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Abstract 

This paper presents a novel algorithm to detect onset 
and duration of QRS complexes. After low-pass filtering, 
the ECG signal is converted to a curve length signal by a 
transform in which a nonlinear scaling factor is 
introduced to enhance the QRS complex and to suppress 
unwanted noise. Adoptive thresholds are applied to the 
length signal to determine the onset and duration of the 
QRS complex. The algorithm was evaluated with the 
complete set of single channel ECGs (signal 0)  from the 
MIT-BIH Arrhythmia Database, and achieved a gross 
QRS sensitivity of 99.65% and a gross QRS positive 
predictive accuracy of 99.77%. The QRS onsef 
determination is very stable and is insensitive to QRS 
morphology change. The noise tolerance of the algorithm 
was evaluated using the MIT-BIH Noise Stress Test 
Database. The C source code for  the single-channel 
algorithm has been contributed to PhysioToolkit and is 
freely available from PhysioNet (www.physionet.org). 

1. Introduction 

QRS detection is the first and most crucial step in 
automatic electrocardiogram (ECG) analyses such as 
arrhythmia detection and classification, ECG diagnosis, 
Holter, and heart rate variability (HRV) studies. 

Existing QRS detectors typically define the QRS 
fiducial point as the maximal slope or the peak of the R 
wave [I, 21. The fiducial point will therefore vary with 
changes in QRS morphology associated with axis shifts 
and alterations in ventricular depolarization patterns. 
Such subtle variation may affect the accuracy in HRV 
analysis or ECG-blood pressure (BP) delay time studies 
(31. Most existing QRS detectors do not provide a precise 
location for the beginning of the ventricular excitation, 
which is the time of interest in such studies, 

Only a few QRS detectors in the literature address the 
measurement of QRS duration [4,5]. which is a sensitive 

feature for beat classification and a useful reference for 
ST-segment measurement. 

This article presents a robust algorithm to detect onset 
and duration of QRS complexes. The algorithm employs 
and extends the basics of the simplified curve length 
transform [61. A nonlinear scaling factor for ECG curve 
length is introduced to enhance the QRS complex and to 
suppress other pans of ECG and unwanted noise, which 
makes the detection of QRS onset and duration from the 
ECG curve length features possible. The algorithm was 
initially developed in [71 and was recently re- 
implemented. Its performance has been evaluated using 
standard databases 18, 91 and methodology [IO]. The C 
source code of the algorithm has been made freely 
available via PhysioNet [ 1 I]. 

2. Methods 

The algorithm consists of three components: a low-pass 
filter, nonlinearly scaled curve length transformation, and 
decision rules, as shown in figure 1. 

Figure I .  The algorithm overview diagram 

The ECG signal, x(n), is the input of the low-pass filter 
which produces the filtered signal, yfn). The curve length 
transformation converts y(n) to a curve length signal, Un). 
The decision rule is applied to L(n) to determine the time 
location of QRS onsets, t,, t2, . . ., and corresponding QRS 
durations, dl, d2, _... 

2.1. Low-pass filter 

For adult human ECG, the ideal passband for a QRS 
detector is approximately 5-15Hz [12. 131. In the present 
algorithm, only a low-pass filter is necessary, because the 
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nonlinearly scaled curve length transformation will 
substantially suppress low frequency components. Our 
detector uses a second order recursive low-pass filter as 
described by Lynn [14]. Formulas (1) and (2) are its 
transfer and frequency-response functions, respectively, 

where T is the sampling period. The difference equation 
is: 

(3) 
y ( n ) = Z y ( n - l ) - y ( n - Z ) + x ( n )  

- 2x(n - 5 )  + x(n - 10) 

where the 3dB cut-off frequency is about 16 Hz, for an 
ECG signal sampled at 250Hz, and the gain is 25 at 0 Hz. 
The phase shift is 20111s (5 samples at 250Hz). 

2.2. Curve length transformation 

According to ECG theory, the electrical activity of the 
myocardium can be considered to be equivalent to a 
synthetic electric dipole vector moving in the conductive 
space. The locus of the end point of the dipole vector 
constitutes a spatial curve and its projections on each 
lead axis form the corresponding ECG potentials. When 
the time. I, is considered as the parameter variable and 
each lead as a spatial coordinate, the spatial curve, 
3 = S(r), of the movement of the end point of the dipole 
vector can be completely or partially represented by the 
ECG potentials in each lead as follows: 

3 = 30 = {Y, ( r ) ,  y1(r)  ,.... y.(r)l (4) 

where yi(r), i= l ,  2, ..., n, are the ECG potentials on each 
lead. 

It is known that, in certain time windows, the ECG 
curve length corresponding to the QRS complex is 
generally longer than that of the other parts with the same 
time window. If the time window is chosen to be 
approximately equal to the QRS duration, it can be 
expected to yield a locally maximal curve length at the 
QRS location. Thus, the ECG curve length feature can be 
used for QRS detection. 

Length transformation for one-channel ECG 

If y(r) is continuously differentiable over the time 
interval [a, b], then the length of yfr) in this time interval 
equals a bounded value L 

( 5 )  

If w is the duration of the time window, the curve 
length transformation of function y = y(r) over the interval 
[t-w, t] is defined as: 

where w << b - a and a+w < f < b. The discrete form of 
(6) is as follows: 

where Ayt = yk - yk., and l + w  < i -C N, N is the total 
number of the sample points and w << N. Since dr is the 
sampling period (a constant), the above can be written as: 

where C = A?. Cis  a constant, but it can be considered as 
a nonlinear scaling factor. The effect of the C will be 
further discussed below. 

Length transformation for multi-channel ECG 

The curve length transformation for n-dimensional 
function, y, = yi (I), j=I, 2, .._, n, is defined as: 

Similar to (8), according to formula (9). we can define 
the nchannel ECG curve length transformation in discrete 
form as: 

Selection of the window width (w) 

Figure 2 shows the relationship between an idealized 
QRS complex and its length transform (LT) signal. The 
ascendant section of the LT signal indicates the duration 
of QRS complex. In order to extract QRS duration 
information as well as the QRS location. the window w 
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should be approximately equal to the width of the widest 
QRS complex. For our application, the w is chosen to be 
13Oms. 

ECG 

Fig 2. Relationship between QRS complex and the LT signal, 
where QS is the QRS duration and w is the analyzing widow. 

The effect of the d i n g  factor C 

The constant C in (8) and (10) is a length-scaling 
factor. Let us consider the length element in formula (8): 

If I = ALi and WAY;, then formula ( I  I )  becomes: 

The effect of a signal difference u on a length element 
1 is given by: 

dl U 

du 
_ =  

We define dUdu as the4ength response ratio. 

" 
Fig. 3. The effect of the signal difference u on the length 

transform, for C = 0, I ,  5. IO, 20,30,40.50, and 60. 

Fig. 3 shows the length response ratio for various 
value of C. When C = 0, the length response ratio is 1.0 
for all values of u. As C increases, the length response 
ratio to lower values of u is reduced dramatically and the 
ratio stays close to 1 at high values of u. By selecting a 
proper C value, the LT signal response to QRS portion 
can be further enhanced and other parts of ECG such as P 
wave, T wave. and unwanted noise, especially those near 

the onset and end of the QRS, can be further suppressed. 
The C value in the algorithm is determined based on the 
statistical observations of the signal differential values of 
QRS complexes, P, and T waves [7]. The absolute C value 
is associated with the sampling frequency and sampling 
resolution of the signal. 

Figure 4 shows an example for a single channel ECG. 
Note the effects of the nonlinearly scaled LT for 
enhancing QRS and suppressing other parts and noises. 

Fig. 4. Example of single channel ECG processing. From top 
to bottom: the original ECG, the low-pass filtered ECG, and the 
non-linearly scaled LT signal, 5 seconds per trace. 

2.3. Decision rule 

The decision rule consists of two procedures: ( I )  
thresholding on the LT signal to find a possible QRS 
position; (2) searching locally to find the QRS onset and 
duration. 

(1) Adaptive thresholding 
A threshold base value is established and is initially 

assigned as three times the mean value of the LT signal for 
the initial IO-second period. The actual threshold is set to 
113 of the threshold base value. The threshold base value 
is then adaptively adjusted, based on the maximum LT 
value of each detected QRS complex. 

(2) Local search strategies 
When the LT signal crosses the threshold, a probable 

QRS is noted. From the threshold-crossing point, tc;, the 
algorithm searches backward for 125111s to get a minimum 
value, Lmin, and forward for 125ms to get a maximum 
value, Lmar,. The difference, LAi = h a r k  - h i n i  is 
obtained. Then, from fc; again, the algorithm searches 
backward to find the location, Qb. where the LT value 
drops monotonically to h i n i  + LA/lOO, and searches 
forward to find the location, Sb ,  where the LT increases to 
Lmax; - LAj20. Qbi and Sb; are considered the base 
values of QRS onset and end, respectively. The actual 
QRS onset is adjusted by -20111s or -5 samples and the 
actual end is adjusted by +20ms or +5 samples. This 
widening adjustment compensates for the time interval 
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loss caused by the onsetlend thresholds. The adjustments 
are based on statistical Observation of the differences 
between the algorithm's onsetlend estimates and human 
expert judgments. 

Finally, a 250ms eyeclosing period is applied after 
each detected QRS to avoid possible double detection of 
the same beat. 

3. Results 

Evaluated using bxb [IO], a standard beat annotation 
comparison utility freely available from PhysioNet [ I  I] , 
with the complete set of single channel ECGs (signal 0, 
resampled at 250Hz) from the MIT-BIH Arrhythmia 
Database [8], this algorithm achieved a gross QRS 
sensitivity of 99.65% and a gmss QRS positive 
predictive accuracy of 99.77%. 

Representative QRS complexes of 156 normal beats, 
82 premature ventricular contractions (PVCs), 23 bundle 
branch block (BBB) beats, and 22 fusion beats selected 
from 45 records in the MIT-BIH Arrhythmia Database 
were used to evaluate the accuracy of the algorithm's 
determinations of QRS onset and duration. By manual 
comparison of the QRS onset and end markers produced 
by the algorithm and those recorded by human experts, 
the mean difference for the QRS onset was 0.4 (+i- 2.4) 
ms for normal beats, 1 .4m (+I-  4.9ms) for PVCs, 6.lms 
(+I- 8.3m) for BBB beats, and 1.8ms (+/- 2.4ms) for 
fusion beats; the mean difference for the QRS end was 
1.4ms (+/- 2.4ms) for normal beats. I.lms (+/- 2.4ms) for 
PVCs, 5.2ms (+/- 6.3ms) for BBB beats, and 0.9ms (+/- 
2.lms) for fusion beats. 

The noise tolerance of the algorithm was evaluated 
using the MIT-BIH Noise Stress Test Database [9, 1 I]. 
Noise had no measurable effects above a signal-to-noise 
ratio (Sh'R) of 12 dB, at which QRS positive predictivity 
dropped from nearly 100% to 93%; while QRS 
sensitivity remained at nearly 100%. At an SNR of 6 dB, 
QRS sensitivity dropped to 99.6% and QRS positive 
predictivity dropped to 75%. 

4. Conclusion and discussion 

A novel, effective, and noise-tolerant QRS detection 
algorithm based on nonlinearly scaled ECG curve length 
feature has been developed. The QRS onset 
determination is very stable and is insensitive to QRS 
morphology change. The accuracy of the QRS duration 
detection is reasonably satisfactory and would be 
sufficient for arrhythmia analysis purposes. The 
algorithm has good tolerance to noise and is successful in 
rejecting baseline wander and suppressing tall P or T 
waves. The algorithm is easily extendable for analysis of 
multichannel ECGs. The C source code for the single- 
channel algorithm has been contributed to PhysioTwlkit 

and is freely available from PhysioNet website 
(hltp:Nwww.phvsionel.~r~).  
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