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Abstract: Estimation of the Pareto tail index from extreme order statistics is an important problem in

many settings. The upper tail of the distribution, where data are sparse, is typically fitted with a model,

such as the Pareto model, from which quantities such as probabilities associated with extreme events are

deduced. The success of this procedure relies heavily not only on the choice of the estimator for the Pareto

tail index but also on the procedure used to determine the number k of extreme order statistics that are

used for the estimation. The authors develop a robust prediction error criterion to choose k and estimate

the Pareto index. A simulation study shows the good performance of the new estimator and the analysis

of real data sets shows that a robust procedure for selection, and not just for estimation, is needed.

Un critère robuste de prévision pour la modélisation Pareto des ailes supérieures

Résumé : L’estimation de l’indice de Pareto à partir des statistiques d’ordre extrêmes est un problème

important dans plusieurs disciplines. L’aile supérieure de la distribution, où les données sont rares, est

souvent ajustée par un modèle tel que le modèle de Pareto. Les probabilités des événements extrêmes

sont ensuite calculées à partir de ce dernier. Le succès de cette procédure dépend beaucoup non seulement

du choix de l’estimateur de l’indice, mais aussi de la procédure utilisée pour déterminer le nombre de

statistiques d’ordre extrêmes inclus dans l’estimation. Les auteurs développent un critère robuste de

prévision pour la sélection de k et l’estimation de l’indice de Pareto. Une étude de simulation démontre

la bonne performance du nouvel estimateur et une analyse de données réelles démontre qu’une procédure

robuste de sélection, et non seulement d’estimation, est requise.

1. INTRODUCTION

Whether it is in economics, finance, insurance, engineering, or environmental issues, there is much
interest in the upper tails of distributions. In economics, data in the upper tails of income distri-
butions can be sparse and therefore tails are fitted with parametric models (typically the Pareto
distribution) in order to properly estimate inequality measures or Lorenz curves (see e.g. Cowell &
Victoria-Feser, 2006). In finance, determination of the value at risk or expected shortfall from the
lower tail of the returns’ distribution is central to portfolio management. The lower tail is modelled
for better estimation of these risk measures, and much work has been done on foreign exchange
rates and stock returns: Koedijk, Schafgans & de Vries (1990), Jansen & de Vries (1991), Hols
& de Vries (1991), Phillips, McFarland & McMahon (1996), Danielsson & de Vries (1997), and
Dacorogna, Müller, Pictet & de Vries (2001). Finally, in insurance, a similar argument holds for
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the estimation of probabilities associated with given levels of losses; see Embrechts, Klüppelberg
& Mikosch (1997) for a full treatment.

Let X1,X2, . . . ,Xn be a sequence of positive independent and identically distributed random
variables, each with distribution function F . We are interested here in the upper tail of the sample,
namely X[n−k+1], . . . ,X[n] with X[i] denoting the ith order statistic. Our interest lies in Pareto
type tails and we suppose that for sufficiently large quantiles x, F is such that there exists a
positive constant θ for which 1−F (x) = x−θl(x), where l(x) is a so-called slowly varying function
at infinity (see e.g. Beirlant, Vynckier & Teugels, 1996). In this paper we choose the function
l(x) corresponding to the Pareto model, but our results can be extended to other models (see
below). Moreover, as our simulation study will show, our method works well with data from other
thick-tailed distributions. We wish to estimate the Pareto index θ > 0 (or 1/θ) and simultaneously
determine k, the number of observations in the upper-tail to be included in the estimation. Here,
we focus on estimation of the upper-tail, but results apply to the lower-tail after proper relabelling.

The problem of estimating the parameter of interest, i.e. the Pareto index θ > 0, raises two
important challenges. The first is the simultaneous determination of k, or equivalently the threshold
x0 above which observations in the upper-tail are included in the estimation, and the second is
the choice of the estimator. For the threshold, a compromise should be sought between bias and
variance: choosing a threshold too close to the central data will cause bias and selecting too extreme
a threshold will yield large variances for the resulting estimator.

For the choice of the Pareto index estimator, we consider here the problem of robust estimation.
At first sight, a robust analysis seems to contradict an extreme value analysis. It is well known
that in general, robust estimators “downweight extreme data”, and in extreme value analysis, one
is actually interested in extreme data. However, “extreme” does not have the same meaning in
robust statistics as in extreme value analysis. Indeed, extreme data for a robust procedure, i.e.
outliers, means data that are in some sense “far from the model” that has supposedly generated
the majority of the data (“far” may be quantified in more than one way; we say more about this
in Section 2.3). If a model is postulated for extreme values, it is by definition adequate for the
extremes, and a robust estimator does not downweight these values which constitute the core of
the model. On the other hand, one can reasonably expect that not all the data in the upper tail
of the sample follow exactly the postulated model.

Formally, let Fθ be the postulated (parametric) model for the upper tail of the sample and let
x0 be the quantile above which Fθ is the correct model. The cumulative distribution on the whole
range of x (not only the upper tail) is then given by

F (x) =

{
G(x), x ≤ x0,

G(x0) + (1 − G(x0))Fθ(x), x ≥ x0,
(1)

where G is an unknown distribution function defined on the real line. We consider the following
contamination model. We suppose that the data are generated from Fε, where Fε is as F in (1) but
with Fθ(x) replaced by (1 − ε)Fθ(x) + εH(x), where ε is small, and where H(x) is a distribution
function defined on (x0,∞). For example, H(x) can be a point mass distribution at an arbitrary
point z or it can be Fθ′ for θ′ 6= θ. This type of model contamination is not as general as the
mixture (1 − ε)F (x) + εH(x), but since the deviations will be measured only on the upper tail
of the distribution (i.e. where the parametric model is assumed), there is no loss of generality in
assuming the neighbourhood defined by Fε.

The effect of data generated by Fε in the estimation procedure can be important in that not
only can the Pareto index estimators be biased, but also any estimator of k that uses these index
estimators can be biased. In other words, because the Pareto index and k are simultaneously
estimated, gross errors in the upper tail of the sample can lead to biased estimates of both. For
example, a biased estimate of k could lead to some observations from the lower tail of the sample
entering the upper-tail sample used for the estimation of the Pareto index. The estimate of the
latter would then also be biased.
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In this paper, we therefore propose an approach robust to both challenges: (1) the estimation of
the Pareto index θ, and (2) the simultaneous selection of the suitable number k of order statistics
in the upper tail to use in that estimation. To achieve this, we will view the Pareto model as a
regression model, e.g. see Beirlant, Vynckier & Teugels (1996).

Consider the conditional distribution P (X/x0 < x|X > x0) of relative excesses over high thresh-
olds x0. This conditional distribution is known to converge to 1 − x−θ for all x > 1, leading to
the Pareto (1896) model

Fθ(x) = 1 −

(
x

x0

)
−θ

, x ≥ x0, (2)

with density
f(x; θ) = θx−(θ+1)xθ

0, x ≥ x0, (3)

and with F−1
θ (q) = x0 (1 − q)

−1/θ
. Rearranging (2) one gets

log

(
x

x0

)
= −

1

θ
log (1 − Fθ(x)) , x > x0, (4)

showing that there is a linear relationship between the log of the x > x0 and the log of the survival
function. Let Q(F ; q) = inf{x|F (x) ≥ q} and let X∗

[i], i = 1, . . . , k, be the ordered largest k

observations, so that X∗

[i] = Q(F(n); i/(k + 1)), with F(n) the empirical distribution of X∗

[i]. The

empirical counterpart of (4) is the Pareto quantile plot

log

(
Q(F(n); i/(k + 1))

x0

)
= −

1

θ
log

(
k + 1 − i

k + 1

)
, i = 1, . . . , k. (5)

The plot of log
(
X[i]

)
versus − log ((n + 1 − i)/(n + 1)), i = 1, . . . , n is often used to detect graph-

ically the quantile X[i] above which the Pareto relationship is valid, i.e. the point above which the
plot yields a straight line. We note that there is a clear relationship between x0 and k in that
k =

∑n
i=1 I(X[i] ≥ x0), I being the indicator function.

A general approach in determining k is the minimization of an estimate of the asymptotic mean
squared error (AMSE) of the estimator of θ. The classical estimator of θ is the MLE

θ̂ =

[
1

k

k∑

i=1

log X[n−i+1] − log X[n−k]

]−1

. (6)

The latter is derived in Hill (1975) and is known as the Hill estimator. In this paper we use another
criterion to determine k, namely a prediction error criterion that is estimated robustly. Proceeding
as in Ronchetti & Staudte (1994), we develop a robust prediction error criterion based on the
Pareto quantile plot estimate. We call this criterion the RC-criterion and minimize it in order
to find x0 and thus indirectly k. The RC-criterion depends on the choice of a robust estimator
for the Pareto index, an estimator which depends in turn on a value for x0. We will consider
suitable estimators in the class of weighted maximum likelihood estimators (WMLE) of Dupuis
& Morgenthaler (2002) which downweight observations that are “far” from the Pareto model in
terms of either probabilities associated to the Pareto model (2) or the size of the residuals with
respect to the Pareto regression model.

An anonymous referee has suggested that we introduce measurement error in the model to
capture some or all of the model contamination. In our approach, this means replacing the Pareto
model with a more flexible model, which could also be another thick-tailed distribution. Our
RC-criterion could be derived for these models. However, the calculations can become more
complex and lead to increased computational cost. Moreover, independently of the complexity of
the postulated models, there is no guarantee that real data will follow exactly these models, or in
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other words that measurement error models will capture all of the model contamination, so that a
robust approach is also needed.

It should be stressed that some authors have already shown concern about the non-robustness
of statistics used in risk theory for insurance or finance, e.g. excess of loss premiums and probability
of ruin as studied by Marceau & Rioux (2001) and Brazauskas (2003). Both authors showed that
robust parametric fitting of the extreme value distribution is the suitable approach for the robust
calculation of these statistics. Robust estimation of extreme value distributions has been studied
by Victoria-Feser & Ronchetti (1994) and Vandewalle, Beirlant & Hubert (2004) for the Pareto
model, by Peng & Welsh (2001) for the Generalized Pareto model, and by Dupuis & Field (2004)
for these and other distributions. All these proposals assume that the threshold x0 is known. On
the other hand, Dupuis (1999) considered using robust methods for threshold selection only.

The remainder of the paper is organized as follows. In Section 2, a general formulation for the
robust prediction error is presented and then developed more precisely for our Pareto approach.
This leads to our RC-criterion for determining k. The criterion requires a robust estimator for θ
and these are also discussed in Section 2. In Section 3, we draw comparisons between our criteria
and presently available options. In Section 4, a simulation study is presented to complete our
comparisons. Applications to finance and to economic data are given in Section 5.

2. ROBUST PREDICTION ERROR CRITERION

2.1 General formulation

Let Y = (Y1, . . . , Yn)
T

be a random sample of observations from a distribution F . Consider the

most general case of Y having covariance Σ. Given a model, let Ŷ =
(
Ŷ1, . . . , Ŷn

)T

be the predicted

values for Y . One can define a prediction error criterion as

1

n
tr

{
E

[
Σ−1

(
Ŷ − E[Y ]

) (
Ŷ − E[Y ]

)T
]}

. (7)

In the case of independent observations, (7) reduces to

Γ =
1

n

n∑

i=1

E




(
Ŷi − E[Yi]

σi

)2

 , (8)

where σ2
i = var(Yi). For an arbitrary n× n covariance matrix (7) may be numerically intractable.

Therefore, even when observations are dependent, one might resort to (8) as a prediction error
criterion.

However, prediction error criterion (8) gives equal weight to all observations and if Ŷi are
obtained from non-robust estimators of model parameters, estimators of (8) will be sensitive to
outliers and other departures from model assumptions. Following Ronchetti and Staudte (1994),
we define a rescaled mean squared weighted prediction error

ΓR =
1

n

n∑

i=1

E


ŵ2

i

(
Ŷi − E[Yi]

σi

)2

 , (9)

where ŵi ∈ [0, 1] is the fitted weight of the ith observation under a robust fit of the model, to yield
Ŷi.

Lemma 1. The rescaled mean squared weighted prediction error can be written as

ΓR =
1

n
E




n∑

i=1

ŵ2
i

(
Yi − Ŷi

σi

)2

 +

2

n

n∑

i=1

1

σ2
i

cov
[
ŵiYi, ŵiŶi

]
−

1

n

n∑

i=1

1

σ2
i

var [ŵiYi] . (10)
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The proof uses standard techniques and the derivations can be found in Dupuis & Victoria-
Feser (2005). We seek an unbiased estimator of ΓR and choose

CR =
1

n

n∑

i=1

ŵ2
i

(
Yi − Ŷi

σi

)2

+
2

n

n∑

i=1

1

σ2
i

cov
[
ŵiYi, ŵiŶi

]
−

1

n

n∑

i=1

1

σ2
i

var [ŵiYi] , (11)

with suitable estimators for σ2
i , cov

[
ŵiYi, ŵiŶi

]
, and var [ŵiYi].

2.2 Prediction error criteria for the Pareto model

For the Pareto model, ΓR is applied to the upper tail of the sample, i.e. where the Pareto model is
supposed to have generated the data. Then, given a value for x0 (and hence for k), in order to apply

(5) we take Yi = log
(
X∗

[i]/x0

)
, i = 1, . . . , k and Ŷi = −1/θ̂ log [(k + 1 − i)/(k + 1)] , i = 1, . . . , k,

where θ̂ is an estimator of θ. There are a few options for the latter estimator and their merits are
discussed in the next section. To find suitable estimators for the terms in (11) we make use of the
following results.

Lemma 2. Given a value for x0, the ordered k quantiles X∗

[i] ≥ x0 have density

fi:k(x) = (k − (i − 1))
(

k
i−1

){
1 −

(
x
x0

)
−θ

}i−1 {(
x
x0

)
−θ

}k−(i−1)

θx−1 for x ≥ x0.

Lemma 3. The variance of Yi is

σ2
i =

i∑

j=1

1

θ2(k − i + j)2
=

1

θ2

[
1

k2
+

1

(k − 1)2
+ . . . +

1

(k + 1 − i)2

]
. (12)

The proof of Lemma 2 is straightforward and that of Lemma 3 is in the Appendix.
In a first instance, we consider a very special case. If θ is replaced by the MLE θ̂ and we set

ŵi = 1 for all i, we have the following result.

Proposition 1. Let

Yi = log

(
X∗

[i]

x0

)
= log

(
Q(F(n); i/(k + 1))

x0

)
, (13)

and for the predicted values

Ŷi = −
1

θ̂
log

(
k + 1 − i

k + 1

)
, (14)

where θ̂ is the Hill estimator θ̂ =
[

1
k

∑k
i=1 log X∗

[i] − log x0

]
−1

, an estimator of ΓR is (up to O(1/k))

given by

C(x0) =
θ̂2

k

k∑

i=1

[
1

k2
+

1

(k − 1)2
+ . . . +

1

(k + 1 − i)2

]
−1 [

log

(
X∗

[i]

x0

)
+

1

θ̂
log

(
k + 1 − i

k + 1

)]2

+
2

k2

k∑

i=1

[
1

k2
+

1

(k − 1)2
+ . . . +

1

(k + 1 − i)2

]
−1

log

(
k + 1 − i

k + 1

)2

− 1 .

(15)
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The proof is in the Appendix. When we choose x0 to minimize (15), we refer to this as the
C-criterion. Recall that choosing x0 simultaneously establishes k since k =

∑n
i=1 I(X[i] ≥ x0).

The performance of this new classical (i.e. non-robust) criterion will be assessed in Section 4. We
can however evaluate (11) more generally to yield a robust criterion. First, note that an estimator

of var [ŵiYi] is E
[
ŵ2

i Y 2
i

]
− E [ŵiYi]

2
where

E
[
ŵj

i Y
j
i

]
=

∫
∞

x0

ŵ(x)j log(x/x0)
jfi:k(x)dx, (16)

and where both ŵ(x) and fi:k depend on θ which is replaced by θ̂. Similarly, an estimator of

cov
[
ŵiYi, ŵiŶi

]
is then E

[
ŵ2

i YiŶi

]
− E [ŵiYi] E

[
ŵiŶi

]
where

E
[
ŵiŶi

]
= −

∫
∞

x0

1

θ̂
log

(
k + 1 − i

k + 1

)
ŵ(x)fi:k(x)dx. (17)

Also similarly,

E
[
ŵ2

i YiŶi

]
= −

∫
∞

x0

1

θ̂
log

(
k + 1 − i

k + 1

)
ŵ(x)log(x/x0)fi:k(x)dx. (18)

Integrals (16)-(18) can be evaluated either analytically or numerically for the MLE of θ (see Propo-
sition 1) . Any robust estimator of θ will be the solution of an implicit equation and we choose to
use Monte Carlo simulations. Sufficient accuracy was obtained with 1000 simulations.

Substituting (12) and Monte Carlo estimates in (11), replacing θ by the robust estimators
described below (which depend on the data and on x0), and replacing the weights ŵ by the
weights used in the robust estimation, one obtains an estimated robust prediction error CR(x0).
We propose to choose x0 so as to minimize the latter and refer to this as the RC-criterion. While
choosing x0, we simultaneously find k =

∑n
i=1 I(X[i] ≥ x0) and θ̂ in a robust fashion.

A minimal number of order statistics are required for the criterion to be properly evaluated
according to our numerical approach as otherwise Monte Carlo error in numerical approximations to
integrals (16)-(18) overwhelm estimates of (11). A simulation study (results not shown) established
k = 20 to be sufficient.

2.3 Possible robust estimators

In this section we propose two robust estimators for the parameter θ of model (2) for a given value
of x0. They are computed on the k =

∑n
i=1 I(X[i] ≥ x0) largest observations. We propose to

implement the weighted maximum likelihood approach of Dupuis & Morgenthaler (2002). This

call for the computation of an M -estimator, defined as the solution θ̂ in θ of

k∑

i=1

ψ(X∗

[i]; θ) = 0, (19)

with suitable (mild) conditions on ψ (see Huber, 1981). The weighted MLE (WMLE) has ψ(x; θ) =
w(x; θ) ∂

∂θ log(x; θ) where w(x; θ) is a weight function with values in [0, 1]. Depending on the model
and the choice of the weight function, the resulting WMLE can be biased so that Dupuis &
Morgenthaler (2002) propose a bias-corrected WMLE as

θ̃ = θ̂ − B(θ̂), (20)

where

B(θ̂) = −

∫ (
w(x; θ) ∂

∂θ log f(x; θ)
)∣∣

θ̂
dFθ̂(x)

∫ (
∂
∂θw(x; θ) ∂

∂θ log f(x; θ) + w(x; θ) ∂2

∂θ2 log f(x; θ)
)∣∣

θ̂
dFθ̂(x)

. (21)
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The final weight attributed to each data point x is computed using the bias-corrected WMLE θ̃,
i.e. it is w(x; θ̃). Different weight functions w(x; θ) will lead to different robust estimators. We
note that Victoria-Feser & Ronchetti (1994) use optimal bias robust estimators (OBRE) to fit the
Pareto model robustly, but since it is rather complex computationally we prefer to use a WMLE.

One possibility for the weighting function is probability based weighting (Field & Smith, 1994)
where

w(x; θ) =





Fθ(x)/p1, if Fθ(x) < p1,
1, if p1 < Fθ(x) < 1 − p2,
{1 − Fθ(x)}/p2, if Fθ(x) > 1 − p2,

(22)

with Fθ(x) is as in (2) and p1 and p2 being constants regulating the amount of robustness. This type
of downweighting was used by Dupuis & Morgenthaler (2002) in the context of bivariate extreme
values. Any points which do not lie in the central p1 to 1− p2 part of the distribution, determined
by the value of θ under consideration, will be smoothly downweighted. With the relatively simple
form of the Pareto distribution and weighting scheme (22), it is possible to obtain an analytical
expression for the bias correction term (21).

Lemma 4. A WMLE of θ, where Fθ(x) is as in (2) and w(x; θ) is as in (22), has bias correction
term B(θ) equal to

(
θ

2

)
2(1 − p1)

2 log(1 − p1) + p1(1 − p1) + p1(1 − p2) + 2p1p2 log p2

[(1 − p1) log(1 − p1)]2 − p1(1 − p1) − p1(1 − p2) + p1p2(log p2)2
. (23)

The proof is in the Appendix.
The question of a suitable choice for the robustness tuning constants p1 and p2 is in general made

on the basis of efficiency arguments. The latter is measured as the ratio between the variances of
the MLE and the robust estimator of the Pareto index. The former can be shown to be θ2/k, while

the latter is − 1
k

[∫
∞

x0

∂
∂xψ(x; θ)dFθ(x)

]
−2 ∫

∞

x0

ψ(x; θ)2dFθ(x). The larger the tuning constants, the

more robust the resulting estimator, but also the less efficient. Simulations show that ≈ 95%
efficiency is achieved at the Pareto model for p1 = p2 = 0.005, for any value of θ. Larger values of
p1 and p2 lead to more robust, but less efficient, estimators. While suitable in many applications,
this form of downweighting seems somewhat unnatural in the case of the Pareto distribution and
estimation of its tail index θ since the most upper-tail is systematically downweighted.

We propose the following more appealing downweighting option. Recall that if the Pareto

relationship is valid, a plot of log
(
X∗

[i]

)
versus − log [(k + 1 − i)/(k + 1)], i = 1, . . . , k will yield a

straight line. While the complicated dependence structure of the response variables does not allow
for regression to be used for estimation of θ (and any regression which ignores these dependences
yields very poor results), we can make use of the standardized residual ri = (Yi − Ŷi)/σi where Yi

is as in (13), Ŷi is as in (14), σ2
i is as in (12), and θ̂ is the WMLE. To establish the weight, we take

a Huber type approach and set

w(X∗

[i]; θ) =

{
1, if |ri| < c,

c/|ri|, if |ri| > c,
(24)

where c is a constant regulating the amount of robustness. Points lying far away from the Pareto
regression line, after accounting for non-constant variance, are not well fit by the Pareto model
and downweighted. For this weighting scheme, we can use the following result:

Lemma 5. A WMLE of θ where Fθ(x) is as in (2) and w(x; θ) is as in (24) has approximate bias

correction term B̂(θ) equal to

−

∑k
i=1

(
w(X∗

[i]; θ)
∂
∂θ log f(X∗

[i]; θ)
)∣∣∣

θ̂
(Fθ̂(X

∗

[i]) − Fθ̂(X
∗

[i−1]))

∑k
i=1

(
∂
∂θ w(X∗

[i]; θ)
∂
∂θ log f(X∗

[i]; θ) + w(X∗

[i]; θ)
∂2

∂θ2 log f(X∗

[i]; θ)
)∣∣∣

θ̂
(Fθ̂(X

∗

[i]) − Fθ̂(X
∗

[i−1])
,
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Table 1: Efficiencies of the WMLE with regression weighting estimation of θ and with k known,
based on 50,000 simulations.

c
2.5 2.25 2.0 1.75 1.50 1.25

10 0.73 0.73 0.72 0.70 0.65 0.56
k 50 0.74 0.73 0.72 0.72 0.70 0.65

100 0.81 0.81 0.80 0.80 0.75 0.60
500 0.93 0.92 0.86 0.66 0.40 0.22

where X∗

[0] is set to x0.

Proof of Lemma 5. The last expression is simply (21) with the integrals discretized over the
sample of order statistics.

As before, the value of the tuning constant c can be chosen based on efficiency. Although 95%
efficiency seems a reasonable amount a priori, it is however difficult to simultaneously maintain
95% efficiency and guard against the contamination that can appear in real data sets. The con-
tamination can simply be too large and we have to lose efficiency to gain robustness. How does
one proceed in practice? We suggest using both a slightly robust (≈ 95% efficient) and very robust
(≈ 60% efficient) criterion. In the absence of contamination, the results will be almost the same
and we will proceed with confidence. When contamination is present, the more robust criterion
will identify the problematic points and give us the required robustness and further insights into
our data. Table 1 gives both small-sample and large-sample efficiencies for different values of the
tuning parameter c as obtained through simulations with 50,000 replications.

3. OTHER CRITERIA

Our approach is unique since others have developed methods based on estimates of the AMSE
of the Hill estimator to determine k. Here, we briefly explain some of these methods and draw
comparisons with our C-criterion where appropriate. Hall & Welsh (1985) and Beirlant, Dierckx,
Goegebeur & Matthys (1999) compare some of the AMSE-based estimators.

Beirlant, Vynckier & Teugels (1996) obtain an estimate for the optimal k by minimizing a
nonparametric estimate of the AMSE of the Hill estimator for 1/θ. The weighted MSE expression
minimized is (in our notation)

MSEopt(k) =
1

k

k∑

i=1

wopt
i,k

(
log

X∗

[i]

x0
+

1

θ̂
log

(
k + 1 − i

k + 1

))2

,

for some sequence of weights wopt
i,k which depends on ρ, a non-positive index that is assumed to

characterize the slowly varying function and which must also be estimated. The index ρ is also
estimated nonparametrically and thus estimation of the AMSE, and the optimal k, is an iterative
procedure. Note that the factor 1/θ̂ is the estimate of 1/θ obtained by using the Hill estimator with
k observations. Beirlant, Vynckier & Teugels (1996) rely on probabilistic deductions to establish
optimal weights wopt

i,k . Essentially, we have

wopt
i,k = δ1,kw

(1)
i,k + δ2,kw

(2)
i,k , (25)

where δ1,k and δ2,k are scaling constants that depend on k and ρ, and w
(1)
i,k and w

(2)
i,k are chosen

weight functions. They used w
(1)
i,k = 1 and w

(2)
i,k = (k + 1 − i)/(k + 1). The values of δ1,k and δ2,k
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must be obtained numerically as even for simple choices of wi,k, and assuming a fixed value of ρ,
we cannot get an analytical expression. However, δ1,k and δ2,k will be functions of k, and we keep
this notation in an attempt to compare MSEopt(k) with the C(x0) in (15). We thus have

MSEopt(k) =
1

k

k∑

i=1

(
δ1,k + δ2,k

(
k + 1 − i

k + 1

))[
log

X∗

[i]

x0
+

1

θ̂
log

(
k + 1 − i

k + 1

)]2

=
δ2,k

k(k + 1)

k∑

i=1

(k + 1 − i)

(
log

X∗

[i]

x0
+

1

θ̂
log

(
k + 1 − i

k + 1

))2

+

δ1,k

k

k∑

i=1

(
log

X∗

[i]

x0
+

1

θ̂
log

(
k + 1 − i

k + 1

))2

,

(26)

and the following may be noted about the first term in MSEopt(k): 1) the sum is scaled by

δ2,k/k(k + 1), an implicit function of the estimated AMSE(1/θ̂), compared to θ̂2/k for C(x0);
and 2) relative downweighting is a linear function in i in the Beirlant case while nonlinear in the
C-criterion, the C-criterion putting more relative weight on points closer to x0, see Figure 1.
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Beirlant et al (1996)

C−criterion

Figure 1: Relative weights assigned to ith term in first sum under C-criterion (15) and MSEopt(k)
(26), respectively, when k = 25.

An expansion of the second term in MSEopt(k) leads to

δ1,k

k

1

θ̂2

k∑

i=1

log

(
k + 1 − i

k + 1

)2

+
δ1,k

k

k∑

i=1

log

(
X∗

[i]

x0

)2

+
2δ1,k

kθ̂

k∑

i=1

log

(
X∗

[i]

x0

)
log

(
k + 1 − i

k + 1

)
.

(27)

The following may be noted about the first term in (27): 1) the sum is scaled by δ1,k/kθ̂2 versus
the simple 2/k2 in the second term in C(x0); and 2) the squared log terms all have weight 1 versus
the variable weights (1/k2 + . . . + 1/(k + 1 − i)2)−1 in C(x0). Note that the variable weights in
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C(x0) are such that weights decrease with increased size in the contribution from the squared log
term. The third term in C(x0) is the constant -1. From (27) it is easily seen that MSEopt(k) is
somewhat more complex with the presence of its remaining terms

δ1,k

k

k∑

i=1

log

(
X∗

[i]

x0

)2

+
2δ1,k

kθ̂

k∑

i=1

log

(
X∗

[i]

x0

)
log

(
k + 1 − i

k + 1

)
.

Note that minimizing the latter is minimizing

δ1,k

k

(
k∑

i=1

Y 2
i − 2

k∑

i=1

YiŶi

)

in our regression setting. The direct impact of the latter is unclear.
A theoretical comparison of our C-criterion to other recently suggested methods for selecting k is

not so easily derived. We describe these other methods briefly here and include them in a simulation
study in Section 4. Beirlant, Dierckx, Guillou & Stărică (2002) find an asymptotic representation
of kn,opt and derive an estimator for kn,opt based on that representation. The automatic method

for selection is somewhat ad hoc as it is really the median of k̂n,k0
for k0 = 3, . . . , n/2 that is the

recommended threshold. The choice is said to be practical, but is not justified mathematically.
The estimator requires consistent estimators for ρ, 1/θ, and g((n + 1)/(k0 + 1)), where g is a
rate function satisfying g(x) → 0 as x → ∞, characterizing the slowly-varying function l. Least
squares estimators based on regression models with additive noise are used. Both Hall (1990) and
Danielsson, de Haan, Peng & de Vries (2001) use subsample bootstrapping to estimate the MSE of
the Hill estimator. Drees & Kaufmann (1998) present a sequential procedure, based on ‘stopping
times’ for the sequence Hk,n of Hill estimators that are asymptotically equivalent to a deterministic

sequence, to select the optimal kn,opt. Guillou & Hall (2001) propose to choose Hk̂,n where k̂ is

the smallest value of k ∈ [na, nb] for which a scaled least squares estimate of g((n + 1)/(k + 1)) is
larger than a critical value.

The implicit definition of the robust weights in our RC-criterion do not allow for an analytical
comparison to be carried out with these previously mentioned complex estimators either and a
simulation study is our only available tool for comparison. Results are shown in the following
section.

4. SIMULATION STUDY

In this section we present the results of simulation studies showing the good properties, in terms of
MSE, of the classical C- and robust RC- criteria when compared to competing methods for data
from a distribution with Pareto tail behaviour. We also assess the performance of the C- and RC-
criteria with and without data contamination.

When k is known, comparing our approach with others results in comparing the performance
(bias and variance) of our robust estimators with the MLE in the presence of model contamination.
In Dupuis & Victoria-Feser (2005), it is shown in a simulation study involving the MLE, the WMLE
with probabilistic weighting and the WMLE with regression weighting, that all methods perform
well at the model and that the MLE clearly fails under model contamination as small as 2.5%. The
WMLE with probabilistic weighting has however a larger bias than the WMLE with regression
weighting. Therefore, in what follows we consider only the WMLE with regression weighting.

4.1 Comparing the C- and RC-criteria to other criteria without model contamination

In order to evaluate the usefulness of the C- and RC-criteria, we carry out a simulation study and
compare results with those of others. Beirlant et al. (2002) carried out an extensive simulation study

10



Table 2: RMSE for θ̂−1 with the Burr distribution (θ = 1).

n
ρ 500 1000 1500

−0.5 C−criterion 0.295 0.269 0.247
RC−criterion 0.312 0.287 0.268
Method 1 0.334 0.238 0.220
Method 2 0.305 n/a n/a
Method 3 0.382 n/a n/a
Method 4 0.352 n/a n/a
Method 5 0.381 n/a n/a

−1.0 C criterion 0.151 0.121 0.104
RC−criterion 0.161 0.128 0.109
Method 1 0.264 0.148 0.132

−1.5 C criterion 0.107 0.082 0.071
RC−criterion 0.113 0.084 0.072
Method 1 0.150 0.100 0.085

and we will refer to some of their results, along with those of Beirlant, Vynckier & Teugels (1996).
More specifically, methods compared to the C- and RC-criteria are:

• Method 1 - Beirlant, Vynckier & Teugels (1996)

• Method 2 - Beirlant et al. (2002)

• Method 3 - Danielsson et al. (2001), based on Hall (1990).

• Method 4 - Drees & Kaufmann (1998)

• Method 5 - Guillou & Hall

The root mean squared error (RMSE) of θ̂−1 is reported. Note that the C-criterion should
further outperform these asymptotic-based criteria in smaller sample sizes, but the smallest sample
size previously considered and available for comparison is n = 500. We consider a Burr distribution
parametrized as F (x) = 1 − (1 + x−ρ)1/ρ for some parameter ρ < 0. Beirlant, Vynckier &
Teugels (1996) consider ρ = −0.5,−1, and −1.5 (all leading to θ = 1) and sample sizes of n = 500,
1000, and 1500. Their simulation results are based on 200 replications. Results based on 100
replications were reported by Beirlant et al. (2002) for Methods 2-5 and a sample size of n = 500.
All these results, along with those for the C-criterion and the RC-criterion with the residual based
WMLE (c = 2.5) are listed in Table 2. Both the C− and RC− criteria do quite well, especially
for n = 500 and/or ρ = −1 and −1.5. Other distributions are considered in Dupuis & Victoria-
Feser (2003).

4.2 Comparing the C- to the RC-criteria with model contamination

In order to have examples with a relatively clear distinction between the Pareto upper-tail and the
rest of the distribution, samples of size n = 500 from a triangular/Pareto mixture for the upper-tail
were also considered. More precisely, we generated ⌊αn⌋ data (where ⌊x⌋ denotes the integer part
of x) from a Pareto distribution as in (2) and n − ⌊αn⌋ data from a triangular distribution with
density f(x) = 2(x− 1.5) for 1.5 ≤ x ≤ 2.5. Parameter settings were α = 0.1, x0 = 2.5, and θ = 1.
The Pareto regression plot for this sample is hockey stick shaped and the line bends quite abruptly
around x0 = 2.5. Ideally, a k-selection criterion would properly capture the break. Boxplots of
the estimates for k and θ, for different efficiency levels of the WMLE (i.e. different values of c)
are shown in Figure 2. Results are as expected with both approaches selecting a threshold slightly
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above x0 and the robust approach leading to slightly more variable estimates of θ. Moreover, we
see that there is very little loss of efficiency in the estimation of x0 and θ when reducing the value
of c.

We repeat the study, contaminating the 2% largest observations in each sample by multiplying
them by 1000. The type of contamination should in principle mimic the type of situation one
could encounter in practice, however a robust procedure should be stable across all types of con-
tamination, even those to which we have not yet been exposed. Our point here is merely to show
that, given a type of contamination, the classical approach fails while the robust approach remains
stable. Considering other types of contamination would merely show that the C-criterion may be
affected to a lesser degree and the performance of the RC-criterion would remain. Boxplots of the
estimates for these contaminated samples are shown in Figure 3. The contamination destroys the
MLE. Robust estimates of θ are quite good, showing only modest bias and no more variability
than in the non-contaminated case. The increased robustness for smaller values of c is also clear.

All these results clearly demonstrate the necessity of our new weighting approach.
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Figure 2: Estimates for x0 and θ under triangular/Pareto mixture and no contamination. wmle2 is
WMLE with regression weighting. The value of the robustness constant c is shown for each panel.

5. FINANCE AND INCOME APPLICATIONS

In this section we examine the classical C-criterion and its robust counterpart RC-criterion for two
published data sets.
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Figure 3: Estimates for x0 and θ under triangular/Pareto mixture and 2% contamination in upper
tail. wmle2 is WMLE with regression weighting. The value of the robustness constant c is shown
for each panel.

5.1 Finance data

In finance theory, one important issue is the ability to establish the value at risk (VaR) of an
investment (an asset, a portfolio of assets, etc.). The latter can be defined as the level of loss (i.e. a
quantile usually in the lower tail of the distribution of returns) on a portfolio which is expected to
be equaled or exceeded with a given (usually small) probability (see e.g. Jorion, 1997). Since the
returns in the tails of the distribution are sparse, it is therefore important to be able to model them.
Empirical studies on the tails of log-returns have indicated that a Pareto-type model is usually
suitable. As an example, we consider here a series of log-returns in 100% on alternative investments
on a monthly basis between January 1997 and December 2002 (i.e. n = 72 observations). See Credit
Suisse First Boston (CSFB) / Tremont hedge fund index at www.hedgeindex.com and Perret-
Gentil & Victoria-Feser (2003) for a more detailed description of the data. The data do not show
significant autocorrelations (results not shown here). We actually take 100 minus the log-return for
the evaluation of the downside risk. The C-criterion yields x0 = 98.77, corresponding to k = 51,
and θ = 61.90. The RC-criterion yields x0 = 98.77 (k = 51) and θ = 61.92, and x0 = 100.24
(k = 22) and θ = 74.45 for c = 2.5 and c = 1.25, respectively. All three fits are shown in Figure
4 (a) and downweighted observations (c = 1.25) are identified in Figure 4 (b). It is interesting
to note that weighting scheme (24) is indeed performing as intended, downweighting observations
away from the Pareto regression line, and not necessarily only the largest observations. If one was
to erroneously remove the three largest observations, thinking them to be outliers, and proceed,
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Figure 4: (a) Pareto regression plot for Hedge fund data. Fitted regression line based on classical
C− and robust RC− criteria added. Horizontal lines indicate the corresponding chosen thresholds.
Solid and dashed lines are superimposed; (b) Pareto regression plot of Hedge data above robustly
chosen threshold. Downweighted observations following RC− criterion, c = 1.25, are identified;
(c) Pareto regression plot for income data. Fitted regression line based on classical C− and robust
RC− criteria added. Only incomes above 600 are shown for clarity; (d) Pareto regression plot of
income data above robustly chosen threshold. Downweighted observations following RC− criterion,
c = 1.25, are identified.
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Table 3: Estimated VaR (ES) for the Finance data

probabilities
0.05 0.01 0.005 0.001

C-criterion 103.09 (1297) 105.81 (6756) 107.00 (13579) 109.82 (68163)
idem with 3 largest removed 102.13 (1214) 104.13 (6325) 105.00 (12713) 107.06 (63818)

RC-criterion, c = 2.5 103.09 (1297) 105.81 (6756) 107.00 (13579) 109.82 (68163)
RC-criterion, c = 1.25 102.71 (590) 104.95 (3074) 105.93 (6179) 108.25 (31015)

the C−criterion would yield x0 = 98.96 (k = 48) and θ = 82.96 (to be compared to θ = 74.45
provided by the RC-criterion with c = 1.25 on the whole sample).

To have a better sense of the differences implied by the classical and robust approaches, we
compute the VaR given the different estimates of the Pareto tail index. The latter appear in
Table 3 along with another financial risk measure, the expected shortfall (ES), defined as the
mean return in the lower tail of the distribution or in the upper tail after proper relabeling, i.e.
ES(F ; q) = 1

q

∫
Q(F ;q)

xdF (x) where F (x) is given in (1). The expected shortfall is then

ES(F ; q) =
αθxθ

0

q

∫

Q(F ;q)

x−θdx = α
θ

θ − 1

x0

q
(1 − q)

θ−1

θ

with α = 1 − G(x0) and which is estimated using estimates of θ and x0.
The C- and RC- criteria all lead to very similar VaR when all observations are considered

but the values are quite different when the three largest observations are removed. The story
is different with the ES in that the C-criterion without the three largest observations provides
estimated ES that lie between the two RC-criterion estimates, while the RC-criterion provides
ES that are nearer to the ones provided by means of the C-criterion. The conclusion here is that
the pure ad hoc procedure of removing suspect observations can lead to different results from a
proper robust approach, especially in cases where, as it is here, the largest observations are not all
“extreme” at least as measured by means of standardized residuals.

5.2 Income Data

The data are incomes (n = 7469) in the UK in 1981 (see Department of Social Security (1992)
and Cowell & Victoria-Feser (1996) for a more detailed description). With income data, the
determination of the value x0 is an important issue since traditionally data in the upper tail
are sparse and therefore are fitted with Pareto-type distributions for the estimation of inequality
measures. The value of x0 can also be used as a cutting point for a semi-parametric approach to
stochastic dominance comparisons (see Cowell & Victoria-Feser, 2006). The corresponding fitted
Pareto-regression lines for the C- and RC− criteria are given in Figure 4 (c). The classical and high
efficiency robust curves are different. The selected thresholds are similar: the C−criterion leading
to x0 = 783.9 (k = 32) and high efficiency RC−criterion leading to x0 = 802.9 (k = 22), however
estimates of θ are quite different, 16.4 and 69.7, respectively. Using the very robust (less efficient)
RC−criterion, we find x0 = 803.3 (k = 22) and θ = 85.5. Figure 4 (d) shows observations above
the robustly selected threshold x0 = 803.3 and arrows indicate the downweighted observations.
Variance in the lower-tail of the Pareto regression plot is quite small and an observation does not
have to fall too far out of line to be considered outlying. The opposite is true in the upper-tail.
The three largest observations here were considerably off the mark and were flagged.

APPENDIX
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Proof of Lemma 3. Since X is a Pareto random variable, Yi = log (Xi/x0) , i = 1, . . . , k are
exponential random variables with mean 1/θ. Let Y[i] be the corresponding order statistics. From

Bickel & Doksum (2001) (problem 14, p. 528), we see that Zi = θ(k − i + 1)
(
Y[i] − Y[i−1]

)
(with

Y[0] = 0) are i.i.d. exponentially distributed random variables with mean 1. We can write

Y[i] =

i∑

j=1

1

θ(k − i + j)
Zi−j+1,

so that

var
(
Y[i]

)
=

i∑

j=1

1

θ2(k − i + j)2
.

Proof of Lemma 4. Substituting the Pareto model (2), the partial derivative w.r.t. θ of the log
of its corresponding density (3), and the weight function (22) into the numerator of (21), we find
that this numerator becomes

1

p1

∫ x0(1−p1)
−1/θ

x0

[1 − (x/x0)
−θ]

[
1

θ
+ log

x0

x

]
θx−(θ+1)xθ

0dx +

∫ x0p
−1/θ
2

x0(1−p1)−1/θ

[
1

θ
+ log

x0

x

]
θx−(θ+1)xθ

0dx +
1

p2

∫
∞

x0p
−1/θ
2

(x/x0)
−θ

[
1

θ
+ log

x0

x

]
θx−(θ+1)xθ

0dx .

Standard calculus and algebra yields

−1

4p1θ

[
2(1 − p1)

2 log(1 − p1) + p1(1 − p1) + p1(1 − p2) + 2p1p2 log p2

]
.

The denominator of (21) can be evaluated similarly, and minus the ratio yields (23).

Proof of Proposition 1. Upon substituting the values for Yi and Ŷi in (11), and provided that all
ŵi = 1, we obtain

CR =
1

k

k∑

i=1

1

σ2
i

(
log

[
Q(F(n); i/(k + 1))

x0

]
+

1

θ̂
log

[
k + 1 − i

k + 1

])2

+
2

k

k∑

i=1

1

σ2
i

cov
(
Yi, Ŷi

)
−1 . (28)

To compute cov(Yi, Ŷi) we use the approach based on the influence function (IF) which is
equivalent to the delta method or the infinitesimal jackknife; see Efron (1982). The IF is defined
for a statistic α̂ as

IF (z; α̂, Fθ) =
∂

∂ε
α̂ (Fε)

∣∣∣∣
ε=0

,

where Fε = (1 − ε)Fθ + ε∆z and ∆z is the probability measure that puts mass 1 on the point z.

The IF can be used to compute variances and covariances between two statistics α̂ and β̂. We get,
up to O(1/k),

cov
(
α̂, β̂

)
≃

∫
IF (z; α̂, Fθ)IF (z; β̂, Fθ)dFθ(z) ;

see e.g. Hampel et al. (1986).
The IF of Yi is

IF (z;Yi, Fθ) = ∂
∂ε

[
log

(
Q(Fε;i/(k+1))

x0

)]

ε=0

=
1

Q(Fθ; i/(k + 1))

[
∂

∂ε
Q(Fε; i/(k + 1))

]

ε=0

=
i/(k + 1) − I(Q(Fθ; i/(k + 1)) ≥ z)

Q(Fθ; i/(k + 1))f(Q(Fθ; i/(k + 1)), θ)
,
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where we have used the result IF (z;Q(·, q), Fθ) = (q − I(Q(Fθ; q) ≥ z))/f(Q(Fθ; q), θ); see e.g.
Staudte and Sheather (1990). For the IF of Ŷi we have

IF (z; Ŷi, Fθ) =
∂

∂ε

[
−

1

θ̂(Fε)
log

(
k + 1 − i

k + 1

)]

ε=0

= log

(
k + 1 − i

k + 1

)
1

θ2
IF (z; θ̂, Fθ),

for whose evaluation we will also need IF (z; θ̂, Fθ). We know that IF (z; θ̂, Fθ) = M (θ)
−1

s(z, θ),
where

s(z, θ) = ∂
∂θ log (f(z; θ))

= 1
θ + log x0 − log z,

and
M (θ) =

∫
x0

s(z, θ)2dFθ(z)

=
∫
∞

x0

(
1
θ + log x0 − log z

)2
θxθ

0z
−θ−1dz

=

(
1

θ
+ log x0

)2

θxθ
0

∫
∞

x0

z−θ−1dz

−2

(
1

θ
+ log x0

)
θxθ

0

∫
∞

x0

log (z) z−θ−1dz

+θxθ
0

∫
∞

x0

(log z)
2
z−θ−1dz.

The integrals are straightforward and subsequent simplifications yield M (θ) = 1/θ2, so that

IF (z; θ̂, Fθ) = θ2 (1/θ + log x0 − log z) and IF (z; Ŷi, Fθ) = log [(k + 1 − i)/(k + 1)] (1/θ + log x0 − log z)
. Thus, we now have

cov
(
Yi, Ŷi

)
= 1

k

∫
∞

x0

(
i/(k + 1) − I(Q(Fθ; i/(k + 1)) ≥ z)

Q(Fθ; i/(k + 1))f(Q(Fθ; i/(k + 1)), θ)

)

log
(

k+1−i
k+1

) (
1
θ + log x0 − log z

)
θxθ

0z
−θ−1dz

=
log

(
k+1−i
k+1

)

kθ
(

k+1−i
k+1

)
[
i/(k + 1)

1

θ
+ i/(k + 1) log x0

−i/(k + 1)

∫
∞

x0

log (z) θxθ
0z

−θ−1dz −
1

θ

∫ Q(Fθ ;i/(k+1))

x0

θxθ
0z

−θ−1dz

− log x0

∫ Q(Fθ ;i/(k+1))

x0

θxθ
0z

−θ−1dz +

∫ Q(Fθ ;i/(k+1))

x0

log (z) θxθ
0z

−θ−1dz

]
.

But it can easily be shown that

∫ Q(Fθ ;i/(k+1))

x0

log (z) θxθ
0z

−θ−1dz =
i

k + 1
log x0 +

1

θ

(
1 −

i

k + 1

)
log

(
1 −

i

k + 1

)
+

1

θ

i

k + 1
,

and straightforward, although tedious, simplifications lead to

cov
(
Yi, Ŷi

)
=

1

k

1

θ2
log

(
k + 1 − i

k + 1

)2

. (29)

Substituting (12) and (29) into (28) and replacing θ by the Hill estimator in (6), one obtains
the estimated prediction error (15).

We note that an approach based on the IF can also be used to get an O(1/k) approximation
to the exact σ2

i in (12). Since we obtained essentially the same performance of our criteria with

17



the O(1/k) form (rather than the exact form) of σ2
i (results not shown), we are confident that our

O(1/k) approximation to cov(Yi, Ŷi), for which the exact form cannot be obtained, is good.
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Pareto, Giovanni Busino, Librairie Droz, Genève, 1965.
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