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A ROBUST NONCONFORMING H2-ELEMENT

TRYGVE K. NILSSEN, XUE-CHENG TAI, AND RAGNAR WINTHER

Abstract. Finite element methods for some elliptic fourth order singular per-
turbation problems are discussed. We show that if such problems are dis-
cretized by the nonconforming Morley method, in a regime close to second
order elliptic equations, then the error deteriorates. In fact, a counterexample
is given to show that the Morley method diverges for the reduced second order
equation. As an alternative to the Morley element we propose to use a non-
conforming H2-element which is H1-conforming. We show that the new finite
element method converges in the energy norm uniformly in the perturbation
parameter.

1. Introduction

Let Ω ⊂ R2 be a bounded polygonal domain and let ∂Ω denote the boundary.
The purpose of this paper is to discuss finite element methods for elliptic singular
perturbation problems of the form{

ε2∆2u−∆u = f in Ω
u = 0, ∂u

∂n = 0 on ∂Ω.(1.1)

Here ∆ is the Laplace operator, ∂/∂n denotes the normal derivative on ∂Ω, and ε is
a real parameter such that 0 < ε ≤ 1. In particular, we are interested in the regime
when ε is close to zero. We observe that if ε tends to zero the differential equation
in (1.1) formally degenerates to Poisson’s equation. Hence, we are studying a plate
model which may degenerate toward an elastic membrane problem.

When fourth order problems like (1.1) are discretized by a finite element method
the standard variational formulation will require function spaces which are sub-
spaces of the Sobolev space H2(Ω). Hence, we need piecewise smooth functions
which are globally C1. However, it is well known that in order to construct C1-
functions, which are piecewise polynomials with respect to a given triangulation of
Ω, we are forced to use polynomials of degree five or higher. Alternatively, we can
use a macroelement technique like in the Hsieh–Clough–Tocher method. We refer
to [3, Chapter 6] for a discussion of these issues.

In order to avoid high order polynomials or macroelements, a common approach
is to use nonconforming finite elements for such problems, i.e., the C1-continuity
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requirement is violated. The simplest nonconforming element for fourth order prob-
lems is the Morley element. The Morley space consists of piecewise quadratic func-
tions with respect to a given triangulation of Ω. The elements of this function
space are not even continuous functions, but still this space leads to a convergent
nonconforming finite element method. For discussions on properties of the Morley
method we refer, for example, to [1], [4], [6], and [9].

However, if the Morley method is applied to a nearly second order problem of
the form (1.1) with ε close to zero, then the convergence rate of the method will
deteriorate. In fact, if the Morley element is applied to a second order equation like
Poisson’s equation then the method will diverge. The main reason for this degener-
acy of the Morley method is the fact that the finite element space is not a subspace
of H1(Ω), or more precisely, the Morley space is not a proper nonconforming finite
element space for second order elliptic equations. This is of course in contrast to
the conforming case, since any subspace of H2(Ω) is also a subspace of H1(Ω).

We will discuss the degeneracy described above for the Morley method in §3.
Then, in §4, we will propose an alternative nonconforming finite element method
which is robust with respect to the parameter ε. The new function space consists
of continuous functions which locally belongs to a nine dimensional subspace of
quartic polynomials, constructed by the use of the “cubic bubble function.” The
global dimension of the new space, corresponding to a fixed triangulation and the
boundary conditions given in (1.1), is the sum of the number of interior vertices and
twice the number of interior edges. As a comparison, the dimension of the Morley
space is the the sum of interior vertices and edges. In §5 we will derive proper a
priori bounds for the solution of the model (1.1). These bounds lead to an error
estimate for the proposed nonconforming method which is uniform with respect to
parameter ε.

We should finally mention that there is some similarity between the study pre-
sented here and the results of [8], where finite element methods for second order
singular perturbation problems, degenerating to a zero order problem, are discussed.

2. Preliminaries

The inner product on L2 = L2(Ω) will be denoted by (·, ·). For m ≥ 0 we
shall use Hm = Hm(Ω) to denote the usual Sobolev space of functions with partial
derivatives of order less than or equalm in L2, and the corresponding norm by ‖·‖m.
Furthermore, the notation ‖ ·‖m,K is used to indicate that the norm is defined with
respect to a domain K, different from Ω. The seminorm derived from the partial
derivatives of order equal m is denoted by | · |m, i.e., | · |2m = ‖ · ‖2m − ‖ · ‖2m−1. The
space Hm

0 is the closure in Hm of C∞0 (Ω). Alternatively, we have

H1
0 = {v ∈ H1 : v|∂Ω = 0} and H2

0 = {v ∈ H2 ∩H1
0 :

∂v

∂n
= 0 on ∂Ω},

where the restrictions to ∂Ω are taken in the sense of traces. Finally, H−m ⊃ L2 is
the dual of Hm

0 with respect to the L2-inner poduct.
We let Du be the gradient of u and D2u = (∂2u/∂xi∂xj)i,j the 2 × 2-tensor of

second order partials. In order to define weak solutions of (1.1) we introduce the
bilinear forms

a(u, v) =
∫

Ω

D2u : D2v dx,(2.1)
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where the colon denotes the scalar product of tensors, and

b(u, v) =
∫

Ω

Du ·Dv dx.(2.2)

A function u ∈ H2
0 is defined to be a weak solution of (1.1) if

ε2a(u, v) + b(u, v) = (f, v) ∀v ∈ H2
0 .(2.3)

In fact, in this weak formulation we may simplify the bilinear form a and use

a(u, v) =
∫

Ω

∆u∆v dx

instead of the one given by (2.1), since∫
Ω

∆u∆v dx =
∫

Ω

(traceD2u)(traceD2v) dx =
∫

Ω

D2u : D2v dx(2.4)

for all u, v ∈ H2
0 . However, since we will consider nonconforming finite element

methods, this identity may not hold on the proper finite element spaces, and there-
fore we use the form given by (2.1).

It is a consequence of the regularity theory for elliptic problems in nonsmooth
domains (cf. [5, Corollary 7.3.2.5]) that if f ∈ H−1 and Ω is convex, then u ∈ H3,
i.e., there is a constant c independent of f such that the corresponding weak solution
u of (1.1) satisfies

‖u‖3 ≤ c ‖f‖−1.

However, the constant c will in general depend on ε and will blow up as ε tends to
zero. This issue will be discussed further in §5.

3. The Morley method

Assume that {Th} is a quasi-uniform and shape-regular family of triangulations
of Ω, where the discretization parameter h is a characteristic diameter. We let Xh be
the set of vertices and Eh the set of edges corresponding to Th. The corresponding
Morley finite element space, Mh, consists of all piecewise quadratics which are
continuous at each vertex of Th and such that the normal component of the gradient
is continuous at the midpoint of each edge. Furthermore, in order to approximate
the boundary conditions in (1.1) the functions in Mh are zero at boundary vertices
and have zero normal derivatives at the midpoints of all boundary edges. A function
w ∈ Mh is uniquely determined by the value of w at each interior vertex and by
the value of the normal component of Dw at the midpoint of each interior edge;
see Figure 1.

Figure 1. The six degrees of freedom of the Morley element
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The finite element approximation uh ∈Mh of u is now determined by the linear
system

ε2ah(u, v) + bh(u, v) = (f, v) ∀v ∈Mh.(3.1)

Here the bilinear forms ah and bh are obtained from a and b by summing over all
triangles in Th, i.e.

ah(u, v) =
∑
T∈Th

∫
T

D2u : D2v dx

and

bh(u, v) =
∑
T∈Th

∫
T

Du ·Dv dx.

Associated with the bilinear form ε2ah + bh, we define a seminorm ||| · |||ε,h by

|||w|||2ε,h = ε2ah(w,w) + bh(w,w).

Observe that this seminorm is a norm on H2
0 + Mh, and, as ε tends to zero, this

energy norm approaches a piecewise H1
0 -norm.

If u ∈ H2
0 is the corresponding weak solution of (1.1), then the error u− uh can

be estimated in the energy norm using the second Strang lemma (cf. [3, Theorem
4.2.2]) which states that

|||u− uh|||ε,h ≤ inf
v∈Mh

|||u− v|||ε,h + sup
w∈Mh

|Eε,h(u,w)|
|||w|||ε,h

,(3.2)

where the consistency error Eε,h(u,w) is given by

Eε,h(u,w) = ε2ah(u,w) + bh(u,w)− (f, w).

Assume that f ∈ L2 and u ∈ H3 ∩ H2
0 . From the basic estimate (3.2) and by

following the approach of [9] to estimate Eε,h(u,w) it is straightforward to obtain
an error estimate of the form

|||u − uh|||ε,h ≤ C
(
h2

ε
‖f‖0 +

h

ε
‖u‖3

)
.(3.3)

Note that if ε = 1 this estimate predicts linear convergence with respect to the mesh
parameter h. However, if h is fixed and ε approaches zero, then the estimate for the
error behaves like O(1/ε) (under the assumption that ‖u‖3 is uniformly bounded).
The following numerical example indicates that this degeneracy is in fact real.

Example 3.1. We consider the problem (1.1) with Ω taken as the unit square and
f = ε2∆2u−∆u, where u(x) = (sin(πx1) sin(πx2))2. The domain is triangulated by
first dividing it into h× h squares. Then, each square is divided into two triangles
by the diagonal with a negative slope. In Table 1 we have computed the relative
error in the energy norm, |||uIh−uh|||ε,h/|||uIh|||ε,h, for different values of ε and h. Here
uIh denote the interpolant of u on Mh defined from the values of u at each vertex
and from the value of the normal component of Du on the midpoint of each edge.
For a comparison we also consider the case ε = 0, i.e., the Poisson problem with
Dirichlet boundary conditions, and the biharmonic problem ∆2u = f .

When ε is large, the convergence appears to be linear with respect to h, while
the convergence deteriorates as ε approaches zero.
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Table 1. The relative error measured by the energy norm

ε\h 2−3 2−4 2−5 2−6

20 0.3898 0.2008 0.1012 0.0507
2−2 0.4016 0.2085 0.1053 0.0528
2−4 0.5674 0.3262 0.1699 0.0858
2−6 0.8937 0.7499 0.4981 0.2790
2−8 0.9730 0.9934 0.9275 0.7487
2−10 0.9791 1.0214 1.0265 1.0059

Poisson 0.9860 1.0242 1.0348 1.0376
Biharmonic 0.3891 0.2004 0.1009 0.0506

3.1. The reduced problem. When ε tends to zero the problem (1.1) formally
approaches a Poisson equation with Dirichlet boundary conditions. Below we shall
give an analytical argument which shows that for such problems the Morley space
will in fact lead to a divergent numerical method. Hence, this suggest once more
that the Morley method is not suitable for problems of the form (1.1) when the
parameter ε is sufficiently small. We should mention here that the divergence of
the Morley method for second order problems has also been discussed in [7].

In order to simplify some calculations below we shall modify the reduced prob-
lem slightly. Instead of the pure Dirichlet problem we consider mixed boundary
conditions. We assume that ∂Ω = ΓD ∪ ΓN , where ΓD and ΓN are disjoint subsets
of ∂Ω and consider the problem

−∆u = f, in Ω,
u = 0 on ΓD,
∂u
∂n = g on ΓN .

(3.4)

This problem can be considered to be the formal limit of the fourth order problems
ε2∆2u−∆u = f in Ω,

u = 0 on ΓD,
∂
∂n (u− ε2∆u) = g on ΓN

∆u = 0 on ∂Ω.

(3.5)

As above let Th be a triangulation of Ω and let Mh be the Morley space correspond-
ing to the boundary conditions of (3.4), i.e., we assume that the functions in Mh

are zero on Xh ∩ ΓD.
The approximation uh ∈Mh of the solution u of problem (3.4) is determined by

the linear system

bh(uh, w) = (f, w) + 〈g, w〉 for all w ∈Mh.(3.6)

Here

〈g, w〉 =
∫

ΓN

gw ds,

where s denotes the arc length along ∂Ω. Furthermore, the exact solution u of (3.4)
satisfies

bh(u,w) = (f, w) + 〈g, w〉+ Eh(u,w) for all w ∈Mh,(3.7)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



494 TRYGVE K. NILSSEN, XUE-CHENG TAI, AND RAGNAR WINTHER

where

Eh(u,w) = bh(u,w)− (f, w) − 〈g, w〉.
Let ||| · |||h = ||| · |||0,h be the energy norm for the reduced problem. From (3.6) and
(3.7) we obtain the second Strang lemma

|||u − uh|||h ≤ inf
v∈Mh

|||u − v|||h + sup
w∈Mh

|Eh(u,w)|
|||w|||h

.(3.8)

However, the lower bound

|||u − uh|||h ≥ sup
w∈Mh

|Eh(u,w)|
|||w|||h

(3.9)

is also valid. This follows from the Cauchy–Schwarz inequality since

|Eh(u,w)| = |bh(u − uh, w)| ≤ |||u− uh|||h |||w|||h.
The basic lower bound (3.9) can be used to prove the divergence of the method if
we can establish that the right hand side of (3.9) does not tend to zero with h. We
will do this below for a suitable choice of the solution u.

However, first we will discuss a decomposition of the Morley space Mh. The
function space Mh can naturally be written as a sum of two spaces

Mh = Mv
h +M e

h

associated with the vertex values and the edge values. More precisely,

Mv
h = {w ∈Mh :

∫
e

∂w

∂n
ds = 0 for all e ∈ Eh}

and
M e
h = {w ∈Mh : w(x) = 0 for all x ∈ Xh}.

For a given w ∈ Mh, let wvh be the corresponding interpolant of w on Mv
h . Since

this interpolation process preserves constants locally, we have

||w − wvh||L∞ ≤ ch||Dw||L∞ ,(3.10)

where the constant c is independent of h.
Observe that since ∂w

∂n is linear on each side of an edge we must have that ∂w
∂n

equals zero at the midpoint of each edge if w ∈ Mv
h . Similarly, if w ∈ Me

h, then
w restricted to a side of an edge is a quadratic function which is zero at the two
endpoints. We can therefore conclude that the tangential derivative ∂w

∂s is zero at
the midpoint. Also, for any w ∈Mh the function ∆w is a constant on each triangle.
In fact, if w ∈Mv

h , then ∆w = 0. This follows since∫
T

∆w dx =
∫
∂T

∂w

∂n
ds = 0.

Furthermore, the decomposition of Mh is in fact orthogonal with respect to the
bilinear form bh, i.e.,

Mh = Mv
h ⊕M e

h.(3.11)

To see this, note that if w ∈Mv
h and φ ∈M e

h, then, since w is harmonic on each T ,∫
T

Dw ·Dφdx =
∫
∂T

∂w

∂n
φds.
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However, on each edge the function ∂w
∂nφ is a cubic function which is zero at the

endpoints and the midpoint. Hence, all the boundary integrals are zero, which
implies

bh(w, φ) = 0.

In fact, the decomposition is orthogonal locally on each triangle T ∈ Th.

Example 3.2. To construct the counterexample, we let Ω be the unit square. The
triangulations Th are constructed by dividing Ω into n2 squares of size h×h, where
h = 1/n, and then dividing each square into two triangles using the negative sloped
diagonals. We assume that ΓD consists of the intersection of ∂Ω with the coordinate
axis, while we assume Neumann boundary conditions on x1 = 1 and x2 = 1. Hence,
the space Mh is assumed to consist of the Morley functions which are zero at the
vertices on the coordinate axis.

We assume that the solution is given by u(x) = x1x2. Hence, g = x1 on x2 = 1
and g = x2 on x1 = 1. Furthermore u is harmonic (i.e., f = 0). Therefore,

Eh(u,w) = bh(u,w)− 〈g, w〉.(3.12)

Note also that u ∈Mh. Let uvh be the interpolant of u onto Mv
h . Hence,

uvh(x) = u(x) for all x ∈ Xh and
∫
e

∂uvh
∂n

ds = 0 for all e ∈ Eh.

We shall show that limh→0 |Eh(u, uvh)|/|||uvh|||h is strictly positive. Due to the lower
bound (3.9) this implies that the method diverges.

Let ueh = u−uvh. Then ueh ∈M e
h and ueh is exactly the interpolant of u onto Me

h.
Furthermore, from (3.11) we have

bh(u, u) = bh(uvh, u
v
h) + bh(ueh, u

e
h).(3.13)

Since |Duvh|2 is piecewise quadratic, it follows that for any T ∈ Th∫
T

|Duvh|2 dx =
|T |
3

∑
m∈M(T )

|Duvh(m)|2,

where |T | is the area of T and M(T ) denotes the set of the three edge midpoints
(cf. [3, page 183]). However, the tangential derivative ∂ueh

∂s at each edge midpoint
is zero. Thus ∂uvh/∂s are exactly equal to the corresponding values for u, while the
normal component of Duvh at each edge midpoint is zero. Therefore, we obtain

bh(uvh, u
v
h) =

h2

6

∑
T∈Th

∑
m∈M(T )

|∂u
∂s

(m)|2.

However, since u(x) = x1x2, we can verify that

lim
h→0

h2

6

∑
T∈Th

∑
m∈M(T )

|∂u
∂s

(m)|2

= lim
h→0
{h

2

6

n∑
i=1

n∑
j=1

(ih− jh)2 +
h2

3

n∑
i=1

n∑
j=1

((ih)2 + (jh)2)}.

From this expression we obtain that

lim
h→0

bh(uvh, u
v
h) = 1/4.(3.14)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



496 TRYGVE K. NILSSEN, XUE-CHENG TAI, AND RAGNAR WINTHER

It is also straightforward to check that

bh(u, u) =
∫

Ω

|∇u|2 dx = 2/3,

and hence (3.13) implies

lim
h→0

bh(ueh, u
e
h) = 5/12.(3.15)

From (3.12) we obtain

Eh(u, uvh) = bh(u, uvh)− 〈g, uvh〉 = bh(uvh, u
v
h)− 〈g, uvh〉

= b(u, u)− 〈g, uvh〉 − bh(ueh, u
e
h)(3.16)

= 〈g, u− uvh〉 − bh(ueh, u
e
h).

Hence, we derive from (3.10) and (3.16) that

lim
h→0

Eh(u, uvh) = − lim
h→0

bh(ueh, u
e
h) = −5/12.

By using (3.14) this implies that

lim
h→0

|Eh(u, uvh)|
|||uvh|||h

= lim
h→0

bh(ueh, u
e
h)

bh(uvh, u
v
h)1/2

= 5/6.

The divergence of the method is therefore a consequence of the basic lower bound
(3.9).

4. Modifications of the Morley element

As we have seen in the discussion above, the Morley method is not well suited
for solving problems of the form (1.1) when the positive parameter ε is small. The
purpose of this section is to propose an alternative nonconforming finite element
space which will lead to a numerical method that is robust with respect to the
parameter ε. For a review of other conforming and nonconforming finite element
methods for fourth order problems we refer to [3, Chapter 6].

Let T ⊂ R2 be a triangle and consider the polynomial space on T given by

W (T ) = {w ∈ P4 : w|e ∈ P2 ∀e ∈ E(T )}.
Here Pk denotes the set of polynomials of degree k and E(T ) denotes the set of the
edges of T . It is a consequence of Lemma 4.1 that the space W (T ) can alternatively
be defined as all functions

w = q + pb,(4.1)

where q ∈ P2, p ∈ P1 and b is the cubic bubble function. We recall that the
cubic bubble function b is defined by b = λ1λ2λ3, where λi(x) are the barycentric
coordinates of x with respect to the three corners X (T ) of T . Associated with an
xi ∈ X (T ), the function λi ∈ P1 is uniquely determined by

λi(xi) = 1, λi(x) = 0 for x ∈ X (T ), x 6= xi.

Furthermore,
3∑
i=1

λi(x) ≡ 1.

A basis for the space W (T ), which is useful below, can be derived from the following
result.
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Figure 2. The nine degrees of freedom of the modified Morley element

Lemma 4.1. The space W (T ) is a linear space of dimension nine. Furthermore,
an element w ∈W (T ) is uniquely determined by the following degrees of freedom:
• the values of w at the corners and edge midpoints;
•
∫
e
∂w
∂n ds for all e ∈ E(T ).

Proof. Since any function of the form (4.1) is in W (T ) we must have dimW (T ) ≥ 9.
Furthermore, it is consequence of the standard Langrangian basis for P4(T ) (cf. for
example [2, Chapter 3]) that if w ∈ P4(T ), with w|∂T ≡ 0, then

w = pb,(4.2)

where p ∈ P1 and b is the cubic bubble function.
Assume that w ∈ W (T ) is such that the nine degrees of freedom specified in

Lemma 4.1 are all zero. The proof will be completed if we can show that w ≡ 0.
Since w|e ∈ P2, with three roots, we must have w|∂T = 0. Therefore, w is of the
form (4.2).

Let e be a fixed edge of T . Hence,

w = pb = pλ+λ−λe,

where λe ∈ P1 is the barycentric coordinate function such that λe ≡ 0 on e, and
λ+ and λ− are the two other barycentric coordinates. Note that the “quadratic
bubble,” be = λ+λ−, is strictly positive in the interior of e. Furthermore,

(Dw)|e = (pbeDλe)|e.
Note also that ∂λe/∂n < 0, where n is the outward unit normal on e. Therefore,
the condition ∫

e

∂w

∂n
ds =

∫
e

pbe
∂λe
∂n

ds = 0

implies that p must have a root in the interior of e. Hence, p ∈ P1 has a root in the
interior of all three edges. This implies that p ≡ 0, or equivalently, w ≡ 0.

As before let Th be a quasi-uniform and shape-regular family of triangulations
of Ω. The new finite element space Wh, associated with the triangulation Th, will
consist of continuous functions which are zero at the boundary, i.e., Wh ⊂ C0(Ω).
In addition
• w|T ∈ W (T ) for all T ∈ Th,
•
∫
e
∂w
∂n ds is continuous for all interior edges and zero for boundary edges.

It follows from Lemma 4.1 that any function w ∈ Wh is uniquely determined by
the values of w at all interior vertices and edge midpoints, and by the mean value
of ∂w/∂n for all interior edges (see Figure 2).
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T +
e

T−
e

e

Figure 3. Ωe = T+
e ∪ T−e

These degrees of freedom also defines a local interpolation operator Ih : H2 7→
Wh. Furthermore, since this operator preserves quadratics locally, it follows from
a standard scaling argument, using the Bramble–Hilbert lemma, that there is a
constant c independent of h such that∑

T∈Th

‖v − Ihv‖j,T ≤ chk−j |v|k for v ∈ H2
0 ∩Hk,(4.3)

where j = 0, 1, 2 and k = 2, 3. In fact, if T̂ is a reference triangle and Î : H2(T̂ ) 7→
W (T̂ ) is the interpolation operator with respect to T̂ , then for all v ∈ H2(T̂ )

‖Îv‖1,T̂ ≤ c1(‖v‖L∞(T̂ ) + ‖ ∂v
∂n
‖0,∂T̂ ) ≤ c2‖v‖1/21,T̂

‖v‖1/2
2,T̂
,

where the constants c1 and c2 only depend on T̂ . Here we have used the standard
trace inequality

‖v‖0,∂T̂ ≤ c‖v‖
1/2

0,T̂
‖v‖1/2

1,T̂

(cf. [5, Theorem 1.5.1.10]). Hence, again from a Bramble–Hilbert argument, we
obtain

‖v − Ihv‖1 ≤ ch1/2|v|1/21 |v|
1/2
2 for v ∈ H2

0 .(4.4)

Compared to the estimate (4.3), with j = 1, the new estimate (4.4) predicts a
lower order convergence with respect to h, but the dependence on the function v is
weaker. This will be useful below.

Since the elements of Wh are continuous functions which vanish on the boundary,
the inclusion Wh ⊂ H1

0 holds. However, Wh is not a subspace of H2. Therefore,
the space Wh again leads to a nonconforming finite element method for the fourth
order problem (1.1). If w ∈ Wh and e is an interior edge, we let [∂w/∂n]e denote
the jump of the normal derivative on e. We let Ωe denote the union of the two
triangles T+

e and T−e which have e as common edge (see Figure 3). Observe that
if w ∈ Wh and |w|2,T+

e
+ |w|2,T−e = 0, then w is linear on Ωe. Furthermore, if w is

linear on Ωe, then [∂w/∂n]e ≡ 0. Also, the continuity requirement on Wh implies
that for any w ∈ Wh the function [∂w/∂n]e is a cubic polynomial such that∫

e

[
∂w

∂n
]e ds = 0.(4.5)
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Hence, by a standard scaling argument (see, for example, [2, Section 8.3]), this
implies that there is a constant c independent of h such that∫

e

φ[
∂w

∂n
]e ds ≤ ch|φ|1,Ωe(|w|2,T+

e
+ |w|2,T−e )(4.6)

for all φ ∈ H1 and w ∈Wh.
The estimate (4.6) can be generalized such that it is also valid for boundary

edges if w is taken to be zero outside Ω. Below we shall need this estimate when
φ = ∆ψ − ∂2ψ/∂s2, where s is a unit tangent vector on e. In this case we obtain
from (4.6) that∫

e

(∆ψ − ∂2ψ/∂s2)[
∂w

∂n
]e ds ≤ ch|ψ|3,Ωe(|w|2,T+

e
+ |w|2,T−e )

for all ψ ∈ H3 and w ∈ Wh. By summing this estimate over all edges we derive∑
e∈Eh

∫
e

(∆ψ − ∂2ψ/∂s2)[
∂w

∂n
]e ds ≤ c

h

ε
|ψ|3|||w|||ε,h(4.7)

for all ψ ∈ H3, w ∈ Wh.
As above, we can also obtain a variant of this estimate which is lower order with

respect to h, but which requires a weaker dependence on the function u. If T̂ is a
reference triangle, and ê is an edge of T̂ , then

‖φ‖0,ê ≤ c‖φ‖1/2
0,T̂
‖φ‖1/2

1,T̂
.

Therefore, the estimate (4.6) can be replaced by∫
e

φ[
∂w

∂n
]e ds ≤ ch1/2‖φ‖1/20,Ωe

|φ|1/21,Ωe
(|w|2,T+

e
+ |w|2,T−e )

for all φ ∈ H1, w ∈Wh. This again leads to the bound∑
e∈Eh

∫
e

(∆ψ − ∂2ψ/∂s2)[
∂w

∂n
]e ds ≤ c

h1/2

ε
|ψ|1/22 |ψ|

1/2
3 |||w|||ε,h(4.8)

for all ψ ∈ H3, w ∈ Wh, as an alternative to (4.7).
The finite element solution uh ∈ Wh is defined as the solution of

ε2ah(uh, w) + b(uh, w) = (f, w), for all w ∈ Wh.(4.9)

The following theorem shows that for any fixed ε ∈ (0, 1] the new nonconform-
ing finite element method converges linearly with respect to h. Furthermore, this
convergence is uniform with respect to ε if the quantity |u|2 + ε|u|3 is uniformly
bounded.

Theorem 4.2. Assume that the weak solution u of (1.1) is in H2
0 ∩H3 for a given

f ∈ L2. Furthermore, let uh ∈ Wh be the corresponding solution of (4.9). Then
there is a constant c, independent of ε and h, such that

|||u − uh|||ε,h ≤ c
{

(h2 + εh)|u|3 ,
h(|u|2 + ε|u|3).

Proof. The second Strang lemma (3.2) is still valid, i.e.

|||u − uh|||ε,h ≤ inf
v∈Wh

|||u− v|||ε,h + sup
w∈Wh

|Eε,h(u,w)|
|||w|||ε,h

,(4.10)
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where Eε,h(u,w) is given by

Eε,h(u,w) = ε2ah(u,w) + b(u,w)− (f, w).

Furthermore, the interpolation estimate (4.3) implies that

inf
v∈Wh

|||u − v|||ε,h ≤ c
{

(h2 + εh)|u|3 ,
h(|u|2 + ε|u|3).(4.11)

Hence, it remains to estimate Eε,h(u,w).
Since u ∈ H3 it follows from the weak formulation (2.3) and the identity (2.4)

that ∫
Ω

(−ε2D(∆u) +Du) ·Dw dx = (f, w) ∀w ∈ H1
0 .

In particular, this identity holds for w ∈Wh. The consistency error Eε,h(u,w) can
therefore be expressed as

Eε,h(u,w) = ε2
∑
T∈Th

∫
T

(D2u : D2w +D∆u ·Dw) dx.(4.12)

The tensor D2u can be written as

D2u = (∆u)I+ C2u,

where I is the identity tensor and

C2u = − curl curlu =

(
−∂2u
∂x2

2

∂2u
∂x1∂x2

∂2u
∂x1∂x2

−∂2u
∂x2

1

)
.

Furthermore,

(∆u)I : D2w = (∆u)∆w

and therefore∫
T

(∆u)I : D2w dx =
∫
∂T

∆u
∂w

∂n
ds−

∫
T

D(∆u) ·Dw dx.(4.13)

On the other hand, since each row of C2u is divergence free, we have

div(C2u ·Dw) = C2u : D2w,

and from this we obtain∫
T

C2u : D2w dx =
∫
∂T

n · C2u ·Dw ds.

However, by combining this identity with (4.12) and (4.13), and by using the fact
that the tangential component of Dw is continuous on each edge, we obtain

Eε,h(u,w) = ε2
∑
e∈Eh

∫
e

(∆u + n · C2u · n)[
∂w

∂n
]e ds

= ε2
∑
e∈Eh

∫
e

(∆u − ∂2u

∂s2
)[
∂w

∂n
]e ds.

(4.14)

It therefore follows from (4.7) that

Eε,h(u,w) ≤ chε|u|3|||w|||ε,h,
and together with (4.10) and (4.11) this implies the desired estimates.
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Table 2. The relative error measured by the energy norm

ε\h 2−3 2−4 2−5 2−6

20 0.3359 0.1790 0.09108 0.0457
2−2 0.3016 0.1589 0.08061 0.0405
2−4 0.1519 0.07627 0.03819 0.0190
2−6 0.0564 0.0229 0.0107 0.0052
2−8 0.0416 0.0113 0.0036 0.0014
2−10 0.0406 0.0103 0.0026 0.0007

Poisson 0.0409 0.0102 0.0026 0.0006
Biharmonic 0.3386 0.1806 0.0919 0.0462

Note that in the limit as ε tends to zero the first estimate in Theorem 4.2 gives
the bound

‖u− uh‖1 ≤ ch2|u|3.
In fact, since Wh is a subset of H1

0 , this estimate follows directly from (4.3) for the
reduced problem {

−∆u = f in Ω
u = 0 on ∂Ω.(4.15)

However, if f ∈ L2 and Ω is convex, then we can only expect that the solution
of the reduced problem (4.15) is in H2. The second estimate in Theorem 4.2 is
consistent with the proper result for the reduced problem in this case.

Example 4.1. We will redo the computations we did in Example 3.1, the only
difference being that we use the new finite element space Wh instead of the Morley
space Mh. The results for the relative error are given in Table 2. These results
clearly demonstrate the improved behavior of the modified method when ε is close
to zero. In particular, when ε is large the convergence appears to be linear with
respect to h, while we observe nearly quadratic convergence when ε is small. This
is in fact consistent with Theorem 4.2, since |u|3 is independent of ε.
Let us compare the dimension of the space Wh with the dimension of the Morley
space Mh. Let |Xh| be the number of interior vertices in the triangulation Th and let
|Eh| be the corresponding number of interior edges. It follows from the discussion
above that

dim(Wh) = |Xh|+ 2|Eh|,
while the dimension of the Morley spaceMh is |Xh|+|Eh|. Hence, since |Eh| ≈ 3|Xh|,
the replacement of Mh by Wh leads to an increase in the number of unknowns of
approximately 75 percent. Below we shall briefly discuss an alternative noncon-
forming finite element space W̃h. This space has a similar robustness property as
Wh with respect to parameter ε, and the dimension of the space is 3|Xh| + |Eh|,
which represents an increase of approximately 50 percent as compared to the Morley
space. On the other hand, the sparsity structure of the space Wh is more favorable
than the sparsity structure of the new space.

If T is a triangle, let

W̃ (T ) = {w ∈ P4 : w|e ∈ P3 ∀e ∈ E(T )}.
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It can easily be verified, using arguments as above, that W̃ (T ) can be equivalently
defined as all functions

w = q + pb,(4.16)

where q ∈ P3, p ∈ P1 and b is the cubic bubble function. Hence, W̃ (T ) is a linear
space of dimension twelve. The basis given below will be used to define a proper
finite element space.

Lemma 4.3. The space W̃ (T ) is a linear space of dimension twelve. Furthermore,
an element w ∈ W̃ (T ) is uniquely determined by the following degrees of freedom:
• the values of w and Dw at the corners;
• ∂w

∂n at the midpoint me of e ∀e ∈ E(T ).

Proof. Since dim W̃ (T ) = 12 it is enough to show that the twelve degrees of freedom
determine elements of W̃ (T ) uniquely. Assume w ∈ W̃ (T ) such that the twelve
degrees of freedom are all zero. Since w|e ∈ P3, with a double zero at each endpoint
we must have w|∂T = 0. From (4.16) we obtain that w is of the form

w = pb,

where p ∈ P1 and b is the cubic bubble function. Note that

(Dw)|e = (pD(b))|e
for each edge e, and that

(Db) · n)(me) 6= 0.

Therefore, the three conditions (∂w/∂n)(me) = 0 imply that p(me) = 0. Hence,
p ≡ 0, or equivalently w ≡ 0.

As above the polynomial space W̃ (T ) can be used to define a finite element space
W̃h consisting of functions which are locally in W̃ (T ), with w and Dw continuous at
each vertex, and with ∂w/∂n continuous at the midpoint of each edge. If w ∈ W̃h

and e ∈ Eh, then [∂w/∂n]e is a cubic function which has a root at the two endpoints
and the midpoint. Therefore, the property (4.5) holds for all functions in W̃h.
Hence, by arguing almost exactly as above, we can also derive a result like Theorem
4.2 in this case.

5. The influence of boundary layers

Throughout this section we assume that the domain Ω is a convex, bounded
polygonal domain in R2. As in most of the previous section we consider the non-
conforming finite element method (4.9), derived from the space Wh, approximating
the singular perturbation problem (1.1).

As we observed above, Theorem 4.2 ensures linear convergence with respect to h,
uniformly in ε, as long as the seminorm |u|2 +ε|u|3 is uniformly bounded. However,
by studying the effect of boundary layers in the one dimensional analogs of (1.1),
one will quickly be convinced that the best one can hope for is that this quantity
behaves like O(ε−1/2) as ε tends to zero. In fact, these one dimensional analogs
admit solutions of the form

u(x) = εe−x/ε − p(x),(5.1)

where p is a cubic polynomial which is bounded independently of ε, chosen such
that the Dirichlet boundary conditions hold, and f = p′′.
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In the lemma below we state some useful estimates in the two dimensional case.
Here, and in the rest of this section, u = uε ∈ H2

0 ∩H3 denotes the weak solution
of problem (1.1), while u0 ∈ H1

0 ∩H2 is the corresponding solution of the reduced
problem (4.15).

Lemma 5.1. There is a constant c, independent of ε and f , such that

|u|2 + ε|u|3 ≤ c ε−1/2‖f‖0 and |u− u0|1 ≤ c ε1/2‖f‖0
for all f ∈ L2.

Proof. We will establish the bounds above by energy arguments. Throughout the
proof c will denote a generic constant, independent of ε and f , and not necessarily
the same at different occurences. Let us first recall the standard estimates for
convex domains. It follows from [5, Theorem 3.2.1.2] that,

‖u0‖2 ≤ c‖f‖0(5.2)

and, since ∆2u = ε−2∆(u− u0), it is a consequence of [5, Corollary 7.3.2.5] that

‖u‖3 ≤ c ε−2‖∆(u− u0)‖−1 ≤ c ε−2|(u− u0)|1.(5.3)

Furthermore, from the weak formulations of the problems (1.1) and (4.15), and the
fact that u ∈ H2

0 ∩H3, we derive that

ε2(∆u,∆v) + (D(u − u0), Dv) = ε2

∫
∂Ω

(∆u)
∂v

∂n
ds

for all v ∈ H1
0 ∩H2. In particular, by choosing v = u− u0 we obtain

ε2‖∆u‖20 + |u− u0|21 ≤ −ε2

∫
∂Ω

(∆u)
∂u0

∂n
ds− ε2(∆u, f).(5.4)

However,

ε2|(∆u, f)| ≤ ε2

2
(‖∆u‖20 + ‖f‖20).(5.5)

Furthermore, standard trace inequalities and (5.2) imply∫
∂Ω

|∂u
0

∂n
|2 ds ≤ c ‖f‖20

and ∫
∂Ω

|∆u|2 ds ≤ c ‖∆u‖0 ‖∆u‖1.

Hence, from the arithmetic geometric mean inequality we obtain that for any δ > 0
there is a constant cδ such that

ε2|
∫
∂Ω

(∆u)
∂u0

∂n
ds| ≤ cδε‖f‖20 + δε3‖∆u‖0‖u‖3.(5.6)

However, from (5.3) we derive

ε3‖∆u‖0‖u‖3 ≤ 1
2 (‖ε2∆u‖20 + ε4‖u‖23)

≤ 1
2ε

2‖∆u‖20 + c |u− u0|21.
(5.7)

The inequalities (5.4)–(5.7) lead to the bound

ε2‖∆u‖20 + |u− u0|21 ≤ c ε‖f‖20,
and together with (5.3) this implies the desired estimates.
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The regularity result given in the previous lemma leads to the following uniform
convergence property for the nonconforming finite element method (4.9).

Theorem 5.2. Assume that f ∈ L2 and u ∈ H2
0 ∩H3 is the corresponding weak

solution of (1.1). Furthermore, let uh ∈ Wh be the solution of (4.9). Then there is
a constant c, independent of ε, h and f , such that

|||u− uh|||ε,h ≤ ch1/2‖f‖0.

Proof. As in the proof of Theorem 4.2 we start with the basic estmate (4.10), i.e.,
the second Strang lemma. Here, and below, c will denote a constant independent
of ε, h and f . We first show that

inf
v∈Wh

|||u− v|||ε,h ≤ |||u− Ihu|||ε,h ≤ ch1/2‖f‖0.(5.8)

From (4.3) and Lemma 5.1 we obtain

ε‖u− Ihu‖2 ≤ c ε‖u‖1/22 ‖u− Ihu‖
1/2
2

≤ c εh1/2‖u‖1/22 |u|
1/2
3

≤ ch1/2‖f‖0.

In order to estimate the H1-part of the energy norm we use the triangle inequality
to obtain

‖u− Ihu‖1 ≤ ‖u− u0 − Ih(u − u0)‖1 + ‖u0 − Ihu0‖1.

From (4.4), (5.2) and Lemma 5.1 it follows that

‖u− u0 − Ih(u− u0)‖1 ≤ ch1/2‖u− u0‖1/21 ‖u− u0‖1/22

≤ ch1/2‖f‖0,

while (4.3) and (5.2) gives

‖u0 − Ihu0‖1 ≤ ch‖u0‖2 ≤ ch‖f‖0.

Hence, the interpolation estimate (5.8) is established.
Furthermore, it follows from (4.8) and (4.14) that the consistency error,

Eε,h(u,w), is bounded by

Eε,h(u,w) ≤ c εh1/2|u|1/22 |u|
1/2
3 |||w|||ε,h

for any w ∈ Wh. Hence, Lemma 5.1 implies that

Eε,h(u,w) ≤ ch1/2‖f‖0|||w|||ε,h,

and together with (4.10) and (5.8) this completes the proof.

Remark. It follows from (5.1) that the Sobolev norm ‖u‖s will blow up as ε tends to
zero for any s > 3/2. Therefore, since the energy norm ||| · |||ε,h bounds the H1-norm,
the uniform estimate given in Theorem 5.2 seems to be the best we can possibly
obtain for any finite element method, even if we use a more complex conforming
method.
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