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1. Introduction

In recent years, robust optimization has gained substantial
popularity as a modeling framework for immunizing
against parametric uncertainties in mathematical optimiza-
tion. The first step in this direction was taken by Soyster
(1973), who proposed a worst-case model for linear
optimization such that constraints are satisfied under all
possible perturbations of the model parameters. Recent
developments in robust optimization focused on more
elaborate uncertainty sets to address the issue of over-
conservatism in worst-case models, as well as to main-
tain computational tractability of the proposed approaches
(see, for example, Ben-Tal and Nemirovski 1998, 1999,
2000; El-Ghaoui et al. 1997, 1998; Goldfarb and Iyengar
2003; Bertsimas and Sim 2003, 2004a, 2004b, 2006; and
Atamtiirk 2006). Assuming very limited information of
the underlying uncertainties, such as mean and support,
the robust model can provide a solution that is feasible
to the constraints with high probability, although avoiding
the extreme conservatism of Soyster’s worst-case model.
Computational tractability of robust linear constraints is
achieved by considering tractable uncertainty sets such
as ellipsoids (see Ben-Tal and Nemirovski 2000) and
polytopes (see Bertsimas and Sim 2004a), which yield
robust counterparts that are second-order conic constraints
and linear constraints, respectively. The methodology of
robust optimization has also been applied to dynamic set-
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tings involving multiperiod optimization, in which future
decisions (recourse variables) depend on the realization
of the present uncertainty. Such models are generally
intractable. Ben-Tal et al. (2004) proposed a tractable
approach for solving fixed recourse instances using affine
decision rules—recourse variables as affine functions of
the uncertainty realization. Some applications of robust
optimization in a dynamic environment include inventory
management (Bertsimas and Thiele 2006, Ben-Tal et al.
2004) and supply contracts (Ben-Tal et al. 2005). Two
important characteristics of robust linear optimization that
make it practically appealing are:

(1) Robust linear optimization models are polynomial in
size and in the form of linear programming (LP) or second-
order cone programming (SOCP). One therefore can lever-
age on the state-of-the-art LP and SOCP solvers, which are
becoming increasingly powerful, efficient, and robust. For
instance, CPLEX 9.1 offers SOCP modeling with integral-
ity constraints.

(2) Robust optimization requires only modest assump-
tions about distributions, such as a known mean and
bounded support. This relieves users from having to know
the probabilistic distributions of the underlying stochastic
parameters, which are often unavailable.

In linear optimization, Bertsimas and Sim (2004) and
Ben-Tal and Nemirovski (2000) obtain probability bounds
against constraint violation by assuming independent and
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symmetrically bounded coefficients, while using the sup-
port information (rather than the variance or standard devi-
ation) to derive the probability of constraint violation. The
assumption of distributional symmetry, however, is limiting
in many applications, such as financial modeling, in which
distributions often are known to be asymmetric. In cases
where the variances of the random variables are small,
whereas the support of the distributions is wide, the robust
solutions obtained via the above approach can also be rather
conservative. The idea of guaranteeing constraint feasibility
with a certain probability is closely related to the chance-
constrained programming literature (Charnes and Cooper
1959, 1963). Finding exact solutions to chance-constrained
problems is typically intractable. Pintér (1989) proposes
various deterministic approximations of chance-constrained
problems via probability inequalities such as Chebyshev’s
inequality, Bernstein’s inequality, Hoefding’s inequality,
and their extensions (see also Birge and Louveaux 1997,
Chapter 9.4; and Kibzun and Kan 1996). The deterministic
approximations are expressed in terms of the mean, stan-
dard deviation, and/or range of the uncertainties. The result-
ing models are generally convex minimization problems.
In this paper, we propose an approach to robust optimiza-
tion that addresses asymmetric distributions. At the same
time, the proposed approach may be used as a deterministic
approximation of chance-constrained problems. Our goal in
this paper is therefore twofold.

(1) First, we refine the framework for robust linear opti-
mization by introducing a new uncertainty set that cap-
tures the asymmetry of the underlying random variables.
For this purpose, we introduce new deviation measures
associated with a random variable—namely, the forward
and backward deviations—and apply them to the design of
uncertainty sets. Our robust linear optimization framework
generalizes previous works of Bertsimas and Sim (2004)
and Ben-Tal and Nemirovski (2000).

(2) Second, we propose a tractable solution approach
for a class of stochastic linear optimization problems with
chance constraints. By applying the forward and back-
ward deviations of the underlying distributions, our method
provides feasible solutions for stochastic linear optimiza-
tion problems. The optimal solution from our model pro-
vides an upper bound to the minimum objective value
for all underlying distributions that satisfy the parame-
ters of the deviations. One way in which our framework
improves upon existing deterministic equivalent approxi-
mations of chance constraints is that we turn the model into
an SOCP, which is advantageous in computation. Another
attractive feature of our approach is its computational scal-
ability for multiperiod problems. The literature on mul-
tiperiod stochastic programs with chance constraints is
rather limited, which could be due to the lack of tractable
methodologies.

In §2, we introduce a new uncertainty set and formu-
late the robust counterpart. In §3, we present new deviation
measures that capture distributional asymmetry. Section 4

shows how one can integrate the new uncertainty set with
the new deviation measures to obtain solutions to chance-
constrained problems. In §5, we present an SOCP approxi-
mation for stochastic programming with chance constraints.
Section 6 contains a summary and conclusions. In §A of
the online appendix, we apply our framework to a project
management problem with uncertain completion time. An
electronic companion to this paper is available as part of
the online version that can be found at http://or.journal.
informs.org/.

Notations. We denote a random variable, x, with the
tilde sign. Boldface lowercase letters, such as x, represent
vectors, and the corresponding uppercase letters, such as A,
denote matrices.

2. Robust Formulation of a Stochastic
Linear Constraint

Consider a stochastic linear constraint,
a'x <b, 1)

where the input parameters (a, ~l;) are random. We assume
that the uncertain data, D = (a, b), has the following under-
lying perturbations.

Affine Data Perturbation. We represent uncertainties
of the data D as affinely dependent on a set of independent
random variables, {Z;},_,.y, as follows:

N
~ 0 .
D:D +ZADJZJ',

j=1

where D’ is the nominal value of the data, and AD’, JEN,
is a direction of data perturbation. We call Z; the primitive
uncertainty, which has mean zero and support in [— Zjs Z_,»],
gj,Zj > 0. If N is small, we model situations involving
a small collection of primitive independent uncertainties,
which implies that the elements of D are strongly depen-
dent. If N is large, we model the case that the elements
of D are weakly dependent. In the limiting case when the
number of entries in the data equals N, the elements of D
are independent. We desire a set of solutions X (€) such that
x € X (€) is feasible for the linear constraint (1) with prob-
ability of at least 1 — €. Formally, we can describe the set
X (€) using the following chance-constraint representation
(see Charnes and Cooper 1959):

X(e) ={x: P(@'x<h)>1—¢)}. ©)

The parameter € in the set X(€) varies the conservatism of
the solution. Unfortunately, however, when € > 0, the set
X(€) is often nonconvex and computationally intractable
(see Birge and Louveaux 1997). Furthermore, the evalua-
tion of probability requires complete knowledge of data dis-
tributions, which is often an unrealistic assumption. In view
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of these difficulties, robust optimization offers a differ-
ent approach to handling data uncertainty. Specifically, in
addressing the uncertain linear constraint of (1), we repre-
sent the set of robust feasible solutions

X, (Q)={x:a'x<bV(a,b)eUy,}, 3)

where the uncertain set, %, is compact. The parameter (),
which we refer to as the budget of uncertainty, varies the
size of the uncertainty set radially from the central point,
U = (a%, b%), such that Uq C U €W for all Q. >
' > O > 0. Here the worst-case uncertainty set 7 is the
convex support of the uncertain data, defined as follows:

W= {(a, b): Jze R, (a, b) = (a’, b°)

N
+> (Aal, AbY)z,, —g<z<i}, 4)

j=1

which is the smallest closed convex set satisfying
P((a,b) € W) = 1. Value Q,, is the worst-case budget
of uncertainty, i.e., the minimum parameter () such that
Uq = W. Therefore, under affine data perturbation, the
worst-case uncertainty set is a parallelotope for which the
feasible solution is characterized by Soyster (1973), i.e., a
very conservative approximation to X(€). To derive a less
conservative approximation, we need to choose the bud-
get of uncertainty, (), appropriately. In designing such an
uncertainty set, we want to preserve both the theoretical and
practical computational tractability of the nominal problem.
Furthermore, we want to guarantee the probability such that
the robust solution is feasible without being overly conser-
vative. In other words, for a reasonable choice of €, such as
0.001, there exists a parameter () such that X,(Q) € X(e).
Furthermore, the budget of uncertainty () should be sub-
stantially smaller than the worst-case budget ., such
that the solution is potentially less conservative than the
worst-case solution. For symmetric and bounded distribu-
tions, we can assume without loss of generality that the
primitive uncertainties Z; are distributed in [—1, 1], that is,
z =z = 1. The natural uncertainty set to consider is the
intersection of a norm uncertainty set, 7, and the worst-
case support set, ¥/, as follows:

N
Fo= {(a,b): JzeR™, (a,b)=(a",b")+) (Aa’,Ab')z;, |lz]| < Q}OW

j=1

=Ty

= {(a, b): 3z R, (a,b) = (a’, b")

N
Y (A, Ab)z,. 2] < Q. 2] < 1}. 5)

j=1

As the budget of uncertainty () increases, the norm uncer-
tainty set 7, expands radially from the point (a°, 5°) until

it engulfs the set 7/, at which point the uncertainty set
Fo =W . Hence, for any choice of (), the uncertainty set
Fq 1s always less conservative than the worst-case uncer-
tainty set . Various choices of norms ||-|| are considered
in robust optimization. Under the /, or ellipsoidal norm
proposed by Ben-Tal and Nemirovski (2000), the feasible
solutions to the robust counterpart of (3), in which %, =
g, 1s guaranteed to be feasible for the linear constraint
with probability of at least 1 — exp(—£?/2). The robust
counterpart is a formulation with second-order cone con-
straints. Bertsimas and Sim (2004) consider an /, N/, norm
of the form ||z, ~,_ =max{(1/v/N)|z|,, |z||}, and show
that the feasibility guarantee is also 1 —exp(—Q?/2). The
resultant robust counterpart under consideration remains a
linear optimization problem of about the same size, which
is practically suited for optimization over integers. How-
ever, in the worst case, this approach can be more conser-
vative than the use of ellipsoidal norm. In both approaches,
the value of € is relatively small. For example, for a
feasibility guarantee of 99.9%, we only need to choose
) =3.72. We note that by comparison with the worst-case
uncertainty set, %, for () greater than N , the constraints
|z]l, < Q and max{(1/v/N)||z|,,|lz]|l.} < Q are the con-
sequence of z satisfying ||z||, < 1. Hence, it is apparent
that for both approaches, the budget of uncertainty () is
substantially smaller than the worst-case budget, in which
Q... =+/N. In this paper, we restrict the vector norm ||.||
to be considered in an uncertainty set as follows:

[l = {[fulll, (0)

where |u| is the vector with the j component equal to
lu)| Vje{l,...,N} and

lufl < ful, Vu. ™)

We call this an absolute norm. It is easy to see that the
ellipsoidal norm and the /, N/ norm mentioned above
satisfy these properties. The dual norm | - ||* is defined as
[u]* = max u'x.

Ixl<1
We next show some basic properties of absolute norms that
we subsequently will use in our development.

PROPOSITION 1. [f the norm ||-|| satisfies Equation (6) and
Equation (7), then we have

@ [wl*=llwll*.

(b) For all v,w such that |v| < |w|, ||[v]* < ||w]|*.

(c) For all v,w such that |v| <|w|, |[v| < ||w]|.

(d) el = [itll, V.

ProoF. The proofs of (a), (b), and (c) are shown in
Bertsimas and Sim (20006).

(d) It is well known that the dual norm of the Euclidian
norm is also the Euclidian norm, i.e., it is self-dual. For
all t, observe that

[t]* =maxt'z> max t'z=|t|;=|t],. O
llzl<1 llzll><1
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To build a generalization of the uncertainty set that takes
into account the primitive uncertainties being asymmet-
rically distributed, we first ignore the worst-case support
set, W, and define the asymmetric norm uncertainty set as
follows:

g = {(a, b): Av,we RY,

(a,b) = (a’ b°) + i(Aaj, Ab)(v; —w)),

j=1

[P~'v+Q 'w| <Q,V,w>0}, 8)

where P = diag(p,,...,py) and likewise Q =
diag(q,, ..., qy) with p,,q; >0, je{l,..., N}. Figure 1
shows a sample shape of the asymmetric uncertainty set.

In the next section, we clarify how P and Q relate to the
forward and backward deviations of the underlying primi-
tive uncertainties. The following proposition shows the con-
nection of the set &, with the uncertainty set described by
norm %, defined in (5).

PROPOSITION 2. When p; = q; =1 for all j € {1,...,N},
the uncertainty sets A, and “Vy, are equivalent.

The proof is shown in §B of the online appendix. To cap-
ture distributional asymmetries, we decompose the prim-
itive data uncertainty z into two random variables, v =
max{Z, 0} and @ = max{—Z, 0}, such that Z =0 — w. The
multipliers 1/p; and 1/g; normalize the effective perturba-
tion contributed by both © and w, such that the norm of
the aggregated values falls within the budget of uncertainty.

Figure 1. An uncertainty set represented by s{, as
varies for N =2.
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Because p;, g; > 0 for > 0, the point (a°% %) lies in the
interior of the uncertainty set ${,. Hence, we can easily
evoke strong duality to obtain a computationally attractive
equivalent formulation of the robust counterpart of (3), such
as in linear or second-order cone optimization problems. To
facilitate our exposition, we need the following proposition.

PRrOPOSITION 3. Let
z*=max a'v+b'w
st [v+w]<Q, ©)

v,w=>0.

Then, Q|t|* = z*, where t; = max{a;,b;,0}, j €
{1,....,N}.

We present the proof in §C of the online appendix.

THEOREM 1. The robust counterpart of (3) in which U, =
S is equivalent to

JueRV, hen,
a%x + Qh < PO,
x: uf*<h, (10)
u; > p;(Aa’x —Ab) Vjell,...,N},

u; > —q(Aa’x —Ab) Vjefl,...,N}

PrOOF. We first express the robust counterpart of (3) in
which U, =, as follows:

N
a’x+ ) (Aa’x — Ab) (v, — w,) < b°
j=1
g

Vv, weR", IP'v+Q 'w| < Q,v,w>0

¢

a’x + max (v—w)y< b

{v,w: [P~ 1v+Q—1w|<0
v, w=0}

Observe that

max (v—w)y= max (Py)v—(Qy)w
(v.w: [P~ lv+Q~Twl<Q {vow: [[v+w]<Q
v, w>0} v, w=0}

= Q|| (11)

where ¢; = max{p;y;, —¢q;y;,0} = max{p,y;, —q,y;} be-
cause p;,q; > 0 for all j e {1,..., N}. Furthermore, the
equality (11) follows from the direct transformation of vec-
tors v, w to Pv, Qw, respectively. The last equality follows
directly from Proposition 3. Hence, the equivalent formu-
lation of the robust counterpart is

a”x + Q||t]|* < b°. (12)

Finally, suppose that x is feasible for the robust counter-
part of (3), in which %, = s{,. From Equation (12), if



Chen, Sim, and Sun: A Robust Optimization Perspective on Stochastic Programming

1062

Operations Research 55(6), pp. 1058-1071, © 2007 INFORMS

we let u=t and & = ||t||*, constraint (10) is also feasible.
Conversely, if x is feasible in (10), then u > t. Following
Proposition 1(b), we have

a’x + Q|t||* <a”x+ QJjuf* <a”x+ Qh < O

The complete formulation and complexity class of the
robust counterpart depends on the representation of the dual
norm constraint, ||ul|* < y. In §D of the online appendix,
we tabulate the common choices of absolute norms, the
representation of their dual norms, and the corresponding
references. The [, NI norm is an attractive choice if one
wishes the model to remain linear and modest in size.

Incorporating the Worst-Case Support Set

We now incorporate the worst-case support set 7/ as
follows:

G =y NI

Because we can represent the support set of 7/ equiva-
lently as

- {(a, b): Av,we RY

(a,b)=(a’ b") + fma-f, AV (v; — w)),

j=1
_ng—wgi,w,v20}, (13)
it follows that

Go = {(a, b): Av,we RV, (a, b) = (a°, b°)

N
+> (A’ AY) (v, —w)), [PT'v+Q W[ < Q

j=1
—gév—wéi,w,v)ﬂ}. (14)

We show in the §D of the online appendix an equivalent
formulation of the corresponding robust counterpart under
the generalized uncertainty set G,.

THEOREM 2. The robust counterpart of (3) in which U =
G is equivalent to

Ju,r,seNY, he N,
a"x+Qh+1r7+sz<D0,

[ull* < h
s — Abi — 1, .
. > p;j(Aa’ x — Ab) —r;+5;) (15)
Vji={l,...,N},
u; > —q;(Aa’ x — A/ —r; +5;)
Vji={l,...,N},
ur,s=>0.

3. Forward and Backward Deviation
Measures

When random variables are incorporated in optimization
models, operations are often cumbersome and computation-
ally intractable. Moreover, in many practical problems, we
often do not know the precise distributions of uncertain-
ties. Hence, one may not be able to justify solutions based
on assumed distributions. Instead of using complete dis-
tributional information, our aim is to identify and exploit
some salient characteristics of the uncertainties in robust
optimization models, so as to obtain nontrivial probability
bounds against constraint violation. We commonly mea-
sure the variability of a random variable using the variance
or the second moment, which does not capture distribu-
tional asymmetry. In this section, we introduce new devia-
tion measures for bounded random variables that do capture
distributional asymmetries. Moreover, the deviation mea-
sures applied in our proposed robust methodology guaran-
tee the desired low probability of constraint violation. We
also provide a method that calculates the deviation mea-
sures based on potentially limited knowledge of the dis-
tribution. Specifically, if one knows only the support and
the mean, one can still construct the forward and backward
deviation measures, albeit more conservatively. In the fol-
lowing, we present a specific pair of deviation measures
that exist for bounded random variables. There is a more
general framework of deviation measures that is useful for
broader settings. We present the more general framework
in §F of the online appendix.

3.1. Definitions and Properties of Forward and
Backward Deviations

Let Z be a random variable and M;(s) = E(exp(sz)) be its
moment-generating function. We define the set of values
associated with forward deviations of Z as follows:

P(2)=1a: a>O’MZE(Z)(§> <exp<¢2> ng}O}. (16)

Likewise, for backward deviations, we define the follow-
ing set:

=00 (E) cen( %) vao]

(17)
For completeness, we also define %(c) = G(c) =N, for
any constant ¢. Observe that %(Z) = @(Z) if Z is symmetri-
cally distributed around its mean. For known distributions,
we define the forward deviation of Z as p} =inf %(Z) and
the backward deviation as g} = inf @(Z). We note that the
deviation measures defined above exist for some distribu-
tions with unbounded support, such as the normal distribu-
tion. However, some other distributions do not have finite
deviation measures according to the above definition, e.g.,
the exponential and the gamma distributions. The following
result summarizes the key properties of the deviation mea-
sures after we perform linear operations on independent
random variables.
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THEOREM 3. Let X and y be two independent random vari-
ables with zero means, such that p; € P(X), q; € G(X),
L€ P(), and g5 € Q).
(a) If Z=ax, then

(aps, aq;) ifaz0
(Pz» qz) =

(—agq;, —ap;) otherwise,

satisfy p: € P(Z) and g; € @(Z), respectively. In other
words, p; = max{ap;, —aq,} and g; = max{aq;, —ap,}.
(b) If Z=%+7, then (pz.q:) = (Vpi+p Vg +q2)
satisfy p; € P(2) and q; € G(2).
(c) For all p 2 p; and q = q;, we have p € P(X) and
q € Q(%).

QZ
(d) P(x>Qp;) < exp(—T)
and

QZ
P(x <—Qgq;) < exp(—;).

PROOF. (a) We can examine this condition easily from the
definitions of %(Z) and @(Z).

(b) To prove part (b), let p: = /p: + p;. For any ¢ >0,

(o750l )oo(47)

(because X and y are independent)
S )EC G
Pz Px Pz Dy
2 2 2
<o £5)on(%2)
pg 2 V&
2
—exp(d’ )
2
Thus, p: = ,/p; + p; € P(Z). Similarly, we can show that

Ja@+4a;ea@).
(c) Observe that

)
con( ) (5

The proof for the backward deviation is similar.
(d) Note that

Q
P()? > Qp}) = (_x > 02)
Ps

E(exp(Q%/py)) Q?
ST ep(@) S exp(‘?)’

where the first inequality follows from Chebyshev’s in-
equality. The proof of the backward deviation is the
same. [

For some distributions, we can find closed-form bounds
on the deviations p* and g*, or even the exact expressions.
In particular, for a general distribution, we can show that
these values are not less than the standard deviation of
the distribution. Interestingly, for a normal distribution, the
deviation measures p* and g* are identical with the stan-
dard deviation.

PROPOSITION 4. If the random variable 7 has mean zero
and standard deviation o, then p; > o and g > 0. In
addition, if 7 is normally distributed, then p} = q} = 0.

Proor. Note that for any p € 2(Z), we have
z o’ ¢"E[Z"]
E =1 —
(o0(s,)) = 1o+ 2550

and

According to the definition of 9(Z), we have
E(exp(¢(Z/p))) < exp(¢p?/2) for any ¢ > 0. In particular,
this inequality is true for ¢ close to zero, which implies
that

l¢20-_2<¢;2
27 pr T 27

Thus, p > o. Similarly, for any g € @(Z), ¢ > o. For the
normal distribution, the proof follows from the fact that

fofo)) ol -en(42) o

For most distributions, we are unable to obtain closed-
form expressions for p* and g*. Nevertheless, we can still
determine their values numerically. For example, if Z is uni-
formly distributed over [—1, 1], we can determine numer-
ically that p* = ¢* = 0.58, which is close to the standard
deviation 0.5774. In Table 1, we compare the values of
p*, g*, and the standard deviation o, where Z has the fol-
lowing parametric discrete distribution:

B if k=1,

P(Z=k)= 1 lfk__% (18)

In this example, the standard deviation is close to g*, but
underestimates the value of p*. Hence, it is apparent that if
the distribution is asymmetric, the forward and backward
deviations may be different from the standard deviation.
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Table 1. Numerical comparisons of different deviation where
measures for centered Bernoulli distributions. . z7—7
- . p=E[X]==——¢€(-1,1).
B p* q o p q z+z
0.5 1 1 1 1 1 First, observe that p € 2°(X) if and only if
0.4 0.83 0.82 0.82 0.83 0.82 P
0.3 0.69 0.65 0.65 0.69 0.65 In(E[exp(s%)]) <E(X)s + =—s°> Vs>0. (19)
0.2 0.58 0.50 0.50 0.58 0.50 2
0.1 0.47 0.33 0.33 0.47 0.33 We want to find a p such that inequality (19) holds for
0.01 0.33 0.10 0.10 0.33 0.10

3.2. Approximation of Deviation Measures

It will be clear in the next section that we can use the values
of p* =inf{%(Z)} and ¢* = inf{@(Z)} in our uncertainty set
to obtain the desired probability bound against constraint
violation. Unfortunately, however, if the distribution of 7 is
not precisely known, we cannot determine the values of p*
and ¢*. Under such circumstances, as long as we can deter-
mine (p, ¢) such that p € 2(Z) and g € @(Z), we can still
construct the uncertainty set that achieves the probabilis-
tic guarantees, albeit more conservatively. We first identify
(p, q) for a random variable Z, assuming that we only know
its mean and support. We then discuss how to estimate the
deviation measures from independent samples.

3.2.1. Deviation Measure Approximation from Mean
and Support.

THEOREM 4. If 7 has zero mean and is distributed in
[—z.2], 2,2>0, then

13=§—+Z g<£) €2(2)

2 z+z
and
z2+zZ Z—1z
g== = ) €@(2),
== g(gﬂ) 69)
where
¢, (s) — ps
g(w) =2max ——3
and
es+ —s ¢S — e "
d)M(s):ln( 5 + > M)

Proor. We focus on the proof of the forward deviation
measure. The case for the backward deviation is the same.
It is clear from scaling and shifting that

i—(2=-2)/2

Giop ot

X=
Thus, it suffices to show that

Ve(p) € 2(X),

all possible random variables x distributed in [—1, 1] with
mean . For this purpose, we formulate a semi-infinite lin-
ear program as follows:

1
max / exp(sx)f(x)dx
-1

s.t. [ 11 f(x)dx=1, 0

[1xf(x)dx=,u,

f(x)>0.
The dual of the above semi-infinite linear program is
min u+ vy
st. ut+vx=zexp(sx) Vxe[-1,1].

Because exp(sx) — vx is convex in x, the dual is equivalent
to a linear program with two decision variables:

min u+vu
s.t. u+v=exp(s), (21)
u—vzexp(—s).

It is easy to check that (u*,v*) = ((¢' + e7¥)/2,
(e —e™*)/2) is the unique extreme point of the feasible
set of problem (21), and that u € (—1, 1). Hence, problem
(21) is bounded. In particular, the unique extreme point
(u*, v*) is the optimal solution of the problem. Therefore,
((e* +e*)/2 + (' — e*)/2)u is the optimal objective
value. By weak duality, it is an upper bound of the infinite
dimensional linear program (20). Note that ¢, (0) =0 and
¢,,(0) = . Therefore, for any random variable x € [—1, 1]
with mean u, we have

In(E[exp(sx)]) < ¢,,(s)
1) s

=¢,(0)+¢,(0)s+ 55—
2 =52

1
Sps+5%g(n).
2

Hence, /g(pn) € (x). O

REMARK 1. This theorem implies that all probability distri-
butions with bounded support have finite forward and back-
ward deviations. It also enables us to find valid deviation
measures from the support of the distribution. In Table 1,
we show the values of p and ¢, which coincide with p*
and ¢*, respectively. Indeed, one can see that /g(u) =
inf{2(x)} for the two-point random variable X, which takes
value 1 with probability (14 u)/2 and —1 with probability

(I =w)/2.
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REMARK 2. The function g(w) defined in the theorem
appears hard to analyze. Fortunately, the formulation can
be simplified to g(u) =1 — u? for w € [0, 1). In fact, we
note that

GOV o [N g0 -y ae

2

and

a(s) +u )2

d);(s) =1- (1 + a(s)u

where a(s) = (e — e*)/(e' + ¢7*) € [0,1) for s > 0.
Because for u € (—1,1), inf,_(a+u)/(1+ap) =pun
we have for u € [0, 1),

L) <PLO)=1-p> V520,

which implies that g(u) =1— u? for w € [0, 1).

Unfortunately, for u € (—1, 0), we do not have a closed-
form expression for g(w). However, we can obtain upper
and lower bounds for the function g(w). First, note that
when p € (—1,0), we have ¢/, (s) > ¢/, (0) =1 — u* for s
close to zero. Hence, 1 — u? is a lower bound for g(w).
Numerically, we observe from Figure 2 that g(n) < 1 —
O.3pﬂ. On the other hand, when w is close to —1, the lower
bound for g(u) is tighter as follows:

(1—-p)’
—2In((14w)/2)’

Indeed, because any distribution X in [—1, 1] with mean u
satisfies

P(% — > 0/5()) < exp(—02/2),

P(w)=

Figure 2.

Function g(u) and related bounds.

1.0
0.9
0.8
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0.6
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we have that
Ve(p) > p=inf{p: P(X — p > Qp) < exp(—Q*/2)}.

In particular, when Q = ,/—2In((1+ w)/2), for the two-

point distribution X, which takes value 1 with probability
(14 p)/2 and —1 with probability (1 — n)/2, we obtain
P’ = p(w) = (1-p?/(=2In((1 + p)/2)). From Fig-
ure 2, we observe that as u approaches —1, p*(u) and
g(w) converge to zero at the same rate. -

3.2.2. Deviation Measure Estimators from Samples.
From the definition of the forward deviation measure, we
can easily derive an alternative expression

p =sup — \/ZIHE CXp(t(Z_ [])]

>0

When the forward deviation measure is finite, given a set
of M independent samples of z, {v,, ..., v,,}, with sample
mean ¥, we can construct an estimator as

P =sup 1\/21n — Zexp(t(v —7)).

>0

A similar estimator can be constructed for the backward
deviation measure.

Although closed-form expressions of the bias and vari-
ance of the above estimator may be hard to obtain, we can
empirically test the accuracy of the above estimator com-
pared with the true value of the deviation measure. Specif-
ically, in Figure 3 we present the empirical histogram of
the deviation estimator p}, with samples from a standard
normal distribution, with the true p* being one.

As can be seen in Figure 3, the accuracy of the estimator
increases with the sample size. The estimator seems to be

Figure 3. Empirical histogram of the deviation estima-
tor for a standard normal distribution.
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50 . . . .
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=
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Table 2. Bias and standard deviation of devia- Let
tion estimators. . P
- (r*,s*) =argmin{Q||t(r,s)|, + r'z+s'z}
M b(py) a(py) 1/vVM r.s>0
and t* = t(r*, s*). Observe that because —z, <7, <Z., we
100 0.0137 0.0860 0.1 P s (> S") Lo o T‘; e SUS W
400 0.0163 0.0529 0.05 ave r;z; 2 1z and §; Ly 2 —§;2;. Lheretore,
1 600 0.0134 0.0331 0.025 ~/ * */ = */ 24 * * *
’ P Q <P — Q .
6.400 0.0077 00116 0.0125 @Zy>Qt" ], +1r"2+5"2) <PE (y—r" +5%) > Q| t*]|,)

upward biased. Empirically, we generated 5,000 estimators
for each sample size; the results are summarized in Table 2.
From the table, we observe that both the bias (b(p},)) and
the standard deviation (G'(p3,)) of the estimators decrease
with the increasing sample size. More specifically, the stan-
dard deviation of the estimators decreases approximately as
the square root of the sample size.

4. Probability Bounds of Constraint
Violation

In this section, we will show that the new deviation
measures can be used to guarantee the desired level of
constraint violation probability in the robust optimization
framework.

Model of Data Uncertainty U.

We assume that the primitive uncertainties {Z,},_;.y are
independent, zero-mean random variables, with support
Z; € [~z;,Z;], and deviation measures (p;, g;), satisfying

p,€P(Z;),q;€@(Z;) Yj={l,...,N}.

We consider the generalized uncertainty set G, which
takes into account the worst-case support set 7.

THEOREM 5. Let X be feasible for the robust counterpart of
(3) in which U, =6, Then,

3 —Q?
P(a'x > b) < exp( 5 )

PrOOF. Note that x is feasible in (15), and from §E of the
online appendix, we have

a”x+ min{Qt(r, 8)|" +r'Z+5'z} <0,
where
max(p, (y; —r +5), _CIj(yl —ri+s))
t(r,s) =
max(py (Yy — 7y +Sy)s _qj(yN —ry+sy))
and y, = Aa’’x — Ab/. Therefore, it follows that
P(a'x > b) =P(a"x+7y > b°)

< P(i/y > min[Qt(r, )" + 17+ s’g})

< P(i/y > min{Q|t(r, )], + 7+ s/z}>.
r,s> -

From Theorem 3(a), we have 17 € (Z;(y; —r} +s7)). Fol-
lowing Theorem 3(b), we have

It*]l, € (' (y —x" +57)).

Finally, the desired probability bound follows from Theo-
rem 3(d). O

We use the Euclidian norm as the benchmark to obtain
the desired probability bound. It is possible to use other
norms, such as the 7, N,_-norm, ||z|| = max{(1/~/N)|z|,,
|z||.}, to achieve the same bound, but the approximation
may not be worthwhile. Note from inequality (12) that the
value Q||t||* gives the desired “safety distance” against con-
straint violation. Because ||t||* > ||t],, one way to compare
the conservativeness of different norms is through the fol-
lowing worst-case ratio:

I
2 el

It turns out that for the [/, N I, norm, vy =
VI|VN|+ (VN —|+/N|)? ~ N4 (Bertsimas and Sim
2004, Bertsimas et al. 2004). Hence, although the resul-
tant model is linear and of manageable size, the choice
of the polyhedral norm can yield more conservative solu-
tions than does the Euclidian norm. In the remainder of
the section, we compare the proposed approach with the
worst-case approach as well as with other approximation
methods of chance constraints.

4.1. Comparison with the Worst-Case Approach

Using the forward and backward deviations, the proposed
robust counterpart generalizes the results of Ben-Tal and
Nemirovski (2000) and Bertsimas and Sim (2004). Indeed,
if Z; has symmetrical support in [—1, 1], from Theorem 4,
we have p; = q; = 1. Hence, our approach provides the
same robust counterparts. Our result is actually stronger
because we do not require symmetric distributions to ensure
the same probability bound of exp(—?/2). The worst-case
budget Q. is at least ~/N, such that G, = W. This
can be very conservative when N is large. We generalize
this result for independent primitive uncertainties, Z i with
asymmetrical support, [—z;, Z;].

THEOREM 6. The worst-case budget ()
tainty set

Go = slo MW

for the uncer-

max

satisfies

Q.. >+N.
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ProofF. From Theorem 4, we have
Z;+2z;
Pjs4; < = 5 i

Hence, the set o, is a subset of

Do =1 (a,b): IZZeRY, (a, b) = (a°, b°)

N
+Y (Aa’, AY)z;,

j=1

where d; = (z;+2;)/2. To show that Q,, > VN, it suf-
fices to show that there exist (a, b) € W, such that (a, b) ¢
Do, 2 s, for all O <+/N. Let

ifz; >z,
Yi= .
—z; otherwise,
and
N . .
(a*,b") = (ao, bo) + Z(Aa’, Ab’)yj.
=1

Clearly, (a*, b*) € W and |y;| > d,. Observe that

1<%

>VN.

X
)

j=1

Hence, (a*, b*) & D, D s, for all Q </N. O
Therefore, even if one knows little about the underlying

distribution besides the mean and the support, this approach

is potentially less conservative than the worst-case solution.

4.2. Comparison with Other Chance-Constraint
Approximation Approaches

Our approach relies on an exponential bound and the rel-
evant Chebyshev inequality to achieve an upper bound on
the constraint violation probability. Various other forms of
the Chebyshev inequality, such as the one-sided Chebyshev
inequality, and the Bernstein inequality, have been used to
derive explicit deterministic approximations of chance con-
straints (see, for example, Kibzun and Kan 1996, Birge and
Louveaux 1997, and Pintér 1989). Those approximations
usually assume that the mean, variance, and/or support are
known, whereas our approach depends on the construction
of the forward and backward deviations.

One important advantage of our approach is that we
are able to reformulate the approximation of the chance-
constrained problem as an SOCP problem. On the other
hand, the forward and backward deviations have their own
limitations. First of all, as mentioned before, the forward
and backward deviations do not exist for some unbounded
random variables. For example, the exponential distribution
does not have a finite backward deviation. In some cases,
we know the first two moments of the random variable,

but not the support. In these cases, probability inequali-
ties based on power moments may naturally apply, while
bounds based on the forward and backward deviations
could be infinite. Second, for bounded random variables, it
is possible that the ratio between the deviation measure and
the standard deviation is arbitrarily large. This can be seen
in Table 1 by comparing the p* column and the o column.
The implication is that approximations based on probabil-
ity inequalities using the standard deviation are likely to be
less conservative than approximations based on the much
larger forward or backward deviations.

To overcome the limitations of the forward and back-
ward deviations, we discuss in §F of the online appendix
a general framework for constructing deviation measures,
including the standard deviation, to facilitate bounding the
probability of constraint violation. These deviation mea-
sures, combined with various forms of the Chebyshev
inequality (see, for example, Kibzun and Kan 1996), may
handle more general distributions. In addition, general devi-
ation measures may provide less conservative approxima-
tions when the above forward and backward deviations
do not exist or are too large compared with the standard
deviation. In the practical settings where the forward and
backward deviations are not too large compared with the
standard deviation, we believe that our framework should
provide a comparable or even better bound. We elaborate
on this point in the following subsection.

4.3. Comparison of the Approximation Scheme
Based on Forward/Backward Deviations with
the Scheme Based on Standard Deviation

For any random variable 7 with mean zero and standard
deviation o, forward deviation p* and backward devia-
tion g*, we have the following from the one-sided Cheby-
shev inequality:

P(Z> Ao) <1/(A*+1), (22)
whereas the bound provided by the forward deviation is
P(: > Op") <exp(—Q2/2). (23)

For the same constraint violation probability, €, bound (22)
suggests A = /(1 —€)/€e, whereas bound (23) requires
Q =.,/—21n(e). Because the probability bounds are tight or
asymptotically tight for some distributions,! to compare the
above two bounds, we can examine the magnitudes of Ao
and Qp* for various distributions when € approaches zero.
For any distribution having the forward deviation close to
the standard deviation (such as the normal distribution), we
expect bound (22) to perform poorly as compared to (23).
Furthermore, because p* is finite for bounded distributions,
the magnitude of Ao will exceed (Ap* as € approaches
zero. For example, in the case of the centered Bernoulli
distribution defined in (18), with 8 =0.01, we have o =
0.1 and p* =0.33. Hence, Ao > Qp* for € <0.0099. It is
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often necessary in robust optimization to protect against
low-probability “disruptive events” that may result in large
deviations, such as z = 1 in this example. Therefore, it
may be reasonable to choose € < 0.0099 ~ P(z =1) =
0.01. In this case, it would be better to use bound (23).
Another disadvantage of using the standard deviation for
bounding probabilities is its inability to capture distribu-
tional skewness. As is evident from the two-point distribu-
tion of (18), when B is small, the value Ao that ensures
P(Z < —Ao0) < € can be large compared to Qg*.

5. Stochastic Programs with Chance
Constraints

Consider the following two-stage stochastic program:
Z*=min ¢'x+E(dy(Z))
s.t. a,(Z)x+Dbly(z) < fi(Z) ae.
Vie{l,...,m}, (24)
xe N,

y() ey,

where x corresponds to the first-stage decision vector, and
y(z) is the recourse function from a space of measurable
functions, Y, with domain 7 and range 9H"2.

Note that optimizing over the space of measurable func-
tions amounts to solving an optimization problem with a
potentially large or even infinite number of variables. In
general, however, finding a first-stage solution, x, such that
there exists a feasible recourse for any realization of the
uncertainty may be intractable (see Ben-Tal et al. 2004
and Shapiro and Nemirovski 2005). Nevertheless, in some
applications of stochastic optimization, the risk of infeasi-
bility often can be tolerated as a trade-off to improve upon
the objective value. Therefore, we consider the following
stochastic program with chance constraints, which have
been formulated and studied in Nemirovski and Shapiro
(2004) and Ergodan and Iyengar (2005):

Z*=min c'x
st. P(a;(2)x+by(z) < fi(2)) > 1 —¢
Vie{l,...,m}, (25)
x e N",

y() ey,

where €; > 0. To obtain a less conservative solution, we
could vary the risk level, €;, of constraint violation, and
therefore enlarge the feasible region of the decision vari-
ables, x and y(-). Observe that in the above stochastic
programming model, we do not include the second-stage
cost. We consider such a model for two reasons. First,
the second-stage cost is not necessary for many appli-
cations, including, for instance, the project management

example under uncertain activity time presented in the
§A of the online appendix. Second, incorporating a linear
second-stage cost into model (25) with chance constraints
introduces an interesting modeling issue. That is, because
the decision maker is allowed to violate the constraint with
certain probability without paying a penalty, he/she may
do so intentionally to reduce the second-stage cost, regard-
less of the uncertainty outcome. To avoid this issue, in
this paper we will not include the second-stage cost in the
model. We refer the readers to our companion paper Chen
et al. (2006) for a more general multistage stochastic pro-
gramming framework.

Under the Model of Data Uncertainty U, we assume that
Z;€[~z;,z;], j€{l,..., N} are independent random vari-
ables with mean zero and deviation parameters (p;, q;),
satisfying p; € %(Z;) and ¢q; € @(Z;). Forall i e {1, ..., m},
under the Affine Data Perturbation, we have

N
a,(z)=a) +) Aalz;
=1

and
N .
L@ =+ AR
j=1

To design a tractable robust optimization approach for solv-
ing (25), we restrict the recourse function y(-) to one of
the linear decision rules as follows:
N
y@) =y"+3 ¥z (26)
j=I
Linear decision rules emerged in the early development
of stochastic optimization (see Garstka and Wets 1974)
and reappeared recently in the affinely adjustable robust
counterpart introduced by Ben-Tal et al. (2004). The lin-
ear decision rule enables one to design a tractable robust
optimization approach for finding feasible solutions in

model (25) for all distributions satisfying the Model of Data
Uncertainty U.

THEOREM 7. The optimal solution to the following robust
counterpart,

Z*=min c'x
st. a¥x+ by’ + Qb +r'i+s"z< [0
Vie{l,...,m},
[w*<h;, Vie{l,...,m},
i i - Jo_ iy
uijj(Aa[ x+ by —Af; —rj—l—sj)
Vie{l,...,m},je{l,...,N}, (27
i i i J i i
ui > —q;(Aaj x+ by — Af) —ri+5))
Vie{l,...,m},je{l,...,N},

xe N,
yeRt vjelo,...,N},

u,r s eRV, heR Vie{l,...,m},
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where Q, = /—21In(e;), is feasible in the stochastic opti-
mization model (25) for all distributions that satisfy the
Model of Data Uncertainty U and Z* > Z*.

PRrOOF. Restricting the space of recourse solutions y(z) in
the form of Equation (26), we have the following problem:

Z{=min ¢'x

s.t. P<a?/x +bjy°

N
+2_(Aaj x+ by - Af)Z; < f) (28)

=
>1l—¢ Vie{l,...,m},

x e N",

yeRt vjelo,...,N},

which gives an upper bound to model (25). Applying The-
orem 5 and using Theorem 2, the feasible solution of
model (27) is also feasible in model (28) for all distribu-
tions that satisfy the Model of Data Uncertainty U. Hence,
VAP VAR VAR

We can easily extend the framework to T stage stochastic
programs with chance constraints as follows:

Z*=min c¢'x

S.t. P(ai(il,...,iT)’x

T
+Zb;,yf<il,...,it><ﬁ(zl,...,ir>) (29)

t=1
>1—¢ Vie{l,...,m},
xeN”,
yi(z,..z,)eR* Vi=1,..T, 2,<z,<%,.

In the multiperiod model, we assume that the underlying
uncertainties, z, € W™, ..., Z, € R, unfold progressively
from the first period to the last period. The realization of
the primitive uncertainty vector, Z,, is only available at the
tth period. Hence, under the Affine Data Perturbation, we

may assume that z, is statistically independent in different
periods. With the above assumptions, we obtain

T N, o
a(Z,....Z;)=a) +y_ Y Aa,z

=1 j=1
and
T N, o
f;'(il""’iT):f;‘o—i—ZZA ilrzi-
=1 j=1

To derive the robust formulation of the multiperiod
model, we use the following linear decision rule for the
recourse function:

t N
iz oz) =y + )Y v,

=1 j=1

which fulfills the nonanticipativity requirement. Essentially,
the multiperiod robust model is the same as the two-period
model presented above, and does not suffer from the “curse
of dimensionality.”

5.1. On Linear Decision Rules

The linear decision rule is the key enabling mechanism that
permits scalability to multistage models. It has appeared in
earlier proposals for solving stochastic optimization prob-
lems (see, for example, Charnes and Cooper 1963 and
Charnes et al. 1958). However, due to its perceived limi-
tations, the method was short-lived (see Garstka and Wets
1974). While we acknowledge the limitations of using lin-
ear decision rules, it is worth considering the arguments for
using such a simple rule to achieve computational tractabil-
ity. One criticism is that a purportedly feasible stochas-
tic optimization problem may not be feasible any more
if one restricts the recourse function to a linear decision
rule. Indeed, hard constraints, such as y(z) > 0, can nullify
any benefit of linear decision rules on the recourse func-
tion, y(z). As an illustration, consider the following hard
constraint

y(z) >0,
N N Mo (30)
¥(z) 2 b(z) = b, + ijzj’

j=1

where bj # 0, and the primitive uncertainties, Z, have
unbounded support and finite forward and backward devi-
ations (e.g., normally distributed). It is easy to verify that
a linear decision rule,

N
y(@) =yo+ D ¥

j=l1

is not feasible for constraints (30).
On the other hand, the linear decision rule can survive
under soft constraints such as

P(y(z) 20) <1—e,
P(y(z) 2 b(z)) <1-e,

even for very small e. For example, if p, =¢; =1 and
€ = 1077, the following robust counterpart approximation
of the chance constraints becomes

Yo = s ynlls

Yo — by = Q[ = by, vy — byl

where ) = 5.68. Because () =,/—21In(€) is a small num-
ber even for very high reliability (e very small), the space
of feasible linear decision rules may not be overly con-
strained. Hence, the linear decision rule may remain viable
if one can tolerate some risk of infeasibility in the stochas-
tic optimization model.
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Another criticism of linear decision rules is that, in
general, linear decision rules are not optimal. Indeed, as
pointed out by Garstka and Wets (1974), the optimal policy
is given by a linear decision rule only under very restrictive
assumptions. However, Shapiro and Nemirovski (2005, pp.
142-143) have stated:

The only reason for restricting ourselves with affine decision
rules? stems from the desire to end up with a computation-
ally tractable problem. We do not pretend that affine decision
rules approximate well the optimal ones—whether it is so or
not, it depends on the problem, and we usually have no pos-
sibility to understand how good in this respect is a particular
problem we should solve. The rationale behind restricting to
affine decision rules is the belief that in actual applications
it is better to pose a modest and achievable goal rather than
an ambitious goal which we do not know how to achieve.

Further, even though linear decision rules are not opti-
mal, they seem to perform reasonably well for some appli-
cations (see Ben-Tal et al. 2004, 2005), as will be seen in
the project management example presented in §A of the
online appendix.

6. Conclusions

The new deviation measures enable us to refine the descrip-
tions of uncertainty sets by including distributional asym-
metry. This in turn enables one to obtain less conservative
solutions while achieving better approximation to the
chance constraints. An empirical study has recently been
done by Natarajan et al. (2006), where they use the
approach discussed in this paper as a heuristic for mini-
mizing the value-at-risk of a portfolio. Surprisingly, it gives
superior out-of-sample performance when tested on a set of
real data. We also used linear decision rules to formulate
multiperiod stochastic models with chance constraints as
a tractable robust counterpart. Advances of SOCP solvers
make it possible to solve robust models of decent size.
Using the robust optimization approach to tackle certain
types of stochastic optimization problems thus can be both
practically useful and computationally appealing.

7. Electronic Companion

An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes

1. Bound (22) is tight for the centered Bernoulli distribu-
tion of (18), in which B8 = €. Indeed, to safeguard against
the low probability event of z = 1, we require A to be
at least 1/0 =1/\/B+B*/(1—B) = /(1 —€)/€, so that
P(Z > Ao) < e. For the same two-point distribution, we
verify numerically that (1p* converges to one, as B =€
approaches zero, suggesting that bound (23) is also asymp-
totically tight.

2. An affine decision rule is equivalent to a linear decision
rule in our context.
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