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Abstract—This study proposes a self-paced learning scheme
that integrates self-training and deep learning to select and
learn labeled and unlabeled data samples for classifying anterior-
posterior chest images as either being pneumonia-infected or
normal. With this new approach, a model is first trained with
labeled data. The model is evaluated on unlabeled data to
generate pseudo labels for the unlabeled data. Using a novel
selection scheme, the pseudo-labeled samples are then selected
to update the model in next training iteration of the semi-
supervised training process. The selected pseudo-labeled images
to be added to the next training iteration are images with the
most confident probabilities from every unlabeled class. Such
a selection scheme prevents mistake reinforcement, which is a
prevalent occurrence in self-training. With deep models having
the tendency to latch onto well-represented class samples while
ignoring less transferable and represented classes, especially in
the case of unbalanced data, the proposed method utilizes a
novel algorithm for the generation and selection of reliable top-K
pseudo-labeled samples to be used in updating the model during
the next training phase. Such an approach does not only force the
model to learn the hard samples in the training data, it also helps
enlarge the training set by generating enough samples that satisfy
the hunger of deep models. Extensive experimental evaluation of
the proposed method yields higher accuracy results compared
to methods mentioned in the literature on the same dataset, an
indication of the effectiveness of the proposed method.

Keywords—Anterior-posterior chest images; self-paced learn-
ing; self-training; pneumonia classification

I. INTRODUCTION

The increasing levels of pollution in many developing
countries put millions of people in such countries at the
risk of contracting lung related infections. Statistics from the
World Health Organization (WHO) estimates that more than
four million premature deaths occur every year as a result of
diseases related to pollution, which includes pneumonia [1].
A report by [2] shows that on a yearly basis, the number
of people infected with pneumonia is over 150 million, with
majority of these numbers coming from children below five
years old. This worrying trend necessitates the automatic and
accurate computer-aided detection of pneumonia in its early
stages, that ultimately leads to accurate and effective diagnosis
and treatment.

In recent years, machine learning and deep learning ap-
proaches are spearheading the surge in the computer-aided
systems for diagnosis in the medical domain. Deep learning
methods have successfully implemented in medical imaging
tasks, including but not limited to classification [3] [4], de-
tection [5] [6] and segmentation [7] [8]. Convolutional neural

networks (CNN), a deep learning method, has been obtaining
impressive performances in a wide range of tasks. Contributing
greatly to the successes of CNN models is their inherent nature.
The hierarchical layout of CNN models enable different layers
to learn different features or patterns from data related to a
specific task. However, an underlying attribute of CNN models
is that, they require huge amounts of well-labeled data during
training in order to arrive at satisfactory outcomes. The absence
of such kind of data leaves the models prone to overfitting,
which degrades their performances due to poor generalization.

A significant challenge with medical imaging tasks is
obtaining ample labels for data samples. Moreover, for deep
model to generalize well on data, a significant amount of
images samples required during training. Such huge amounts
of image samples are virtually non-existent in the medical
domain. Compounding this problem is the process of data
labeling (in the case where sufficient amounts of data exists).
The data labeling process is a laborious and time-consuming
one, which require expertise knowledge. To efficiently harness
and maximize available data, existing methods mentioned in
the literature resort to training CNN models from scratch and
adopting data augmentation schemes in a bid to augment and
enlarge the training set [9] [10]. The methods adopted in these
works are supervised learning approaches, which typically
use only labeled data. Nonetheless, an effective approach to
reducing the cost of data labeling yet generating more data
sample is to incorporate both labeled and unlabeled data in the
training process via semi-supervised learning. Unlabeled data
is rather inexpensive and abundant compared to the process of
obtaining well-labeled data. This idea of using both labeled and
unlabeled data in classification tasks has been less exploited
in chest x-ray and pneumonia classification. The principal
idea of semi-supervised learning is to utilize both labeled and
unlabeled image samples in building efficient learners, instead
of only using labeled image samples.

This work proposes a novel semi-supervised learning ap-
proach that utilizes self-training to classify chest x-ray images
as either normal or pneumonia-infected. To this end, the
proposed approach adopts self-paced learning [11], a learning
paradigm inspired by the way humans learn, where a learner
first learns easy samples and followed by the gradual addition
of more complex samples in a meaningful way, resulting the in
the learner becoming more matured and robust. To incorporate
“easy-to-hard” samples into the training data, the proposed
approach utilizes both labeled and unlabeled data. Pseudo-
labels are assigned to the unlabeled data and target specific
model is trained with pseudo-labels via self-training, as though
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the pseudo-labels were true labels of the unlabeled data sam-
ples. The principal idea behind self-training is generating a
set of pseudo-labels which correspond to a high confidence
probability score. With self-training, a model is trained with a
training set that comprises the generated pseudo-labels based
on the assumption that, only target samples with the highest
prediction probability are selected to update the training set in
the next iteration.

In the case where this assumption isn’t met, a model may
reinforce incorrectly labeled data into the next training itera-
tion, and a situation known as mistake reinforcement occurs.
Mistake reinforcement ultimately degrades the performance of
a model. In order to prevent such a scenario from occurring,
the proposed approach utilizes a novel pseudo-label selection
algorithm to generate and select the top-K pseudo-labeled
samples, to be used in augmenting the training set during
the next training iteration. The proposed scheme forces the
base learner to learn hard samples, in that, samples from both
well represented and less represented classes are added to the
training set. Using a simple CNN model trained from scratch
as the base learner, the proposed approach yields a significantly
higher accuracy compared to supervised methods mentioned in
the literature.

The contributions of this work are as follows;

• A novel CNN-based self-training framework is pro-
posed to classify anterior-posterior chest x-ray images
as normal or pneumonia-infected by utilizing both
labeled and unlabeled data. In this way, the machine
learning technique of self-paced learning and CNN are
integrated to classify chest x-ray images.

• A new heuristic pseudo-label generation and selection
algorithm is proposed to generate and select the top-
k most reliable pseudo-labels and their correspond-
ing pseudo-labeled samples in updating the model,
alleviating the issue of reinforcing incorrectly labeled
samples in updating the CNN model, a drawback
which characterizes conventional self-training.

• The proposed heuristic algorithm is capable of making
the self-paced learning method jointly learn a good
classifier and optimize the pseudo-labels. This is to
ensure that a chunk of the pseudo-labeled samples are
not ignored in the selection process at the same time
solve the challenge of amassing enough reliable data
for deep CNN based models.

• Finally, the problem is formulated as a loss minimiza-
tion scheme that is solved by utilizing an end-to-end
approach to learn a good learner and also learn the
domain invariant features in chest x-ray images to
distinguish pneumonia and normal tissue images.

The rest of this work is organized as follows; Section II surveys
some works mentioned in the literature relating pneumonia
classification, the self-paced learning scheme for pneumo-
nia classification is introduced in Section III, with materials
used and corresponding experiments described in Section IV.
Section V details results and discussions and this work is
concluded in Section VI.

II. RELATED WORK

Recent advancements in deep learning methods have led
to successes in many computer-aided diagnosis and medical
imaging tasks including classification, segmentation and detec-
tion. Commendable results have been reported in the literature,
that show exciting prospects in applying deep learning models
in medical related tasks. Over the years, trend is evident
in the development of several deep learning algorithms that
seek to improve accuracies and minimize loss. These models
have achieved excellent accuracy performances in classifica-
tion tasks on natural images datasets such as the CIFAR,
MNIST and ImageNet. For the particular case of examining
chest x-ray images, task ranging from detecting abnormali-
ties to classifying such abnormalities have been reported by
some works [12], [13], [14], [15]. Authors in [10] classified
chest x-ray images as pneumonia-infected or otherwise by
using a CNN model. The authors adopted data augmentation
techniques for training a CNN model, and obtained a clas-
sification of 93.73%. Authors in [16] developed CheXNet, a
121-layer CNN model that was trained on the ChestX-ray14.
The authors compared the performance of CheXNet with that
of radiologists, and obtained performance that exceeded that
of pathologists. Performance was extended to cover all 14
diseases in the ChestX-ray14 dataset. In [17], authors used
the pre-trained VGG16 model to detect and pneumonia and
discriminate bacterial and viral pneumonia. Their approach
focused on localizing the affected regions in an image, and
reported accuracy performances of 96.2% and 93.6%. Authors
in [18] perform binary classification using a CNN model
on 5863 chest x-ray images to discriminate pneumonia and
normal images. They reported an accuracy of 95.30% The
work in [19] presented an 18-layer CNN architecture trained on
5863 chest x-ray images to perform normal versus pneumonia
classification and reported an accuracy of 94.39%. Again, a
deep learning method was adopted in classifying images as
either normal or pneumonia in [20] with the authors reporting
accuracies between 96-97%.

The methods adopted in the above-mentioned approaches
rely on supervised learning, where only labeled data is used
in the training process. The proposed approach adopts a semi-
supervised learning approach to make use of both labeled
and unlabeled data in classifying chest x-ray images as either
pneumonia or normal.

III. SELF-PACED LEARNING FOR PNEUMONIA

CLASSIFICATION

In the medical imaging domain, the ratio of unlabeled data
to labeled data presents a significant challenge in successfully
accomplishing tasks. The task of obtaining well-labeled data
is time-consuming, and also requires guidance from experts.
These factors render such a process expensive and laborious.
As such, a technique that can exploit both unlabeled and
labeled data in training a CNN learner presents significant and
exciting prospects in this domain. Semi-supervised learning
incorporates both labeled and unlabeled data in building bet-
ter learners. Semi-supervised learning algorithms have been
adopted in some works mentioned in the literature for some
classification tasks [21][22][23]. The core idea behind semi-
supervised learning involves training a learner on labeled data
and using the base learner to predict labels for unlabeled data.
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Fig. 1. Algorithm workflow of the proposed approach. A deep CNN model is first trained from scratch with labeled data samples. Pseudo-labeled samples are
generated from unlabeled data samples and the most confident pseudo-labeled samples via the selection algorithm. The selected confident labels together with

the labeled image samples are used as training data for the next training iteration

Nonetheless, a prevalent occurrence in many datasets is that,
some classes tend to be better represented compared to others
and the samples in the various classes do not always present
an accurate representation of the characteristic differences
between the classes themselves. When such a situation occurs,
a learner tends to easily latch on to features from classes with
a higher representation other than considering samples from
all classes, irrespective of their representation. Ultimately, a
learner literally abandons robust and versatile features relevant
to its learning process, and this subsequently impacts the
ability of the learner to generalize well on data.

To curb such an occurrence, a model can be gradually
introduced to training or data samples in an easy-to-hard man-
ner, utilizing a class-wise confidence probability in selecting
pseudo-labels with higher confidence scores for updating the
learner in the next training iteration. This is the core idea
behind self-paced learning (SPL) and it has been adopted in
some works [24][25][26]. It is a learning scheme that mimics
the learning process of humans and animals by adding easy-to-
hard samples in gradual manner. SPL has been demonstrated
to be helpful in preventing bad local minima and achieving
a better generalization outcome [11]. The classifier or learner
determines the sequence of gradually training samples, and this
is where SPL introduces a regularization term into the learning
objective, enabling a learner to jointly learn a curriculum that
consists of easy-to-hard or complex samples.

A review of the SPL paradigm is first introduced before in-
troducing the proposed approach. Considering a given training
data, D = {(x1, y1), ..., (xn, yn)}, where xi ∈ R

m represents
the ith observed sample, with yi being its corresponding label.
The loss function, which estimates the cost between the ground
truth label yi and the estimated label f(xi,w), is denoted
as L(yi, f(xi,w)). w represents model parameters inside the

decision function f. SPL aims at jointly learning the model
parameter w and the weight variable v = [v1, ..., vn] by
minimizing

minw,vE(w,v;λ) =

n
∑

i=1

viL(yi, f(xi,w))−

λ

n
∑

i=1

vi, s.t.v ∈ [0, 1]n
(1)

where λ is the parameter that controls the rate at which the
model learns new samples which has a direct correspondence
with the ”age” of the model. When the value of λ is set to very
small, the model only considers ”easy” samples with small
losses. With an increase in the growth of λ, more samples with
larger losses are gradually added, making the model mature.

With reference to minimizing the loss function, the pro-
posed method adopts a semi-supervised model with softmax
output that is solved using an end-to-end approach to learn
a good classifier. This work proposes to formulate the loss
function as;

minLst (W)W =−

S
∑

s=1

N
∑

n=1

YT
s,n log (Pn(W , Is))

−

T
∑

s=1

N
∑

n=1

YT
t,n log (Pn(W , It)).

(2)

where Is represents the image in the source domain
indexed by s = 1, 2, 3, ...,S. Ys,n denotes the true labels
for the nth image (n = 1,2,...,N) for Is and W represents
the network weights. The softmax output containing the class
probabilities is denoted as Pn(w, Is). The definitions for
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It,Yt,n and pn(w, It) at the time of evaluation are similar.
In the likelihood that some target labels are unavailable, the
model presumes that these labels are hidden and learns from

approximate target labels Ŷ for Ĉ, which indicates the number

of samples.The term Ŷ (indicated in Equation 3) is referred to
as the pseudo-labels to be used in the self-training scheme.

minLst

(

W, Ŷ
)

W,Ŷ
=−

S
∑

s=1

N
∑

n=1

YT
s,n log (Pn (W , Is))

−

T
∑

s=1

N
∑

n=1

ŶT
t,n log (Pn(W , It)).

(3)

A. Self-Training with Self-Paced Learning

Conventional self-training is based on the assumption that,
the high confidence predictions of a leaner are correct. As-
suming an input instance x with label y, and given a learner
f : χ 7→ Y , labeled data (Xl, Yl) = {x1:l, y1:l}, unlabeled data
Xu = {Xl+1:n}, in self-training, the learner f is first trained
from (Xl, Yl) via supervised learning. Then the learner f is
used to predict the labels for the unlabeled data Xu. A subset
S, which typically comprises the few unlabeled instances Xu

with the most confident predictions, is selected together with
predicted labels to be added to the labeled data (Xl, Yl). The
learner is re-trained on the labeled data (which is much larger
now) and the procedure is repeated. Typical of conventional
self-training, an early mistake by the learner can reinforce
wrong predictions into the training set for the next training
iteration.

Algorithm 1 details the procedure of the self-training
scheme. It starts by training a classifier with labeled samples,
subsequently using the learned classifier to predict labels
for non-annotated samples It. The predictions are known as
generated pseudo-labels and with the novel selection scheme,
the top-K pseudo-labeled samples are selected and added
to annotated labeled set for the next model training. This
process is executed iteratively until a stopping criterion is
met. The fundamental idea behind the notion of an “easy-to-
hard” approach is the generation of pseudo-labels from the
most confident and correct predictions, updating the model
with the augmented samples, and then exploring the remaining
less-confident pseudo-labels. With this approach, Equation 3 is
modified into;

minLst

(

W, Ŷ
)

W,Ŷ
= −

S
∑

s=1

N
∑

n=1

YT
s,n log (Pn (W , Is))

−

T
∑

s=1

N
∑

n=1

[
∫ 2

1

ŶT
t,n log (Pn (W , It))

+k

∣

∣

∣
ŶT

t,n

∣

∣

∣

1

]

.

(4)

In the scenario where the pseudo-label Ŷ (in Equation 4)
is ignored, the value of Y is assigned to zero. Again, to avoid
the case of ignoring a substantial amount of pseudo-labels, L1

regularizer is added to the loss function in Equation 4. k > 0
ensures the selection of more pseudo-labels during training.

In order to minimize the loss in Equation 4, 1), W is first

initialize and the loss is minimized w.r.t Ŷt,n and then 2) Ŷt,n

Algorithm 1: Self-paced learning algorithm

input : Deep Learning Network P (w), unlabeled
Images It, amount K

output: Classifier(C)
Train a network P (w) from scratch with labeled
samples Is

for k ← 1 to N do
• Test and predict on unlabeled samples It;
• Generate pseudo-labels for It using predictions;
• Select K-pseudo-labeled samples.;
• Append K-pseudo-labeled samples to labeled set

(Is +K(It))
• Re-train P (w) on both Is and K-pseudo-labeled

samples (Is +K(It))
end
C = updated(P (w));
Return C

and the objective function is optimized w.r.t W . Executing
step 1 and step 2 is considered to be a single iteration. In 1),
optimizing discrete variables requires a non-linear function.
Given that k > 0, the entire process in 1) can be re-expressed
as;

min
Ŷ
−

T
∑

t=1

N
∑

n=1

[

∑

Ŷ
(c)
t,y log (pn(c|w , It)) + k|Ŷt,n|1

]

.

s.t. k > 0

(5)

The pseudo-labels ought to satisfy one of the following
conditions; 1) either it is a discrete one-hot vector or 2) a vector
with a null magnitude. As such, the pseudo-label framework
is optimized via;

Ŷ
(c∗)
t,y =







1, if c = argmax pn (c|w, It),

pn (c|w, It) > exp(-k).

0, otherwise.

(6)

The softmax loss in Equation 6 enables models to learn
features and weights without prior observation of unlabeled
samples. Such a function helps to curb the missing pseudo-
label problem prevalent in conventional self-training and ex-
pectation maximization methods. To also prevent the situation
where a model latches on to classes with large-samples,
resulting in biased learning, the proposed approach introduces

k|Ŷt,n|. This factor determines the size of pseudo-labels to be
selected from each class as well as assigning pseudo-labels to
a sample. In Equation 6, the output probability (pn(c|w , It))
must not be less than exp(-k), else it is assigned a zero-vector
and ignored.

A vital component of the proposed method is the algorithm
that determines the number of pseudo-labels to be added to the
training data after each iteration (depicted in algorithm 2). The
algorithm introduces k, that helps in determining the amount
or rate pseudo-labeled samples to be selected to update the
model of pseudo-labels as well as filtering out probabilities
less than k. k is set by first taking the maximum probability
on each sample, and these probabilities are then sorted across
all samples and classes in a descending order. Then, k is set
such that exp(−k) will be equivalent to the ranked probability
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Algorithm 2: Algorithm for determining k in

input : Deep Learning Network P (w), unlabeled
Images It, selected pseudo-labels p

output: k
for t← 1 to T do

PIt = P (w, It);
MIt = argmax(PIt , axis = 0);
M = [M,matrix− to− vector(MIt)]

end
M = sort(M, order = descending)
L = length(M)× p
k = − log (M [L]) ;
return(k)

at (p ∗ T ∗N). p represents a portion number between [0, 1].
In this way, optimizing the pseudo-labels results in p× 100%
confident pseudo-labels to be used in training. The proposed
selection algorithm allows the addition of the more pseudo-
labels in the training sample for the next training iteration. M
is the maximum probability output on each sample, and these
probabilities are sorted across samples and classes.

IV. MATERIALS AND EXPERIMENTS

A. Dataset

The dataset used in this work is obtained from [27]. It
consists of 5,856 X-ray images. The images are anterior-
posterior chest images that were taken chosen from retrospec-
tive pediatric patients between the ages of 1 and 5 years. The
dataset ships with two kinds of chest x-ray images - normal
and pneumonia stored in two separate folders. The number of
normal images is significantly less than the number of the
pneumonia (the normal class comprises only one-fourth of
all data), creating a huge imbalance in the dataset. Sample
images from the normal and pneumonia classes are depicted
in Figure 2

B. Experimental Approach

This work proposes a CNN model that consists of five
convolutional layers and one fully connected layer as the
base learner for the self-training process. The CNN model is
detailed as follows;

• First convolutional layer learns 64 filters, each of size
3 x 3

• Second convolutional layer learns 96 filters, each of
size 3 x 3

• Third convolutional layer learns 128 filters, each of
size 3 x 3

• Fourth convolutional layer learns 256 filters, each of
size 3 x 3

• Fifth convolutional layer learns 256 filters, each of size
3 x 3

RELU activation is applied to every convolutional and fully
connected layer. The RELU activation layer aids in faster
convergence and also ensures that all negative activations are

Fig. 2. Sample images from the normal and pneumonia classes

converted to zero. A batch normalization layer [28] is applied
after every RELU activation layer.

Batch normalization layers help normalize the activations
of an input volume before passing activations to the next
layer. Batch normalization layers are effective in reducing the
number of epochs required to train a network, stabilizing the
network, and also allow for a number of learning rates and
regularization strengths. A pooling layer is applied after the
batch normalization layer for the second and fifth convolutional
layers. Pooling layers reduce the spatial size of the input
volume, allowing for a reduction in the number of parameters.
In the proposed architecture, max-pooling layers have a size
of 2 x 2. Dropout with keep probability of 0.5 is applied after
the fully connected layer.

α = initLR ∗ (1−
epoch

Tepochs

)p (7)

initLR is the base learning rate, Tepochs is the total number of
epochs, p is the exponential power, which is set to 1.

The network is trained from scratch and its weights are
initializes using Gaussian distribution. The model is trained
with the Adam optimizer [29] with a learning rate of 0.0001,
β1 = 0.9 and β2 = 0.99. A polynomial decay learning rate
scheduling is implemented since it allows for the decaying of
the learning rate over a fixed number of epochs. The training
process is for a total of 100 epochs with a batch size of 64. For
data augmentation, random rotation with a range of 90◦, and
horizontal flipping have been implemented. Data augmentation
helps curb overfitting in models. Input images are resized to
200 X 200 before being fed to the model.

For the training data, 70% is during training and 30% is
reserved as test samples. The test samples are used as the
unlabeled data for the self-training scheme. In all experiments,
the CNN model is re-trained with hyper-parameters for top k
using 5%, 10% and 20% of the pseudo-labeled samples of the
unlabeled data. Experiments are performed using using Keras
(version 2.2.4) [30] with Tensorflow backend (version 1.12)
[31] and CUDA 9.0. The hardware platform for all experiments
is an RTX 2080 graphic card with 8GB memory and a 32GB
RAM. The overall workflow is illustrated in Figure 1

V. RESULTS AND DISCUSSION

In this work, a self-paced learning scheme that integrates
self-training for classifying anterior-posterior chest images as
either normal or pneumonia was introduced. To augment the
training data, the proposed approach utilized both labeled and
unlabeled data in the training process. 30% of the dataset
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Fig. 3. Accuracy and loss plots after the training process. ST refers to the self-training plots. It is observed from the loss plot that, the loss value is initially
high at the start of training but significantly decreases as training progresses. This high initial loss value is because, at the start of training, the model is only

beginning to learn features or patterns from the data (since the model is being trained from scratch). By the end of 100th epoch, the loss is significantly lower.
Observing the accuracy plots, it is observed that, both training and validation accuracy plots match up smoothly at the end of training, an indication that

overfitting is effectively minimized.

TABLE I. ACCURACY COMPARISON OF THE PROPOSED METHOD WITH

OTHER WORKS COMPARED TO THE SUPERVISED ALGORITHMS MENTIONED

IN THE LITERATURE WHICH USES ONLY LABELED DATA, THE PROPOSED

APPROACH SHOWS SIGNIFICANTLY HIGHER ACCURACY PERFORMANCE

WHEN ONLY A PORTION OF THE GENERATED PSEUDO-LABELS ARE USED.

Method Accuracy(%)

[27] 92.8

[32] 93.8

[10] 93.73

[19] 94.39

[18] 95.30

[17] 96.2

This work (Baseline, trained from scratch) 96.26

This work (All pseudo labels) 96.42

This work (top-5% pseudo-labels) 97.56

This work (top-10% pseudo-labels) 98.04

This work (top-20% pseudo-labels) 96.74

was reserved as the unlabeled data for the re-training process.
For all experiments, the proposed approach was evaluated by
using - i) using all generated pseudo-labels for the unlabeled
data; and ii) using the top-5%, top-10% and top-20% confident
pseudo-labels after setting a threshold k. Experimental results
are shown in Table I. The best accuracy obtained was 98.04%
when the top-10% most confident pseudo-labels were used.
Using the top-5% confident pseudo-labels resulted in an ac-
curacy of 97.56%, with the top-20% confident pseudo-labels
yielding an accuracy of 96.74%. Using all the pseudo-labels
yielded an accuracy of 96.42%. Training the baseline model
from scratch resulted in an accuracy of 96.26%.

The unbalanced nature of the dataset is a challenge for
deep learning models as such a scenario puts the model at the
risk of overfitting on data. This is because, the model tends
to be biased towards classes with more data representation.
The proposed approach effectively curbs overfitting as shown
by the accuracy and loss plots in Figure 3. The loss starts a
high value because the model is trained from scratch and as
such, at the initial training stage, the model is only getting to
learn the data patterns. Over the course of the training process,

there’s a significant reduction in the loss value. The training
and validation accuracy plots for both the baseline training
and self-training indicate a near match-up of accuracies, an
indication that overfitting is effectively minimized. The overall
experimental results obtained demonstrate significant accuracy
improvements though only a portion of the generated pseudo-
labels were used, an indication of the strength of the proposed
method.

A. Comparison with Other Work

A comparison of the proposed method with other methods
mentioned in the literature is presented in this section. Table I
shows the performance of the proposed approach in compari-
son with other works. It is pertinent to note that, the reported
works in the literature adopt supervised learning techniques,
where only labeled data is used in the training process,
without the use of unlabeled data. The proposed method,
which effectively and efficiently selects the most confident
pseudo-labels as update to the model in the next training
phase, outperforms the methods reported in the literature on
the same dataset. In [17], the authors used a 16-layer pre-
trained VGG model for classifying images as pneumonia or
normal. A pre-trained model has been trained on the ImageNet
dataset and such, it possesses a great deal of rich features.
However, the proposed method yielded significantly higher
results with a simple baseline model trained from scratch.
Similarly, compared to works in the literature ([10],[18],[19])
that trained models on the same dataset with only labeled data,
the proposed approach yields higher accuracy, rubber-stamping
the point that, selecting the most confident pseudo-labels for
training is pf significant contribution to the overall performance
of a CNN learner.

VI. CONCLUSION

In this work, a self-paced learning scheme, which integrates
self-training for classifying anterior-posterior chest images as
either normal or pneumonia has been proposed. The proposed
method utilizes both labeled and unlabeled data in the training

www.ijacsa.thesai.org 88 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 4, 2020

process. A vital element of self-paced learning is that, it curbs
the issue of mistake reinforcement learning, where a model
incorrectly reinforces wrong predictions into a training set. As
such, selecting the most confident pseudo-labels to augment
the training set is a key step in ensuring the model generalizes
well of data. To this end, this work proposed a novel pseudo-
label generation and selection algorithm for selecting the top K
most confident pseudo-labels to be added to the next training
phase. Experiments with a simple CNN baseline model trained
from scratch yielded significantly higher accuracies compared
to other works mentioned in the literature, where only labeled
data was used in the training process. Future work will seek to
introduce more diversity into the self-paced learning process.
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