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Summary In the paper a nonlinear quadrilateral shell element for the analysis of thin
structures is presented. The variational formulation is based on a Hu–Washizu functional
with independent displacement, stress and strain fields. The interpolation matrices for the
mid–surface displacements and rotations as well as for the stress resultants and strains are
specified. Restrictions on the interpolation functions concerning fulfilment of the patch test
and stability are derived. The developed mixed hybrid shell element possesses the correct
rank and fulfills the in–plane and bending patch test. Using Newton´s method the finite
element approximation of the stationary condition is iteratively solved. Our formulation can
accommodate arbitrary nonlinear material models for finite deformations. In the examples
we present results for isotropic plasticity at finite rotations and small strains as well as bi-
furcation problems and post–buckling response. The essential feature of the new element is
the robustness in the equilibrium iterations. It allows very large load steps in comparison to
other element formulations.

Key words: Reissner–Mindlin shell theory, Hu–Washizu variational principle, quadrilateral
shell element, shell intersections, large load steps

1 Introduction

Computational shell analysis is based on a stress resultant theory e.g. [1, 2] or on the so–called
degenerated approach [3]. Although the hypotheses underlying the classical shell theory and
degenerated approach are essentially the same, the reduction to resultant form is typically
carried out analytically in the former, and numerically in the latter, [4]. Many of the compu-
tational shell models consider transverse shear deformations within a Reissner–Mindlin theory
[5], [6] to by–pass the difficulties caused by C1–requirements of the Kirchhoff–Love theory,
see e.g. [7, 8, 9].
Generally, shell behaviour is extremely sensitive to initial geometry and imperfections, thus
a successful correlation between theory and analysis is achieved only after including specific
details of these quantities. Low order elements like quadrilaterals based on standard dis-
placement interpolation are usually characterized by locking phenomena. In shells two types
of locking occur: transverse shear locking in which bending modes are excluded and nearly
all energy is stored in transverse shear terms, and membrane locking in which all bending
energy is restrained and energy is stored in membrane terms. Elements which exhibit a
locking tendency lead to unacceptable stiff results when reasonable finite element meshes are
employed.
In attempting to avoid locking, reduced integration methods have been advocated, see e.g.
[10]. Use of reduced (or selective reduced) integration is often accompanied by spurious zero
energy modes. Hence, authors have developed stabilization techniques to regain the correct
rank of the element stiffness matrix, e.g. [7, 11, 12, 13]. In some cases, however, results
turned out to be sensitive to the ad hoc hourglass control parameters. In Ref. [14] a so-called
physical stabilization matrix is derived from the orthogonality between the constant part of
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the strain field and the non-constant part.
Mixed variational principles provide the basis for the discussed finite element techniques.
Assuming linear elasticity a Hellinger–Reissner functional has been used in e.g. [9]. For
general nonlinear material behaviour a three field variational functional with independent
displacements, stresses and strains is more appropriate. Within the so–called enhanced strain
formulations the independent stresses are eliminated from the set of equations using orthog-
onality conditions and a two field formulation remains, [15]. For shells this method has been
applied enhancing the Green–Lagrangean membrane strains e.g. in [16, 17]. The correspond-
ing developments for so–called solid shell elements have been presented in e.g. [18, 19]
A further new development on enhanced strain formulations is based on a modified Hu–
Washizu formulation, [20]. The functional for plane elasticity problems contains displace-
ments, stresses, strains and enhanced strains as independent variables. An effective method
to avoid transverse shear locking is based on assumed shear strain fields first proposed in
[21], and subsequently extended in [22, 23, 24]. The variational basis for these methods is the
Hu–Washizu functional.
An important issue within the context of developing a finite shell model is the number and
type of rotational parameters on the element. Mostly general shell theories exclude explicit
dependence of a rotational field about the normal to the shell surface which leads to a five
parameter model (three displacements and two local rotations). Use of 5 degree–of–freedom
frame requires construction of special coordinate systems for the rotational parameters. Con-
sidering the so–called drilling degree-of–freedom leads to a finite element discretization with
six nodal parameters. This has some advantages since both displacement and rotation pa-
rameters are associated with a global coordinate frame. On the other hand a larger set of
algebraic equations has to be solved, e.g. [25].

The new aspects and essential features of the present formulation are summarized as follows:

(i) The kinematics of the shell for finite deformations including transverse shear strains
is formulated assuming an inextensible director field. The nonlinear variational for-
mulation is based on a Hu–Washizu functional using a material representation with
independent displacements, stresses and strains. The consideration of arbitrary nonlin-
ear constitutive models is possible. As an example we implement isotropic plasticity
with hardening for small strains. Due to the inextensibility of the current director vector
the plane stress condition has to be enforced.

(ii) Convergence and stability conditions on the construction of interpolation functions for
the independent stress resultants and strains are investigated. As result the derived
mixed hybrid quadrilateral element fulfills the membrane patch test and bending patch
test and possesses the correct rank. Partly the element matrices are integrated analyt-
ically which leads to a fast and effective stiffness computation.

(iii) We test the element formulation within several nonlinear examples including inelas-
tic material behaviour and stability problems. The results are compared with those
obtained with four–noded enhanced strain elements (EAS-shell [17]). Especially for
large load steps the new element needs essentially less iterations compared with the
EAS–elements.
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(iv) The element formulation allows the analysis of shells with intersections. The nodal
degrees of freedom are: three global displacements components, three global rotations
at nodes on intersections or two local rotations at other nodes.

2 Kinematics and Variational Formulation

To introduce our notation we briefly outline the basic equations of the Reissner–Mindlin shell
model. Furthermore the three-field variational principle is formulated in this section.
Let B be the three–dimensional Euclidean space occupied by the shell in the reference con-
figuration. The position vector Φ of any point P ∈ B0 is defined by

Φ(ξ1, ξ2, ξ3) = Φi ei = X + ξ3 D(ξ1, ξ2)

with |D(ξ1, ξ2)| = 1 and − h

2
≤ ξ3 ≤ h

2

(1)

where X(ξ1, ξ2) denotes the position vector of the shell mid–surface Ω. With ξi and ei

we denote a convected coordinate system of the body and the global cartesian basis system,
respectively. A director D(ξ1, ξ2) is defined as a vector perpendicular to the shell mid–surface.
The usual summation convention is used, where Latin indices range from 1 to 3 and Greek
indices range from 1 to 2. Hence, the geometry of the deformed shell space B is described by

φ(ξ1, ξ2, ξ3) = φi ei = x(ξ1, ξ2) + ξ3 d(ξ1, ξ2) with |d(ξ1, ξ2)| = 1 . (2)

The inextensible director d is obtained using an orthogonal tensor R and the initial vector
D. Since d is not normal to the current configuration the kinematic assumption (2) allows for
transverse shear strains. In a standard way the deformation gradient reads F = Grad φ and
the Green–Lagrangean strain tensor with covariant components Eij and contravariant basis
Gi is given

E =
1

2
(FTF − 1) = Eij Gi ⊗ Gj , Eij =

1

2
(φ,i ·φ,j −Φ,i ·Φ,j ) . (3)

Here, commas denote partial differentiation with respect to the coordinates ξi. Inserting the
equations (1) and (2) in (3)2 yields

Eαβ = εαβ + ξ3 καβ + (ξ3)2 ραβ

2 Eα3 = γα

E33 = 0

(4)

with the shell strains

εαβ =
1

2
(x,α ·x,β −X,α ·X,β )

καβ =
1

2
(x,α ·d,β +x,β ·d,α −X,α ·D,β −X,β ·D,α )

γα = x,α ·d − X,α ·D

(5)

4



with membrane strains εαβ, curvatures καβ and shear strains γα. The second order curvatures
ραβ are neglected for thin structures. We organize the shell strains in a vector

εG = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]
T , (6)

where the subscript G refers to the Green–Lagrangean strain tensor (3). The work conjugate
stress resultants are integrals of the Second Piola–Kirchhoff stress tensor and read

σ = [n11, n22, n12,m11,m22,m12, q1, q2]T (7)

with membrane forces nαβ = nβα, bending moments mαβ = mβα and shear forces qα.

The shell is loaded statically by surface loads p̄ on Ω and by boundary loads t̄ on the boundary
Γσ. Hence the basic Hu–Washizu functional is formulated in matrix notation

Π(v,σ, ε) =
∫

(Ω)

[W (ε) + σT (εG(v) − ε)] dA −
∫

(Ω)

uT p̄ dA −
∫

(Γσ)

uT t̄ ds → stat. (8)

with the area element of the shell dA = j dξ1 dξ2. Here, v = [u,ω]T , ε, and σ denote the
independent displacement, strain and stress fields, with u = x − X the displacement vector
and ω the vector of rotational parameters of the shell middle surface. The strain energy W
may be an arbitrary function of the independent strains. Introducing θ := [v,σ, ε]T and
δθ := [δv, δσ, δε]T the stationary condition reads

δΠ := g(θ, δθ) =
∫

(Ω)

[δεT (∂εW − σ) + δσT (εG − ε) + δεT
Gσ] dA

−
∫

(Ω)

δuT p̄ dA −
∫

(Γσ)

δuT t̄ ds = 0
(9)

with the virtual shell strains δεG = [δε11, δε22, 2δε12, δκ11, δκ22, 2δκ12, δγ1, δγ2]
T

δεαβ =
1

2
(δx,α ·x,β +δx,β ·x,α )

δκαβ =
1

2
(δx,α ·d,β +δx,β ·d,α +δd,α ·x,β +δd,β ·x,α )

δγα = δx,α ·d + δd · x,α .

(10)

With integration by parts and applying standard arguments of variational calculus one obtains
the associated Euler–Lagrange equations

1
j
(j nα),α +p̄ = 0 εG − ε = 0

1
j
(j mα),α +x,α ×nα = 0 ∂εW − σ = 0

⎫⎬⎭ in Ω (11)

with nα := nαβ x,β +qαd+mαβ d,β and mα := d×mαβ x,β, where the summation convention
for repeated indices is used. The principle yields the static field equations with local form
of linear and angular momentum, the geometric field equations and the constitutive law.
Furthermore the static boundary conditions t − t̄ = 0 on Γσ with t the boundary forces
related to nα follow. The geometric boundary conditions u− ū = 0 on Γu have to be fulfilled
as constraints.
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3 Finite Element Equations

3.1 Interpolation of the initial and current reference surface

In this section the finite element equations for quadrilaterals are specified applying the isopara-
metric concept. The local numbering of the corner nodes and midside node can be seen in
Fig. 1.
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Figure 1: Quadrilateral shell element

A map of the coordinates {ξ, η} ∈ [−1, 1] from the unit square to the midsurface in the initial
and current configuration is applied. Thus the position vector and the director vector of the
reference surface are interpolated with bi–linear functions

Xh =
4∑

I=1

NI XI Dh =
4∑

I=1

NI DI NI =
1

4
(1 + ξIξ)(1 + ηIη) (12)

with ξI ∈ {−1, 1, 1,−1} and ηI ∈ {−1,−1, 1, 1}. The superscript h denotes the
characteristic size of the element discretization and indicates the finite element approximation.
The nodal position vectors XI and local cartesian basis systems [A1I ,A2I ,A3I ] are generated
within the mesh input. Here, DI = A3I is perpendicular to Ω and A1I , A2I are constructed in
such a way that the boundary conditions can be accommodated. With (12)2 the orthogonality
is only given at the nodes.
For each element a local cartesian basis ti is evaluated

d̄1 = X3 − X1 d̂1 = d̄1/|d̄1|
d̄2 = X2 − X4 d̂2 = d̄2/|d̄2|

t1 = (d̂1 + d̂2)/|d̂1 + d̂2|
t2 = (d̂1 − d̂2)/|d̂1 − d̂2|
t3 = t1 × t2 .

(13)

One could also use the so-called lamina basis according to [26] where the base vectors tα lie
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as close as possible to the coordinates ξ and η. Hence the Jacobian matrix J is defined

J =

⎡⎣ Xh,ξ ·t1 Xh,ξ ·t2

Xh,η ·t1 Xh,η ·t2

⎤⎦ (14)

with

Xh,ξ = G0
ξ + η G1 G0

ξ =
1

4

4∑
I=1

ξI XI

Xh,η = G0
η + ξ G1 G0

η =
1

4

4∑
I=1

ηI XI

G1 =
1

4

4∑
I=1

ξI ηI XI .

(15)

One can prove that t3 ·G0
ξ = 0 and t3 ·G0

η = 0 holds which shows that t3 is normal vector at
the element center. Thus t1 and t2 span a tangent plane at the center of the element. Now
we are able to express the local cartesian derivatives of the shape functions using the inverse
Jacobian matrix J. The tangent vectors X,α and the derivatives of the director vector D,α
are computed considering (12) as follows

Xh,α =
4∑

I=1

NI ,α XI Dh,α =
4∑

I=1

NI ,α DI

[
NI ,1
NI ,2

]
= J−1

[
NI ,ξ
NI ,η

]
. (16)

For arbitrary warped elements one obtains Xh,α = tα at the element center, which can be
shown using above orthogonality conditions. This is important in the context of the present
mixed interpolation. Furthermore a local cartesian system is advantageous to verify compli-
cated nonlinear constitutive equations. At other points of the element the vectors Xh,α are
only approximately orthogonal.

The current shell middle surface is approximated in the same way

xh =
4∑

I=1

NI xI dh =
4∑

I=1

NI dI

xh,α =
4∑

I=1

NI ,α xI dh,α =
4∑

I=1

NI ,α dI ,

(17)

where xI = XI + uI describes the current nodal position vector and dI = a3I is obtained
by an orthogonal transformation akI = RI AkI , k = 1, 2, 3. The rotation tensor RI is a
function of the parameters organized in the vector ωI = [ω1I , ω2I , ω3I ]

T and is computed via
Rodrigues’ formula

RI = 1 +
sin ωI

ωI

ΩI +
1 − cos ωI

ω2
I

Ω2
I ΩI = skew ωI =

⎡⎢⎢⎢⎢⎣
0 −ω3I ω2I

ω3I 0 −ω1I

−ω2I ω1I 0

⎤⎥⎥⎥⎥⎦ (18)

Representation (18) is singularity free for ωI = |ωI | < 2π which can always be fulfilled if after
a certain number of load steps a multiplicative update of the total rotation tensor is applied.
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3.2 Interpolation of the Green–Lagrangean strains and associated
variations

The element has to fulfil membrane and bending patch test, see e.g. [27]. As has been shown
in appendix B the bending patch test – when using the present mixed interpolation for the
stress resultants and shell strains – can be fulfilled with substitute shear strains defined in [23]
but not with the bilinear displacement interpolation inserted in the transverse shear strains
(5)3. Thus the finite element interpolation of the Green–Lagrangean strains reads

εh
G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εh
11

εh
22

2εh
12

κh
11

κh
22

2κh
12

γh
1

γh
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
(xh,1 ·xh,1 −Xh,1 ·Xh,1 )

1
2
(xh,2 ·xh,2 −Xh,2 ·Xh,2 )

xh,1 ·xh,2 −Xh,1 ·Xh,2

xh,1 ·dh,1 −Xh,1 ·Dh,1

xh,2 ·dh,2 −Xh,2 ·Dh,2

xh,1 ·dh,2 +xh,2 ·dh,1 −Xh,1 ·Dh,2 −Xh,2 ·Dh,1

J−1

⎧⎨⎩
1
2
[(1 − η) γB

ξ + (1 + η) γD
ξ

1
2
[(1 − ξ) γA

η + (1 + ξ) γC
η ]

⎫⎬⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(19)

The strains at the midside nodes A,B,C,D of the element are specified as follows

γM
ξ = [x,ξ ·d − X,ξ ·D]M M = B,D

γL
η = [x,η ·d − X,η ·D]L L = A,C ,

(20)

where the following quantities are given with the bilinear interpolation (12) and (17)

dA = 1
2
(d4 + d1) DA = 1

2
(D4 + D1)

dB = 1
2
(d1 + d2) DB = 1

2
(D1 + D2)

dC = 1
2
(d2 + d3) DC = 1

2
(D2 + D3)

dD = 1
2
(d3 + d4) DD = 1

2
(D3 + D4)

xA,η = 1
2
(x4 − x1) XA,η = 1

2
(X4 − X1)

xB,ξ = 1
2
(x2 − x1) XB,ξ = 1

2
(X2 − X1)

xC,η = 1
2
(x3 − x2) XC,η = 1

2
(X3 − X2)

xD,ξ = 1
2
(x3 − x4) XD,ξ = 1

2
(X3 − X4) .

(21)

Accordingly the interpolated virtual strains read

δεh
G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δεh
11

δεh
22

2δεh
12

δκh
11

δκh
22

2δκh
12

δγh
1

δγh
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δxh,1 ·xh,1

δxh,2 ·xh,2

δxh,1 ·xh,2 +δxh,2 ·xh,1

δxh,1 ·dh,1 +δdh,1 ·xh,1

δxh,2 ·dh,2 +δdh,2 ·xh,2

δxh,1 ·dh,2 +δxh,2 ·dh,1 +δdh,1 ·xh,2 +δdh,2 ·xh,1

J−1

⎧⎨⎩
1
2
[(1 − η) δγB

ξ + (1 + η) δγD
ξ

1
2
[(1 − ξ) δγA

η + (1 + ξ) δγC
η ]

⎫⎬⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)
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with
δγM

ξ = [δx,ξ ·d + x,ξ ·δd]M M = B,D

δγL
η = [δx,η ·d + x,η ·δd]L L = A,C ,

(23)

where δx,ξ , δx,η , δd are evaluated at the midside nodes considering (21).
The virtual vectors δxh,α and δdh,α using (17) are determined

δxh,α =
4∑

I=1

NI ,α δuI δdh,α =
4∑

I=1

NI ,α δdI , (24)

with the virtual nodal displacements δuI and

δdI = δwI × dI = WT
I δwI WI = skewdI (25)

where according to [30]

δwI = HI δωI , HI = 1 +
1 − cos ωI

ω2
I

ΩI +
ωI − sin ωI

ω3
I

Ω2
I . (26)

The coefficients of ΩI and Ω2
I possess the limit values 1/2 and 1/6 for ωI → 0.

At nodes which are not positioned on intersections a drilling stiffness is not available and a
transformation of the virtual rotation vector to the local coordinate system is necessary:

δωI = T3I δβI T3I =

{
13 for nodes on shell intersections

[a1I , a2I ](3×2) for all other nodes

δβI =

{
[δβxI , δβyI , δβzI ]

T for nodes on shell intersections

[δβ1I , δβ2I ]
T for all other nodes

(27)

where δβαI denote local rotations. Furthermore the drilling degree of freedom is fixed, thus
δβ3I = 0. The element possesses six degrees of freedom at all nodes on intersections and five
at all other nodes. In this context we also refer to [28, 29].
Next combining (25) – (27) we obtain

δdI = TI δβI TI = WT
I HIT3I (28)

Thus we are able to summarize the finite element approximation of the virtual shell strains
(22) considering (23) - (28)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δεh
11

δεh
22

2δεh
12

δκh
11

δκh
22

2δκh
12

δγh
1

δγh
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

4∑
I=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NI ,1 xT,1 0

NI ,2 xT,2 0

NI ,1 xT,2 +NI ,2 xT,1 0

NI ,1 dT,1 NI ,1 bT
I1

NI ,2 dT,2 NI ,2 bT
I2

NI ,1 dT,2 +NI ,2 dT,1 NI ,1 bT
I2 + NI ,2 bT

I1

J−1

⎧⎨⎩ NI ,ξ dT
M

NI ,η dT
L

⎫⎬⎭ J−1

⎧⎨⎩ NI ,ξ ξI bT
M

NI ,η ηI bT
L

⎫⎬⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
δuI

δβI

]

δεh
G =

4∑
I=1

BI δvI

(29)
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with bIα = TT
I x,α , bM = TT

I xM,ξ and bL = TT
I xL,η . The allocation of the midside nodes

to the corner nodes is given by

(I,M,L) ∈ {(1, B,A); (2, B, C); (3, D,C); (4, D,A)} . (30)

To alleviate the notation the subscript h is omitted in the matrix.

3.3 Second variation of the functional

Assuming conservative external loads p̄ and t̄ the second variation of the functional yields

Dg · Δθh =
∫

(Ω)

[δεhT (CΔεh − Δσh) + δσhT (Δεh
G − Δεh) + δεhT

G Δσh + ΔδεhT
G σh] dA (31)

with C := ∂2
εW . The linearized strains Δεh

G are defined with (22) replacing the operator δ
by Δ whereas the linearized virtual shell strains are given with

Δδεh
G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δδεh
11

Δδεh
22

2Δδεh
12

Δδκh
11

Δδκh
22

2Δδκh
12

Δδγh
1

Δδγh
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δxh,1 ·Δxh,1

δxh,2 ·Δxh,2

δxh,1 ·Δxh,2 +δxh,2 ·Δxh,1

δxh,1 ·Δdh,1 +δdh,1 ·Δxh,1 +xh,1 ·Δδdh,1

δxh,2 ·Δdh,2 +δdh,2 ·Δxh,2 +xh,2 ·Δδdh,2

δxh,1 ·Δdh,2 +δxh,2 ·Δdh,1 +δdh,1 ·Δxh,2 +δdh,2 ·Δxh,1
+xh,1 ·Δδdh,2 +xh,2 ·Δδdh,1

J−1

⎧⎨⎩
1
2
[(1 − η) ΔδγB

ξ + (1 + η) ΔδγD
ξ

1
2
[(1 − ξ) ΔδγA

η + (1 + ξ) ΔδγC
η ]

⎫⎬⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

with
ΔδγM

ξ = [δx,ξ ·Δd + Δx,ξ ·δd + x,ξ ·Δδd]M M = B,D

ΔδγL
η = [δx,η ·Δd + Δx,η ·δd + x,η ·Δδd]L L = A,C

(33)

The second variation of the current orthogonal base system has been derived in [30], see
appendix A. In the following representation the constants ci introduced in [30] are simplified
and the Taylor series expansion is given. With an arbitrary vector hI ∈ R3 and bI = dI ×hI

we obtain

hI · ΔδdI = δwI · MI ΔwI

MI(hI) =
1

2
(dI ⊗ hI + hI ⊗ dI) +

1

2
(tI ⊗ ωI + ωI ⊗ tI) + c101

tI = −c3 bI + c11 (bI · ωI) ωI c10 = c̄10 (bI · ωI) − (dI · hI)

c3 =
ωI sin ωI + 2 (cos ωI − 1)

ω2
I (cos ωI − 1)

=
1

6
(1 +

1

60
ω2

I ) + O(ω4
I )

c̄10 =
sin ωI − ωI

2ωI (cos ωI − 1)
=

1

6
(1 +

1

30
ω2

I ) + O(ω4
I )

c11 =
4 (cos ωI − 1) + ω2

I + ωI sin ωI

2 ω4
I (cos ωI − 1)

= − 1

360
(1 +

1

21
ω2

I ) + O(ω4
I )

(34)
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To avoid numerical difficulties the series expansion of the coefficients should be used if ωI

approaches zero. Hence the finite element formulation of the linearized virtual membrane
strains and curvatures considering (34) reads

Δδεαβ =
4∑

I=1

4∑
K=1

1

2
(NI ,α NK ,β +NI ,β NK ,α ) δuI · ΔuK

Δδκαβ =
4∑

I=1

4∑
K=1

{1

2
(NI ,α NK ,β +NI ,β NK ,α ) δuI · ΔdK

+
1

2
(NI ,α NK ,β +NI ,β NK ,α ) δdI · ΔuK

+δIK
1

2
[δwI · (NI ,α MI(x,β ) + NI ,β MI(x,α )) ΔwK ] }

(35)

where δIK denotes the Kronecker delta.
Finally, we specify the product ΔδεhT

G σh with the independent stress resultants
σh = [n11, n22, n12,m11,m22,m12, q1, q2]T using (32) - (35)

ΔδεhT
G σh =

4∑
I

4∑
K

δvT
I kσIK ΔvK

=
4∑
I

4∑
K

[
δuI

δβI

]T
⎡⎣ n̂IK1 (m̂IK + q̂uw

IK)TK

(m̂IK + q̂wu
IK)TT

I δIK M̂I(hI)

⎤⎦ [
ΔuK

ΔβK

] (36)

The matrix kσIK is determined with

n̂IK = n11 NI ,1 NK ,1 +n22 NI ,2 NK ,2 +n12 (NI ,1 NK ,2 +NI ,2 NK ,1 )

m̂IK = m11 NI ,1 NK ,1 +m22 NI ,2 NK ,2 +m12 (NI ,1 NK ,2 +NI ,2 NK ,1 )

q̂uw
IK = 1

2
(qξ NI ,ξ f 1

IK + qη NI ,η f 2
IK)

q̂wu
IK = 1

2
(qξ NK ,ξ f 1

IK + qη NK ,η f 2
IK)

M̂I = TT
3I HT

I MI(hI)HI T3I

hI = m11 NI ,1 xh,1 +m22 NI ,2 xh,2 +m12 (NI ,2 xh,1 +NI ,1 xh,2 )

+ qξ NI ,ξ ξIx
M,ξ +qη NI ,η ηIx

L,η

[f 1
IK ] =

⎡⎢⎢⎢⎣
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤⎥⎥⎥⎦ [f 2
IK ] =

⎡⎢⎢⎢⎣
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎤⎥⎥⎥⎦
[

qξ

qη

]
= J−T

[
q1

q2

]
.

(37)

where MI(hI) is defined in (34) and the allocation of the midside nodes M,L to the corner
nodes in (30).

3.4 Interpolation of the stress resultants and shell strains

Regarding the requirements on the interpolation functions to fulfil patch test and to ensure
stability of the discrete equations according to appendix B the independent field of stress

11



resultants σ is approximated as follows

σh = Nσ σ̂ Nσ = [18, Ñσ]

Ñσ =

⎡⎢⎣ Nm
σ 0 0

0 Nb
σ 0

0 0 Ns
σ

⎤⎥⎦ Nm
σ = Nb

σ

Nm
σ =

⎡⎢⎣ J0
11J

0
11(η − η̄) J0

21J
0
21(ξ − ξ̄)

J0
12J

0
12(η − η̄) J0

22J
0
22(ξ − ξ̄)

J0
11J

0
12(η − η̄) J0

21J
0
22(ξ − ξ̄)

⎤⎥⎦ Ns
σ =

[
J0

11(η − η̄) J0
21(ξ − ξ̄)

J0
12(η − η̄) J0

22(ξ − ξ̄)

]
(38)

Here, we denote by 18 an eight order unit matrix. The vector σ̂ contains 8 parameters for
the constant part and 6 parameters for the varying part of the stress field, respectively. The
interpolation of the membrane forces and bending moments corresponds to the procedure in
[31], see also the original approach for plane stress problems with ξ̄ = η̄ = 0 in [32]. The
transformation coefficients J0

αβ = Jαβ(ξ = 0, η = 0) are the components of the Jacobian
matrix J (14) evaluated at the element center. Due to the constants

ξ̄ =
1

Ae

∫
(Ωe)

ξ dA η̄ =
1

Ae

∫
(Ωe)

η dA Ae =
∫

(Ωe)

dA (39)

the linear functions are orthogonal to the constant function which yields partly decoupled
matrices. In this context we refer also to [33] in the case of a plate formulation.
The independent shell strains are approximated with 14 parameters in ε̂

εh = Nε ε̂ Nε = [18, Ñε]

Ñε =

⎡⎢⎣ Nm
ε 0 0

0 Nb
ε 0

0 0 Ns
ε

⎤⎥⎦ Nm
ε = Nb

ε

Nm
ε =

⎡⎢⎣ J0
11J

0
11(η − η̄) J0

21J
0
21(ξ − ξ̄)

J0
12J

0
12(η − η̄) J0

22J
0
22(ξ − ξ̄)

2J0
11J

0
12(η − η̄) 2J0

21J
0
22(ξ − ξ̄)

⎤⎥⎦ Ns
ε = Ns

σ .

(40)

Thus, the independent stresses and strains are interpolated with the same shape functions. We
remark that (38) and (40) contain a transformation of the contravariant tensor components
to the local cartesian coordinate system at the element center.

3.5 Linearized variational formulation

Inserting above interpolations for the displacements, stresses and strains into the linearized
stationary condition yields

L [g(θh, δθh), Δθh] := g(θh, δθh) + Dg · Δθh

=
numel∑
e=1

⎡⎢⎣ δv
δε̂
δσ̂

⎤⎥⎦
T

e

⎧⎪⎨⎪⎩
⎡⎢⎣ kg 0 GT

0 H −F
G −FT 0

⎤⎥⎦
⎡⎢⎣ Δv

Δε̂
Δσ̂

⎤⎥⎦ +

⎡⎢⎣ f i − fa

f e

f s

⎤⎥⎦
⎫⎪⎬⎪⎭

e

(41)
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where numel denotes the total number of finite shell elements to discretize the problem. The
following element matrices are defined with B = [B1,B2,B3,B4] from(29) and kσ introduced
in (36)

kg =
∫
Ωe

kσ dA f i =
∫
Ωe

BT σh dA = GT σ̂

H =
∫
Ωe

NT
ε CNε dA f e =

∫
Ωe

NT
ε ∂εW dA − F σ̂

F =
∫
Ωe

NT
ε Nσ dA f s =

∫
Ωe

NT
σ εh

G dA − FT ε̂

G =
∫
Ωe

NT
σ B dA .

(42)

The vector of the external loads fa corresponds to the standard displacement formulation.
The computation of the stress resultants ∂εW and linearized stress resultants C is explicitly
described in appendix C. This requires the fulfillment of the plane stress condition at each
integration point. The integrals in (39) and (42) are computed numerically using a 2×2 Gauss
integration scheme considering dA = |Xh,ξ ×Xh,η | dξdη. Due to the introduced constants ξ̄
and η̄ the matrix F possesses a diagonal structure, see appendix D. In case of linear elasticity
one can show, that f e ≡ 0 holds. For the geometrical and physical linear case an analytical
integration of all matrices is possible along with a flat projection, see [34] on basis of a
Hellinger–Reissner functional.

We continue with L[g(θh, δθh), Δθh] = 0 where δθh �= 0 and obtain⎡⎢⎣ kg 0 GT

0 H −F
G −FT 0

⎤⎥⎦
⎡⎢⎣ Δv

Δε̂
Δσ̂

⎤⎥⎦ = −
⎡⎢⎣ f i − fa

f e

f s

⎤⎥⎦ (43)

Since the stresses and strains are interpolated discontinuously across the element boundaries
the parameters Δε̂ and Δσ̂ can be eliminated on the element level

Δε̂ = FT−1 (GΔv + f s)

Δσ̂ = F−1 (HΔε̂ + f e) .
(44)

Due to the special structure of F the inverse matrix can easily be computed. Only submatrices
of order two have to be inverted. Inserting (44) in (43)1 yields the tangential element stiffness
matrix ke

T and the element residual vector f̂

L [g(θh, δθh), Δθh] =
numel∑
e=1

δvT (ke
T Δv + f̂) = 0

ke
T = GT ĤG + kg Ĥ = F−1 HFT−1

f̂ = GT (σ̂ + Ĥ f s + F−1 f e) − fa

(45)

With the condensed element matrices the global matrices are obtained

KT = A
e=1

numel

ke
T F̂ = A

e=1

numel

f̂ . (46)
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where A denotes the standard assembly operator. The solution of the global system of
equations yields the increment of the global displacement vector ΔV = −K−1

T F̂ and thus the
increments ΔuK and ΔβK at each node. Here, one has to consider transformation (27)

ΔωK = T3K ΔβK T3K =

{
13 for nodes on shell intersections

[a1K , a2K ](3×2) for all other nodes
(47)

The update of the nodal displacements is performed in a standard way on the system level,

uK ⇐= uK + ΔuK

ωK ⇐= ωK + ΔωK

σ̂ ⇐= σ̂ + Δσ̂ ε̂ ⇐= ε̂ + Δε̂ , (48)

whereas the stress and strain parameters are updated on the element level using (44). For this
purpose the matrices which are necessary for the update have to be stored for each element.
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4 Examples

The derived element formulation has been implemented in an extended version of the general
purpose finite element program FEAP, see Zienkiewicz and Taylor [35].

4.1 Membrane and bending patch test

As a first example we investigate the element behaviour within a constant membrane and
bending patch test as depicted in Fig. 2, see also [36]. A rectangular plate of length a and
width b is supported at three corners. We consider in–plane loading and bending loading
denoted by load case 1 and 2, respectively. Both, membrane and bending patch test are
fulfilled by the present element with constant normal forces nx = 1, ny = nxy = 0 (load case
1) and constant bending moments mx = my = mxy = 1 (load case 2). In the case of solid
shell elements we refer to [19].

y x

1

2

3

4

5

6

7

8

a

b
Load case 1 2

Node Fx Fz m̄x m̄y

1 -20 -2 20 -10
2 0 0 20 10
3 0 0 -20 10
4 -20 0 -20 -10

a = 40
b = 20
h = 0.1
E = 106

ν = 0.3

Figure 2: Rectangular plate, patch of 5 elements

4.2 Linear test problem: Twisted beam

The clamped beam twisted 90◦ subjected to two different concentrated loads at the tip was
originally introduced by MacNeal and Harder [36]. A more demanding thin shell version was
proposed by Jetteur [37] and is investigated in this paper.
The linear elastic example is chosen to test the assess of warping on the performance of shell
elements. Two load cases are discussed. Load case 1 is a unit shear load in width direction
whereas load case 2 is a unit shear load in thickness direction, see Fig. 3. All computed and
reported tip displacements in load direction are normalized with respect to our converged
solutions 1.387 (load case 1) and 0.3429 (load case 2), see also [38], and are presented in Tabs.
1 and 2. The linear version [34] based on a Hellinger–Reissner functional with flat projection
and warping transformation exhibits a slightly oscillating convergence behaviour where this
is not the case for the present element. The displacements uz and uy are plotted for the
respective load case on the deformed configurations in Fig. 4.
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F=1.0

h

x

z

y

w

�

l = 12
w = 1.1
h = 0.05
E = 29 · 106

ν = 0.22
F = 1.0

Figure 3: Twisted beam: geometrical and material data

Table 1: Load case 1 normalized displacement uz for different elements

Mesh El. Simo [31] Taylor [38] Sauer [17] Gruttmann/ Present
Wagner [34]

1*6 6 99.4 100.1 99.5 102.0 99.6
2*12 24 100.0 100.2 99.7 100.6 99.7
4*24 96 100.1 100.1 99.9 99.3 99.9
8*48 384 100.2 100.0 100.0 100.0 100.0

Table 2: Load case 2 normalized displacement uy for different elements

Mesh El. Simo [31] Taylor [38] Sauer [17] Gruttmann/ Present
Wagner [34]

1*6 6 95.1 102.1 94.0 104.4 94.0
2*12 24 98.7 101.1 98.5 100.5 98.5
4*24 96 99.8 100.2 99.6 99.4 99.6
8*48 384 100.1 100.0 99.9 100.0 100.0

-1.387E+00 min

-1.289E+00

-1.190E+00

-1.090E+00

-9.913E-01

-8.922E-01

-7.931E-01

-6.939E-01

-5.948E-01

-4.957E-01

-3.965E-01

-2.974E-01

-1.983E-01

-9.913E-02

0.000E+00 max

0.000E+00 min

2.450E-02

4.900E-02

7.351E-02

9.801E-02

1.225E-01

1.470E-01

1.715E-01

1.960E-01

2.205E-01

2.450E-01

2.695E-01

2.940E-01

3.185E-01

3.429E-01 max

Figure 4: Deformed configurations for load case 1 and 2 and with displacements uz and uy
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4.3 Hemispherical shell with a 18◦ hole

The hemispherical shell with a 18◦ hole under opposite loads is a standard example in linear
and nonlinear shell analysis. A quarter of the shell is modelled with 16×16 elements using
symmetry conditions, see Fig. 5. The material properties are E = 6.825 · 107 and ν = 0.3,
the radius is R = 10 and the thickness is h = 0.04. The complete load deflection curve for
a 16 × 16 mesh is presented in Fig. 6. Results for the present element – which are nearly
identical with the EAS–shell [17] – show a very good agreement with those reported in [9].
Starting with F = 0 a maximum load step of 40 is possible with the EAS–shell [17]. For
this load step the norm of the residual vector within the equilibrium iteration is given in Fig.
6 and again shows the superior behaviour of the new element. It is important to note that
the relative large number of 19 iterations occurs for a finite rotation element along with large
rigid body motions and is not a consequence of the enhanced strain formulation. Moreover,
using the present element, the total load of F = 100 can be applied in a single load step with
17 iterations.

z

2F yx
2F

Figure 5: Hemispherical shell and deformed mesh for F=100
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0,00 1,00 2,00 3,00 4,00 5,00 6,00

Displacement  ui 

L
o

ad
  F

 

 u_x Present

 u_x Simo [9]

-u_y Present

-u_y Simo [9]

Iterat. EAS-shell [17] present element
1 5.6568542E+01 5.6568542E+01
2 2.7885600E+06 2.8374888E+06
3 4.6613004E+05 3.3241348E+05
4 1.9427725E+05 2.4512080E+04
5 6.7170299E+04 2.8536896E+02
6 2.6142653E+04 4.5611620E-02
7 1.3555091E+04 1.5785771E-08
8 3.5529025E+03
9 5.5833012E+03

10 9.2807935E+02
11 4.6902795E+03
12 2.0239489E+02
13 2.2367207E+03
14 1.4962903E+01
15 2.2588811E+03
16 9.1847138E-01
17 1.4030970E+01
18 5.8607442E-04
19 9.5610236E-06

Figure 6: Load deflection diagram and comparison of iteration behaviour
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4.4 L–shaped beam

In the next geometrical nonlinear example we investigate the post–critical behaviour of a
clamped L–shaped beam, origionally proposed in [39], see Fig. 7. The geometrical data are:
length l = 240 mm, width b = 30 mm and thickness h = 0.6 mm. The elastic constants are
E = 71240 N/mm2 and ν = 0.31. A buckling load of Pc = 1.09 has been determined in [39]
using beam elements, see also [40]. However with a width to height ratio 1/50 the beam is
rather a thin plate. Thus a discretisation with shell elements leads to slightly different results.
The post–critical path can be reached for the perfect structure using a branch switching
procedure or with the introduction of imperfections, for example a small perturbation load
P3 = P/1000 in thickness direction. Nonlinear buckling loads are presented in Tab. 3 for
different FE–meshes. Here the loading position has a significant influence on the buckling
load. The complete load–deflection curve is computed using an arc–length scheme on the
68 element mesh. It is nearly identical to results obtained with the EAS–shell [17] and is
depicted in Fig. 8. The robustness of the present element in comparison to the element
[17] is demonstrated by the equilibrium iteration for a large step (from u3 = 19.540 mm to
u3 = 35.614 mm), see Fig. 8. Furthermore the initial mesh and the deformed mesh (for a
displacement u3 = 56.1 mm) are plotted in Fig. 7.

P

b

l

b

l

Figure 7: Geometry, initial and deformed mesh at displacement u3 = 56.1 mm

Table 3: Nonlinear buckling loads

mesh for elements Simo et al. [9] EAS-shell [17] present
one leg center bottom center top
16×2 68 1.137 1.200 1.137 1.198 1.258
32×4 272 1.191 1.128 1.190 1.248
64×8 1088 1.186 1.125 1.186 1.244

’converged solution’ [9] 1.128
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0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 10 20 30 40 50 60

Displacement  u3 [mm]

L
o

ad
  P

 [
N

] Imperfect: P/1000
Perfect

Imperfect, large steps

Iterat. EAS-shell [17] present
1 9.3256220E+04 1.0269311E+05
2 2.8840619E+03 1.8419593E+03
3 1.8272735E+03 9.2095431E+02
4 9.8608350E+01 3.1491938E-01
5 1.4371684E+02 7.2982781E-02
6 1.9857848E+01 3.6491332E-02
7 5.2637887E+01 7.7310783E-07
8 1.4549719E+01 4.3099687E-09
9 5.5153927E+01

10 1.9751270E+00
11 6.6634091E+01
12 4.6571811E-02
13 2.5106273E+00
14 3.7558851E-05
15 3.7154558E-06
16 5.8605419E-09

Figure 8: Load deflection diagram and iteration behaviour of residuum

4.5 Channel–section beam

A channel–section beam clamped at one end and subjected to a tip force at the free end is
investigated next, see Fig. 9. In a first calculation we assume linear elastic behaviour and
in a second step the elasto–plastic material model accoording to appendix E with constants
according to Fig. 9. The developed shell model is compared with an EAS–shell model, [17].
The discretization is performed with 360 four–noded shell elements. The shell discretization
consists of 36 elements along the length direction, 6 elements along the web and 2 elements
for each flange. In the elastic case we apply load control whereas for the elasto–plastic case an
arc–length scheme with displacement control is used. We calculate the structural behaviour
up to a tip displacement of w = 250 cm and then unload the structure. The results for both
models agree very good in the total range of the computed load deflection curves, see Figs.
10–11. This holds for elastic as well as for inelastic material behaviour. Fig. 12 shows a plot
of the von Mises stresses for the ultimate state and the unloaded state. Similar results can
be achieved using an elasto–plastic beam model, see [30]

t

b

s

hP

L

P L = 900 cm
h = 30 cm
b = 10 cm
s = 1.0 cm
t = 1.6 cm
E = 21000 kN/cm2

ν = 0.3
y0 = 36 kN/cm2

K = 0

Figure 9: Channel–section beam with geometrical and material data

The robustness of the iteration behaviour is decribed in the following. Large steps are possible
for the present element for elastic as well as elasto–plastic material behaviour, see e.g. Figs.
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Figure 10: Load deflection curves of the channel–section beam: elastic material behaviour

10–11. The EAS–element with four enhanced parameters is much more sensitive and allows
e.g. for the elasto–plastic case only displacement steps of Δw ≈ 1 − 3 cm, whereas with
the present element displacement steps of Δw ≈ 50 − 70 cm are possible, see Fig. 11. The
iteration behaviour of both element formulations is depicted for two steps in Tab. 4.

Table 4: Comparison of iteration behaviour in the elasto–plastic case

displacement step w: 50 → 53 cm
Iterat. EAS-shell [17] present element

1 1.0000000E+00 1.0000000E+00
2 6.3761516E+03 5.5798017E+03
3 1.4983476E+02 2.8338326E+01
4 8.3009989E+01 5.0787877E-03
5 1.0505898E+01 3.4263339E-08
6 9.8385135E+00
7 5.7130968E+00
8 1.2059626E+00
9 2.5993786E-01

10 3.0121923E-03
11 1.9727645E-05
12 2.2762804E-08

displacement step w: 50 → 120 cm
Iterat. EAS-shell [17] present element

1 no convergence 1.0000000E+00
2 4.7604831E+06
3 1.5814845E+06
4 1.6610973E+05
5 1.2818501E+04
6 3.5064220E+01
7 1.6863763E-01
8 4.2263405E-06
9 1.9314382E-08

10
11
12

20



0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

0,0 50,0 100,0 150,0 200,0 250,0 300,0

Displacement w in  cm

L
o

ad
  P

 in
  k

N
 

Present elastic

EAS Shell plastic

Present plastic

Present, plastic,
large steps

Figure 11: Load deflection curves of the channel–section beam: elasto–plastic material be-
haviour
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Figure 12: Von Mises stresses in kN/cm2 for the ultimate state and unloaded state
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4.6 Steel girder with holes

In the last example we discuss the stability behaviour of a beam with holes in a thin web
subjected to a vertical load P at the center. Fig. 13 shows the ultimate buckling state in a
similar experiment and the essential geometrical data. Experimental results are not available.
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Figure 13: Steel girder with holes: a) similar experiment, b) geometrical data

A constant load distribution over the web is assumed. The web is modelled in the range
(94< x< 128.5 cm) as a rigid plate. The following boundary conditions are taken into account:
symmetry conditions at x=0, fully clamped at x=128.5 cm. Furthermore no deflections in
y-direction are permitted at x=y=0. E = 21000 kN/cm2 and ν = 0.3 are chosen as elastic
material properties. Within a pure elastic solution the load deflection curves for three selected
points are depicted in Fig. 13. Here, an arc–length scheme and a branch switching procedure
at the first buckling point have been used. Since the web is very thin the first buckling mode
is governed by local buckles around the holes in the web, see Fig. 15. Again the developed
element allows large load steps in the post–critical range.
In a second calculation we assume an ideal plastic material behaviour described by the model
according to appendix E with a yield stress y0 = 36 kN/cm2. Results for the associated load–
deflection behaviour of the defined points are depicted in Fig. 16. Here the arc–length scheme
is mandatory due to the decreasing load deflection curve. A similar deformation pattern is
obtained. Since the web is very thin yielding occurs in large ranges starting from the holes,
see Fig. 17, where the von Mises stresses are plotted with respect to the deformed mesh.
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Figure 14: Load deflection curves in the elastic case
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Figure 16: Load deflection curves in the elasto–plastic case
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Figure 17: Von Mises stresses at ultimate load P=128 kN

5 Conclusions

An efficient quadrilateral shell element for the nonlinear analysis of thin structures is pre-
sented. Based on a Hu–Washizu variational functional appropriate interpolation functions
for the independent mechanical fields are introduced. The developed mixed hybrid element
allows very large load steps and requires essentially less equilibrium iterations in comparison
to enhanced strain elements. This has been illustrated by several numerical examples which
include bifurcation and post–buckling response and elasto–plastic material behaviour.

Appendix

A Second variation of the current director vector

The second variation of the current director vector reads according to [30]

hI · ΔδdI = δwI · MI ΔwI

MI(hI) = 1
2
(dI ⊗ hI + hI ⊗ dI) + 1

2
(tI ⊗ ωI + ωI ⊗ tI) + c101

tI = −c3 bI + (c6 + c2c9) (bI · ωI) ωI

bI = dI × hI

c2 =
ωI − sin ωI

ω3
I

c3 =
ωI sin ωI + 2 cos ωI − 2

ω2
I (cos ωI − 1)

c6 =
c3 − c2

ω2
I

c9 = −1
4

+ c3 − 1
4
ω2

Ic
2
3

c10 = c2(1 − c9 ω2
I ) (bI · ωI) − (dI · hI)

(49)

where hI ∈ R3 denotes an arbitrary vector .
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B Remarks on patch test and stability

Assuming infinitesimal deformations δve e = 1, 2..., numel we examine conditions to fulfil the
patch test and stability conditions for the discrete problem based on the presented mixed
formulation. The described FE–method can be interpreted as a B̄ − approach.

B.1 The patch test

Introduce
B̄ := Nε FT−1 G (50)

the material part of the element stiffness matrix can be reformulated as follows

km = GT ĤG =
∫

(Ωe)

B̄T CB̄ dA . (51)

Now consider an element displacement vector δv, such that

B δv ≡ constant (52)

for each element and formulate

B̄ δv = Nε FT−1 G δv =
[
1, Ñε

] ⎡⎣ 1/Ae 1 0

0 fT−1

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣

∫
(Ωe)

B δv dA

∫
(Ωe)

ÑT
σ B δv dA

⎤⎥⎥⎥⎥⎥⎥⎦ (53)

which yields
B̄ δv = ε0 ≡ constant (54)

if the following two conditions hold:

(i) 1
Ae

∫
(Ωe)

B δv dA = B(ξ = η = 0) δv = ε0. This is fulfilled for the shear part with
assumed strains, but not with the standard bilinear finite element interpolation of the
displacement field along with (5)3. In this context we refer to the investigations for a
linear plate [33].

(ii)
∫
(Ωe)

ÑT
σ dA = 0 , which is the case for the present interpolation.

Thus ε0 ≡ constant yields with C = constant for an arbitrary patch of elements to a constant
stress state.

B.2 Stability of the discrete problem

Here the numerical stability of the presented mixed hybrid shell element with 20 nodal degrees
of freedom based on the Hu–Washizu functional is discussed. We assume that C is positive
definite and that the geometric contribution to the tangential stiffness does not introduce
instabilities. We denote by ker[B] the null space of B. Recall that ker[B] consists all nodal
infinitesimal rigid body motions, i.e. a vector δvR in ker[B] satisfies

B δvR = 0 ⇔ δvR = nodal rigid body motion (55)

25



and thus from (50)

B̄ δvR = Nε FT−1
∫
Ωe

NT
σ B δvR dA = 0 . (56)

Thus we conclude for a unique solution that the material tangent matrix must be at least
positive semidefinite

δvT kmδv ≥ 0 ∀ δv , (57)

with km according to (51). The equal sign holds for the admissible rigid body motions. For
the present quadrilateral element with nu = 20 degrees of freedom and nr = 6 rigid body
modes eq. (57) imposes the following restrictions on Nσ and Nε:

(i) The columns of Nσ and Nε are linear independent, or equivalent F is positive definite.

(ii) The number of stress and strain parameters nε must fulfill nε ≥ nu − nr = 14.

(iii) In view of (55)and (56) the constraint ker[B̄] = ker[B] yields the requirement that the
rank of matrix G must be equal to nε.

The conditions are fulfilled for the present element. It possesses with 6 zero eigenvalues which
correspond to the rigid motions the correct rank.

C Numerical integration of the stress resultants

The relation between the strains at a layer point with coordinate ξ3 and the shell strains (4)
is rewritten in matrix notation

⎡⎢⎢⎢⎢⎢⎢⎣
E11

E22

2E12

2E13

2E23

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 ξ3 0 0 0 0
0 1 0 0 ξ3 0 0 0
0 0 1 0 0 ξ3 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

2ε12

κ11

κ22

2κ12

γ1

γ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Em = A ε

(58)

The kinematic shell model assumes inextensibility in thickness direction. Thus the plane
stress condition has to be enforced which then yields the thickness strains, see e.g. [41].
Therefore the reduced vector Sm = [S11, S22, S12, S13, S23]T with components of the Second
Piola–Kirchhoff stresses is introduced.
Inserting (58) in the internal virtual work expression of the body δW i =

∫
Ω

∫
(ξ3) δET

mSm μ̄ dξ3d Ω
yields the vector of the stress resultants

∂εW =

(h/2)∫
(−h/2)

ATSm μ̄ dξ3 (59)

where μ̄ denotes the determinant of the so–called shifter tensor.
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The plane stress condition S33(E33) = 0 is iteratively enforced. For this purpose the increment
of the Second Piola–Kirchhoff stress tensor is written as follows[

dSm

dS33

]
=

[
Cmm Cm3

C3m C33

] [
dEm

dE33

]

dS = C̄ dE

(60)

where C̄ denotes the linearized Second Piola–Kirchhoff stress tensor which is determined
within a three–dimensional stress analysis at the considered layer point.
The Taylor series of the plane stress condition is aborted after the linear term and set to zero

S33(E
(i)
33 + ΔE

(i)
33 ) = S33(i) +

∂S33(i)

∂E
(i)
33

ΔE
(i)
33 = 0 with

∂S33(i)

∂E
(i)
33

= C33(i) (61)

and the solution yields the update formula

E
(i+1)
33 = E

(i)
33 − S33(i)

C33(i)
(62)

where i denotes the iteration number. Thus the nonlinear scalar equation S33(E33) = 0 is
iteratively solved for the unknown thickness strains using Newton´s scheme. One obtains
the stress vector Sm and the tangent matrix C̄ with submatrices according to (60). For
constitutive equations with a linear relation between S and E only one iteration step is
necessary. This is e.g. the case for isotropy when using the so–called St.Venant Kirchhoff law.
Finally the linearization of the stress resultants (59) considering the kinematic equation (58)
yields

C =
∂2W

∂ε2
=

(h/2)∫
(−h/2)

AT ∂Sm

∂Em

∂Em

∂ε
μ̄ dξ3 =

(h/2)∫
(−h/2)

AT C̃mm A μ̄ dξ3 (63)

where C̃mm = Cmm − Cm3 (C33)−1 C3m is obtained by static condensation of dE33 in (60).
Summarizing the algorithm provides an interface to arbitrary nonlinear three–dimensional
material laws. It requires the computation of S and C̄ which is a standard output of any
nonlinear three–dimensional stress analysis. It is important to note that in the Hu–Washizu
functional (19) the independent strains ε enter into the constitutive model, and thus in (58).
The thickness integration in (59) and (63) is performed numerically by summation over layers
and with two Gauss integration points for each layer. The numerical computations show
that four layers are sufficient when considering inelastic material behaviour. Since we use an
orthogonal basis system at the element center μ̄ = 1 holds only at the center. The numerical
tests however show that μ̄ = 1 can be set for the whole element and convergence against the
correct solution is given. In case of a constant matrix C̃mm, or a constant matrix for each
layer in laminated shells, an analytical thickness integration is possible.
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D Analytical integration of some matrices

The area element of the shell middle surface dA = |X,ξ ×X,η | dξdη can be approximated in
case of arbitrary warped elements by

|X,ξ ×X,η | ≈ detJ (64)

with J according to (14)

detJ = j0 + ξ j1 + η j2

j0 = (G0
ξ · t1)(G

0
η · t2) − (G0

η · t1)(G
0
ξ · t2) = |G0

ξ × G0
η|

j1 = (G0
ξ · t1)(G

1 · t2) − (G1 · t1)(G
0
ξ · t2) = t3 · (G0

ξ × G1)

j2 = (G1 · t1)(G
0
η · t2) − (G0

η · t1)(G
1 · t2) = t3 · (G1 × G0

η) .

(65)

The reason for the approximation is the constant element basis system ti in (14). Using (65)
the integration of the constants ξ̄ and η̄ yields

ξ̄ =
1

Ae

∫
(Ωe)

ξ dA =
1

3

j1

j0

η̄ =
1

Ae

∫
(Ωe)

η dA =
1

3

j2

j0

(66)

with the element area Ae = 4j0.
With these results the matrix F can be integrated analytically, since only polynomials of the
coordinates ξ and η are involved. Due to the introduced constants ξ̄ and η̄ one obtains a
decoupled matrix

F =

⎡⎣ Ae 18 0

0 f (6×6)

⎤⎦ with f (6×6) =

⎡⎢⎢⎣
fm 0 0

0 f b 0

0 0 f s

⎤⎥⎥⎦ . (67)

The components of the symmetric sub-matrices fm = f b and f s are specified

fm =
Ae

3

⎡⎣ f̂11 (J0
11J

0
11 + J0

12J
0
12)

2 f̂12 (J0
11 J0

21 + J0
22J

0
12)

2

f̂12 (J0
11 J0

21 + J0
22J

0
12)

2 f̂22 (J0
21J

0
21 + J0

22J
0
22)

2

⎤⎦

f s =
Ae

3

⎡⎣ f̂11 (J0
11J

0
11 + J0

12J
0
12) f̂12 (J0

11 J0
21 + J0

22J
0
12)

f̂12 (J0
11 J0

21 + J0
22J

0
12) f̂22 (J0

21J
0
21 + J0

22J
0
22)

⎤⎦
(68)

with f̂11 = 1 − 3 η̄2, f̂22 = 1 − 3 ξ̄2 and f̂12 = −3 ξ̄ η̄. F can be constructed completely
diagonal if all columns of (38) and (40) are orthogonal. For linear elastic material behaviour
with C = diag [Cm, h2

12
Cm, 5

6
Gh1] = constant the matrix H obtains a structure comparable

to F

H =

⎡⎣ Ae C 0

0 h (6×6)

⎤⎦ with h (6×6) =

⎡⎢⎢⎣
hm 0 0

0 hb 0

0 0 hs

⎤⎥⎥⎦
hm =

∫
Ωe

NmT
ε Cm Nm

ε dA

hb = h2

12
hm

hs = 5
6
Gh f s

,

(69)
where hm can also be integrated analytically.
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E J2-plasticity model for small strains

The applied plasticity model is restricted to small strains, where the additive decomposition
of the Green–Lagrangean strains in elastic an plastic parts is assumed. The strain energy is a
quadratic function of the elastic strains. We use an associative flow rule and a J2 yield criterion
with linear isotropic hardening. The constitutive equations are summarized as follows:

kinematic assumption E = Ee + Ep

elastic part of the free energy ψ(Ee) = λ
2

(trEe)
2 + G tr(E2

e)

Second Piola–Kirchhoff stresses S = ∂Eeψ

linear isotropic hardening y(ep) = y0 + K ep

yield criterion Φ =
√

3
2
||devS|| − y(ep)

associative flow rule Ėp = γ ∂SΦ

evolution of ep ėp =
√

2
3
||Ėp||

loading unloading conditions γ ≥ 0, Φ ≤ 0, γ Φ = 0

(70)

Here, the Lamé parameter λ is related to the elasticity constants by λ = Eν
(1+ν)(1−2ν)

, G denotes
the shear modulus, y0 the initial yield stress and K the plastic tangent modulus. The rate
equations are integrated with a backward Euler algorithm. The stress tensor is linearized to
obtain the consistent tangent matrix C̄ introduced in (60).

Remark:
The definition of the deviatoric part of the Second Piola–Kirchhoff stress tensor for finite
strain kinematics is

DevS = S − 1

3
[S : Ĉ]Ĉ−1 . (71)

Since Ĉ = (1 + 2E), then for small Green–Lagrangean strains (i.e. when ‖E2‖ � ‖E‖ � 1)
it follows that

DevS = S − 1

3
[S : 1] + O(‖E‖) = devS + O(‖E‖) . (72)

Here O(‖E‖) denotes the terms which tend to zero as ‖E‖ approaches zero. Thus, when
strains are restricted to be small, an approximate definition of the deviatoric stress tensor
may be employed. Therefore in problems where finite rotations may be present but strains
are restricted to be small, the above constitutive Eqs. (70) describe the small strain von Mises
elasto–plasticity model. In this context we refer to [42].
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