and these objectives are aggregated via linear scalarization to form a
single objective in model (D). Representing the importance of the objectives, these weights
are inherently subjective and depend on the preference structure of the DM(s). Among the
three approaches to elicit DM preferences and reflect them to the problem, namely, a priori,
interactive, and a posteriori approaches, we employ a priori approach for solving the problem.
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On the other hand, it may not be reasonable for the DM to provide these weights at the begin-
ning of the problem-solving process without any knowledge about the problem structure. In
this respect, we perform a posteriori weight analysis where we present solutions yielded by
different weights to the DM as in the sensitivity analysis. To that end, we solved the model
(D) for 66 different combination of weights such that w1, w2, w3 ∈ {0.0, 0.1, . . . , 0.9, 1.0}
and w1 + w2 + w3 = 1. We implemented the model in General Algebraic Modeling System
(GAMS 2012) and R (R Core Team 2017) and solved by CPLEX 12.5 with default settings.
All runs are performed on a computer having Intel Xeon E5-2630 2.40 GHz (2 Core) pro-
cessor and 128 GB of RAM. Based on the given data set, the model has 105,485 decision
variables, 32 of which are discrete type and 35,740 constraints. CPU times of the solutions
vary between 3.39 and 3672 s.

Computational runs yielded a total of 66 distinct solutions, i.e. none of the solutions
obtained for a specific weight vector is dominated by another. Recall that Objective-1 rep-
resents the total number of patients that are rejected by hospitals due to capacity shortage.
Essentially, this objective represents how much a solution is socially acceptable. Discussing
with the DMs, it has been decided that any solution rejecting more than 15% of the total cases
can not be referred to as a socially acceptable solution. Thus, we did not consider solutions
(a total of 44) with a rejection percentage of 15% and more as applicable, and eliminated
them from our solution set. The characteristics of the remaining 12 solutions are reported in
Table 6.

In Table 6, columns 2–4 represent the weight combination used in the corresponding
solution.We observe that theminimumweight of Objective-1 among all solutions is 0.5. This
is in line with our previous decision regarding eliminating solutions having high rejection
percentages. The following four columns report the aggregated and individual objective
values of the solutions. The table is sorted in increasing order of the percentage of cases
rejected that are listed in column nine. We observe that the minimum rejection percentage
is 9.1% which corresponds to 4525 rejected cases in total during the 51 days long planning
horizon. Note that the number of rejected cases not only depends on the number of hospital
beds available at a particular period but also other sources that are consumed by patients
based on the severity of their cases (ICU, non-ICU). This solution is yielded by the weight
combination which gives the overall weight to the Objective-1 in the aggregated objective
function, as expected.Among the 12 solutions, four of themsuggest opening22newpandemic
hospitals while four solutions suggest 23, two solutions suggest 20, one solution suggests 21,
and one solution suggests 17, as reported in column 10. Column 11 reports the breakdown of
the number of pandemic hospitals with respect to sizes. The first, second and third numbers
separated with dashes represent the number of small (s = 1), medium (s = 2), and large
(s = 3) size pandemic hospitals opened, respectively. It is worth noting that all solutions
but solution 11 open 4 small pandemic hospitals. The number of medium size and large size
hospitals opened varies in the range [8, 16] and [2, 7], respectively. The following column
lists the particular location IDs of the suggested new pandemic hospitals. The last three
columns report the ICU, nonICU, and total bed capacity acquired by opening the hospitals
yielded by each solution.

In Table 7, we report the regret percentages of each solution’s objective value with respect
to the best value achieved for that particular objective. If we consider the Objective-1, for
instance, solution 1 achieves the best (minimum) value among all 12 solutions, hence, its
regret percentage is 0.0%. In this regard, this table assists the DMs to figure out how much
regret will be accepted in each objective dimension if a particular solution is selected. The
table reveals that regret percentages of Objective-1 are below 10% for the first eight solutions
and increase dramatically after solution 9. In terms of Objective-2, there are relatively high
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Fig. 5 Locations of the pandemic hospitals opened by the model (D)

regrets for solutions 1, 5, and 8, the values of which reach up to 414.7% while the rest vary
between 0 and 44.5%. Other than the solution 12 that achieved the best figure in terms of
Objective-3, the regret percentages of Objective-3 show relatively less dispersion and vary
between the range [18.3%, 43.3%].

As we have also emphasised in Sect. 1, the problem we are tackling in this paper is related
to public services and its outcome has a severe potential impact on the pandemic response
management performance of governments. Therefore, the decisions tend to prioritize society
benefits and seek for solutions that are socially acceptable. Conversely, this approach does
not rule out other objectives such as cost since DMs also seek for solutions that are cost-
effective. Considering all these aspects of the problem and in light of the a posteriori weight
analysis, the DMs prefer choosing the solution 6 as the “most preferred” solution among
12 reported. This solution is generated by the weight set {0.8, 0.1, 0.1} and puts special
emphasis on Objective-1 which prioritize society benefits and proposes acceptable regrets
for the remaining objectives. When this solution is implemented, the expected number of
total rejected cases will be 4620, which is close to the minimum achievable value of 4525. In
terms of Objective-2 that quantifies the total travel distance of people to allocated hospitals,
solution 6 offers a fair and preferable solution when the average regret percentage in this
objective is considered. This solution’s relative regret percentage with respect to the best one
is way below than the average value (44.4%vs. 115.4%).When theObjective-3 is considered,
solution 6’s relative regret percentage is less than the average relative regret and ranks fourth
among 12 solutions reported. The locations of newly installed hospitals and their sizes are
reported in Table 8 and displayed in Fig. 5. The solution suggests opening 4 small, 12medium,
and 5 large hospitals, yielding a total of 21 new pandemic hospitals in the Wuhan region.

Figure 6 shows the number of daily cases and the number of patients receiving treatment
at city and pandemic hospitals. Recall that installation times of small, medium, and large size
pandemic hospitals are taken as 4, 11, and 13 days, respectively. These times are indicated as
vertical solid lines at those particular time periods in the figure. In this regard, the earliest time
that pandemic hospitals start accepting patients is day five (the day after a small size hospital
is built). The total number of patients receiving treatment at four small-sized pandemic
hospitals is less than those receiving treatment at city hospitals until day 11.Oncemedium size
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Table 7 Regrets of objective
values with respect to the best
ones (D)

Sol # w1 w2 w3 % Regret

Φ1 Φ2 Φ3

1 1 0 0 0.0 371.7 36.3

2 0.9 0.1 0 0.2 26.9 43.1

3 0.8 0.2 0 0.8 25.2 42.8

4 0.7 0.3 0 1.8 24.0 42.8

5 0.9 0 0.1 1.8 414.7 21.4

6 0.8 0.1 0.1 2.1 44.5 27.0

7 0.7 0.2 0.1 2.9 32.0 31.1

8 0.8 0 0.2 7.2 386.7 18.3

9 0.6 0.3 0.1 20.0 13.1 31.9

10 0.6 0.4 0 23.0 7.4 43.3

11 0.5 0.5 0 37.6 0.0 41.1

12 0.7 0.1 0.2 51.5 40.1 0.0

Average 12.4 115.5 31.6

Table 8 Locations and sizes of
the pandemic hospitals opened by
the model (D)

Size Location IDs

Small (s = 1) 6-10-20-27

Medium (s = 2) 4-12-15-17-18-19-21-22-25-26-28-32

Large (s = 3) 1-5-14-16-31

pandemic hospitals become operational at day 12, the burden of pandemic patient treatment is
taken over by them. The number of daily cases increases gradually and reaches its peak point
at day 17 with 13,436 daily confirmed cases. This dramatic increase at day 17 is compensated
by the large size hospitals that become operational at day 14. The relief provided by these
new large pandemic hospitals can clearly be observed through the sudden increase in the
number of patients receiving treatment at pandemic hospitals from 5304 at day 16 to 17,291
at day 17. After day 17, the number of daily cases decreases dramatically and finally vanishes
by day 51.

Figure 7 presents the number of daily cases as well as the number of cases rejected by
hospitals due to capacity shortages. As can be seen from the figure, the number of rejected
cases increases until day nine and decreases gradually until day 12. This pattern is in harmony
with the temporary decrease in the number of cases between days 9 and 11. On the other
hand, even though the number of cases increases again at day 12, the number of rejected cases
decreases to zero thanks to the newly opened 12 medium-size hospitals at that day. After this
time till the end of day 51 where the number of cases vanishes, none of the cases is rejected
except for day 18 where a total of 82 cases (corresponding to 2.1% of confirmed cases at
day 18) are rejected primarily due to the dramatic increase in the number of cases at day
17. As we have emphasised before, this peak is compensated by the five large size hospitals
that become operational as of day 14. Throughout the planning horizon, the total number of
rejected cases is 4620. Majority of these cases are those that are rejected at the early stage of
the pandemic, between days 4–12 due to the cumulative increase in the number of patients
receiving pandemic treatment at hospitals. During these early days of the pandemic, the
construction of medium and large size hospitals are still in progress. Even though it would be
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Fig. 6 The number of daily cases and number of patients receiving treatment at city hospitals and pandemic
hospitals

Fig. 7 Number of daily cases and number of cases rejected

possible to meet all the demand during the early stage cases by opening all hospitals of small
size, this decision would lead to more rejected cases at later stages of the pandemic where
daily cases increase dramatically. Aiming to minimize the total number of rejected cases
throughout the planning horizon, model (D) ventures on rejecting early stage cases in return
for low average rejection rates throughout the planning horizon. These observations indicate
that the most important parameter among the problem data are the installation times of the
hospitals. The earlier the new pandemic hospitals are installed, the less cases are rejected due
to capacity shortage.

Besides these strategic decisions, model (D) also yields tactical and operational decisions
which correspond to resource allocation among healthcare facilities and patient allocation of
districts to the hospitals. To illustrate tactical decisions yielded by the model (D), we report
ratios of resources allocated to pandemic patients at different time periods from each city
hospital in Table 14. Recall that tactical decisions aremade every ten days, hence, the ratios of
resources allocated are determined at days {1, 11, 21, 31, 41}. In Table 14, rows correspond
to the city hospitals and rows correspond to the allocation ratios of resources.
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Having all these aforementioned properties, solution 6 provides a compromise solution
with respect to the three objectives and presents a socially acceptable course of action for
providing fair and adequate healthcare services to the society during the pandemic.

5.3 Themodel (ASR) solution

The solution of the model (D) is based on only one scenario that is forecasted to happen.
There are many studies in the recent literature that propose techniques to forecast the number
of confirmed cases for a pandemic, however, these techniques are out of the scope of this
study.Conversely, forecasting techniques inherently involve uncertainty due to the parameters
assumed or estimated, such as the spread speed of the pandemic or the time, extent, and
efficiency of the government policies to respond to the pandemic. These uncertainties affect
the daily number of cases and duration of the pandemic. In this respect, the obtained solution
should be robust to the possible scenarios that may happen. Our (ASR) model addresses
this phenomenon and considers multiple scenarios simultaneously while obtaining solutions
that keep the relative regret for each scenario under a predefined threshold. To illustrate the
applicability of the (ASR) model, we generate seven scenarios, one of which is the baseline
scenario we employed in Sect. 5.2. Without loss of generality, we generated the rest of
the scenarios by applying perturbations to the confirmed daily cases of each district of the
baseline scenario. On the other hand, we would like to emphasize that the model (ASR) is
flexible to incorporate different number of scenarios having different durations, start times,
and patterns. The applied perturbations vary in the range {−15%,−10%, . . . , 10%, 15%}.

Firstly, all generated scenarios are solved with model (D) by using the same weight
combination that we determined in Sect. 5.2. Information regarding these seven scenarios
and their optimal solutions are given in Table 9. Note that scenario 4 corresponds to the
baseline scenario. Columns two and three represent the perturbation levels and the resulting
total number of confirmed cases of scenarios, respectively. The next four columns report the
objective function values of scenarios. Optimal solutions suggest opening different number
and sizes of pandemic hospitals for each scenario. The solution of the most demanding
scenario (scenario 7) opens 24 new pandemic hospitals, while in the least demanding scenario
(scenario 1) 18 hospitals are opened. One remarkable observation in Table 9 is that opening
four small size pandemic hospitals is dictated by all scenarios simultaneously.

After obtaining the optimal objective values of the individual scenarios which correspond
to ξω∗ parameters of the (ASR) model, we first solve the model by removing constraints
(26). Without loss of generality, we assume that all scenarios have equal occurrence prob-
abilities even though other probability distributions can be applied based on expert opinion
or further analysis. When the contraints (26) are removed, the model (ASR) is essentially a
stochastic programming model that minimizes the total expected objective value across all
seven scenarios. This initial step enables us to obtain an initial upper bound on the relative
regrets (τω) of individual scenarios. Based on this current upper bound, the relative regret
threshold is determined and the model is solved iteratively by employing the procedure given
in Fig. 2. Different scaling factors (ζ ) are experimented in the procedure and a scaling factor
of 0.97 is determined as the final value since it provides tighter bounds. The procedure runs
and generates solutions for two iterations until the model (ASR) becomes infeasible at the
third iteration. In Table 10 the columns tree and four report the objective values and relative
regrets of the individual scenarios in the initial solution of (ASR), respectively. The last two
columns show the progress of relative regrets of the scenarios at each iteration. Note that the
upper bound on the relative regrets are indicated with a bold font in each column. Table 10
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Table 10 Initial and iterative
τUB values

Scenario ξω∗ ξω τω (%) τω
1 (%) τω

2 (%)

1 0.179 0.194 8.53 7.45 7.07

2 0.192 0.202 5.47 4.42 4.60

3 0.196 0.201 2.47 1.59 1.72

4 0.203 0.203 0.20 1.05 1.11

5 0.210 0.214 2.05 3.33 3.55

6 0.212 0.221 4.43 5.76 5.72

7 0.217 0.230 6.11 7.33 7.13

reveals that the more perturbation a scenario has, the more regret is borne for that scenario.
As expected, the model (ASR) makes the trade-off between the total number of rejected
patients and the total cost of opening new pandemic hospitals.

Table 11 reports the solutions generated by the model (ASR) through iterations. The
second column shows the regret upper bounds of each solution. The last column reports the
difference between the present solution and the previous one. As the relative regret threshold
is shrunk, the objective valueworsens as expected because the constraints (26) get tighter. The
initial solution opens 21 new pandemic hospitals with 4 small, 12 medium, and 5 large sizes.
In the first iteration following the initialization, the large size pandemic hospital at location
1 is closed and a medium size pandemic hospital is opened at location 28, while the total
number of open pandemic hospitals remains unchanged. In the second iteration pandemic
hospitals at locations 8 (medium), 14 (large), and 28 (medium) are closed and hospitals at
location 1 (large), 3 (medium), and 7 (medium) are opened. At iteration three the model
(ASR) becomes infeasible and the procedure stops by yielding the solution of iteration two
as the optimal solution.

Objective functions’ progress through iterations are presented in Table 12. We observe
that the Objective-1 values (total number of rejected patients) of the individual scenarios get
worse at iteration one due to closing a large size hospital and opening a medium size hospital
instead. Since the number and size of the opened hospitals remains the same at iteration two,
the Objective-1 values of the individual scenarios do not change. Conversely, the Objective-2
values (total walking distances of patients) of the scenarios improve at iteration one while
worsen at iteration two. The Objective-3 values (total installation costs of new pandemic
hospitals) improve steadily until the model gets infeasible. This observation indicates that
the upper bounds on regrets are generally driven by the Objective-3.

Consequently, the sizes and locations of the newly installed hospitals yielded by model
(ASR) are given in Table 13 and shown visually in Fig. 8. Even though this solution opens
21 new pandemic hospitals as also yielded by model (D), model (ASR) opens four large
pandemic hospitals instead of five and 13 medium size hospitals instead of 12. By making
this size modification, the model (ASR) reduces installation costs in return for an increase
in total walking distance and total number of rejected patients to keep the individual regrets
of the scenarios under a predefined threshold.

5.4 Discussion

Model (D) relies on a deterministic forecasted data of daily confirmed cases of each demand
(population) center. Based on this forecasted data, our model finds solutions for strategic,
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Fig. 8 Locations of the pandemic hospitals opened by the model (ASR)

Table 13 Locations and sizes of
the pandemic hospitals opened by
the model (ASR)

Size Location IDs

Small (s = 1) 6-10-20-27

Medium (s = 2) 3-4-7-12-15-17-18-19-21-22-25-26-32

Large (s = 3) 1-5-16-31

tactical, and operational decisions. Even though the uncertainties associated with the fore-
casted data make it challenging to make strategic decisions, these type of decisions should
be given rapidly to respond to the pandemic. Because the realization of these decisions such
as construction of new hospitals takes time and they should be given on the early stages of
the pandemic.

When a pandemic emerges, the policy makers do not have the convenience to wait for reli-
able empirical data, conversely, have to rely on limited information about model parameters
and system states, which is derived from expert options, incomplete field assessment, and
historical data (Du et al. 2020). Moreover, pandemic/epidemic outbreaks also inspire local
and global collaboration among researchers, policy makers and practitioners with a view to
devise strategies, disease spread models and actions on how to address the outbreak (Cronjé
2019).

As the numerical analysis of the case study reveals, the long-term decisions made in the
initial days of the pandemic have a dramatical impact on improving the preparedness level
of the healthcare system. Hence, the lack of complete information in the early phases of
a pandemic does not rule out the necessity to make long-term decisions at the beginning.
In order to hedge against the uncertainty inherent in pandemics, many researchers propose
breaking down the planning horizon into manageable terms (levels) such as short, medium,
and long terms where upper level decisions can be tailored at the beginning of each level in
the light of additional information and empirical data obtained thus far (Savachkin and Uribe
2012; Long et al. 2018; Nikolopoulos et al. 2020). In this study, we adopt the same strategy
by considering three decision types, each of which corresponds to different decision levels
having different time spans, namely, (i) strategic (opening new pandemic hospitals and their
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size), (ii) tactical (allocation of resources among healthcare facilities), and (iii) operational
(allocation of patients to hospitals). Our solution approach provides the flexibility to rerun
the model at the beginning of these decision periods with additional empirical information
and tailor subsequent decisions.

In order to hedge against the uncertainty inherent in the pandemic data, our p-robust
model (ASR) considers multiple scenarios simultaneously. For illustrative purposes, we
employed scenarios that are obtained by applying perturbations to the baseline scenario’s
daily confirmed cases. However, the model (ASR) can handle various scenarios having dif-
ferent (number of) peaks (shapes) and different durations. Even though there exist other
robust modeling techniques such as the utilization of uncertainty sets for the parameters,
note that the uncertainties associated with the confirmed case data can not be solely confined
to the uncertainties of problem parameters. For instance, the lock-down and opening deci-
sions of governments affect the spread pattern of the pandemic and changes the number of
daily cases dramatically. The time and extent of these measures are determined by govern-
ments based on the course of the pandemic. Additionally, the development of a new cure and
vaccine or mutation of the virus which leads to a higher spread speed may have dramatic
impacts on the shape and the duration of the forecasted data. In this respect, we believe that
employing p-robustness concept that considers multiple distinct scenarios within a decision
model is an appropriate way to handle uncertainties in problems involving forecasted data of
the pandemic.

Among problem parameters, the installation times of different size hospitals have themost
significant impact on the number of rejected patients. Essentially, candidate locations and
relevant sizes have enough capacity to serve all pandemic patients along with city hospi-
tals. In other words, if the new pandemic hospitals were available at day one, then none of
the pandemic patients would be rejected even in the most demanding scenario (Scenario-7).
Therefore, the most important decision parameter that should be focused is the installation
times of the hospitals. To that end, opening hospitals with partial capacities while the con-
struction still continues might reduce the number of rejected pandemic patients and provide
a socially acceptable course of action.

6 Conclusion

In this study, we consider the problem of health resource management and location allo-
cation problem during the early stages of pandemic/epidemic under demand uncertainty.
This problem is particularly important because failing to respond to the pandemic rapidly
and efficiently may cause noncompensable suffering for the society. Being one of the most
essential tasks of a social government, the public health should be safeguarded with effective
measures determined through analytical decision making processes. Hence, in this research,
our main purpose is to improve the preparedness level and response effectiveness of health-
care authorities in responding pandemics/epidemics by implementing operations research
techniques.

We can briefly summarize the contribution of the study as follows: First, our novel model-
ing approach incorporates strategic, tactical, and operational decisions into a single decision
model. This approach provides extensive flexibility to healthcare authorities for efficient
resource allocation. Moreover, these tactical and operational decisions can be tailored during
the planning horizon by rerunning the model based on the new data available. Second, our
multi-objectivemodel and a posteriori weight analysis enableDMs to reflect their preferences
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regarding the objectives in an efficient way. With this approach, the DMs can get acquainted
with the problem structure and observe the impacts of their preferences on the solution.
Third, employing the p-robustness concept, our robust model can handle multiple scenarios
that may have differences in terms of spread speed, duration and shape simultaneously by
keeping the relative regret of individual scenarios under a predefined threshold. Our robust
modeling approach provides socially acceptable solutions and hedges against uncertainty in
an efficient way.

We also would like to recall that our proposed model incorporates three conflicting objec-
tives that seek to minimize (i) the number of patients rejected by hospitals, (ii) travel distance
of patients and (iii) the installation cost of new pandemic hospitals. Note that, the first objec-
tive is a socially-driven term which basically attempts to improve the health service quality
by suggesting the installation of several large pandemic hospitals and allocation of suffi-
cient resources to patients. Similarly, the second objective drives planners to install relatively
small size pandemic hospitals in large numbers close to demand centers tominimize the travel
distance of patients. Since solutions imposed by these two objectives explicitly contribute
toward additional financial burdens being placed on the health system, they naturally conflict
with the third objective, i.e. the cost term.

Considering that our research topic is strictly related to public services in terms of creat-
ing an impact on the quality of the pandemic response of governments, we did not consider
solutions with rejection ratios larger than a specific threshold, i.e. a ratio of 15%, feasible.
Although with this special emphasis on the first objective we impose a positive discrimi-
nation to socially acceptable solutions, we do not rule out other solutions that incorporate
financial considerations of DMs. To be more specific, the suggested a posteriori weight anal-
ysis approach allows DMs choose their most preferred solution among all non-dominated
alternatives with varying objective terms and regret values.

Adapting the weights preferred by the DMs via the a posteriori weight analysis, the robust
model (ASR) generates a solution that prescribes the total number of rejected patients (4th
column) and total travel distances (7th column) given in Table 12 for each scenario with
a total installation cost of 1,323,000 ¥, by opening 4 small, 13 medium, and 4 large size
hospitals the locations of which are shown in Fig. 8.

Our study has some theoretical implications. The extent of spread speed and transmission
as well as the severity of the disease may be unclear during the early stages of a pandemic.
Thus, to account for the demand uncertainty and attain a more socially acceptable solution,
robust optimization approach provides efficient modeling techniques. Using robust optimiza-
tionmight helpDMs to avoid noncompensable regrets once the veil of uncertainty disappears.
As another theoretical implication, in order to hedge against the uncertainty inherent in pan-
demics, breaking down the planning horizon into manageable terms (levels) such as short,
medium, and long terms and building the mathematical model accordingly provides the flex-
ibility to the DMs in terms of tailoring the upper level decisions in the light of additional
information and empirical data obtained thus far.

The most important practical implication of this study is that, once a pandemic emerges,
prompt decisions should be made by the DMs to alleviate the human suffering and improve
the health system preparedness. Our study has shown that the installation times of different
size hospitals have the most significant impact on the number of rejected patients. In this
respect, even though there exist scarce empirical data at the early stage of the pandemic,
long-term decisions should be made based on expert options, incomplete field assessment,
and historical data.Moreover, opening hospitals with partial capacities while the construction
still continues might reduce the number of rejected pandemic patients and provide a socially
acceptable course of action.
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This study has two limitations. Firstly, even though forecasting the daily confirmed cases
is out of scope of this study, the accuracy of the forecasted data is important for particularly
strategic decisions. Secondly, if the problem size increases due to an increase in number
of population centers, candidate locations for new pandemic hospitals, and scenarios, then
efficient solution techniques such as heuristics, meta-heuristics might be required to solve
the problem in reasonable CPU times.

There are two potential research directions that can be addressed as future work. One
research direction is to solve the model (D) with other multi-objective solution approaches.
In thiswork, we utilized the linear scalarization approach to aggregate the objective functions.
Instead of a scalarization approach, interactive approaches where the DM interacts with the
method for searching the most preferred solution or a posteriori approaches where a Pareto
frontier is presented to the DM can be used to solve the problem. When the DM does not
have a clear idea of the problem’s mathematical structure, then the problem consists not only
of finding the best method to apply to DM’s problem but also establishing a representation of
the problem in a constructive way (Erişkin 2021). In these cases, the interactive approaches
are particularly useful. Another research direction is to generate more realistic scenarios via
simulations that reflect the impacts of pandemic related decisions such as lock-down and
opening, and other pandemic related inputs such as immunization campaigns and a newly
developed cure, and then to solve the model (ASR) incorporating these scenarios.
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