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Abstract—In recent years researchers have made noticeable progresses in mesh denoising, that is, recovering high-quality 3D models

from meshes corrupted with noise (raw or synthetic). Nevertheless, these state of the art approaches still fall short for robustly handling

various noisy 3D models. The main technical challenge of robust mesh denoising is to remove noise while maximally preserving

geometric features. In particular, this issue becomes more difficult for models with considerable amount of noise. In this paper we

present a novel scheme for robust feature-preserving mesh denoising. Given a noisy mesh input, our method first estimates an initial

mesh, then performs feature detection, identification and connection, and finally, iteratively updates vertex positions based on the

constructed feature edges. Through many experiments, we show that our approach can robustly and effectively denoise various input

mesh models with synthetic noise or raw scanned noise. The qualitative and quantitative comparisons between our method and the

selected state of the art methods also show that our approach can noticeably outperform them in terms of both quality and robustness.

Index Terms—Mesh denoising, feature preserving, robust denoising, feature operations.

✦

1 INTRODUCTION

M ESH denoising, that is, recovering high-quality 3D
models from meshes corrupted with noise (raw or

synthetic), has attracted a lot of attentions in computer
graphics community in recent years. Arguably, one of the
main driving forces is, 3D datasets acquired by various
scanners, in particular, those consumer-grade sensors, are
still polluted with noise, and the scanned 3D models need to
be properly post-processed including denoising before they
can be used for graphics applications. The main technical
challenge of robust mesh denoising is to remove noise while
maximally preserving geometric features. This problem, in
particular, becomes more difficult for models with consider-
able amount of noise.

Researchers have made noticeable progresses in mesh
denoising [1], [2], [3], [4]. Nevertheless, these approaches
still fall short for robustly handling various noisy 3D mod-
els, having the following limitations. First, the methods of
[1], [4] are less robust when handling low-quality noisy
meshes, such as degenerate triangles, pseudo-overshoots
and severe fold-backs caused by comparatively large noise
[2]. Therefore, for such cases the two methods could gen-
erate unsatisfactory denoised results (refer to Figures 9, 10,
and 12). Second, the method of [2] is capable of handling
low-quality noisy meshes but cannot well preserve certain
geometric features and fine details. Finally, the method of [3]
iteratively detects feature locations, which relies greatly on
the detection accuracy and may introduce pseudo-features.
Also, no further refining strategy has been proposed to iden-
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tify potential pseudo-features. Due to the above limitations,
these state of the art approaches are limited in terms of
robustness and effectiveness when handling mesh models
corrupted with substantial noise.

Motivated by the above challenges, in this paper we
present a novel robust mesh denoising approach. Taking
a noisy mesh model as the input, our method can ro-
bustly produce its corresponding denoised model with high
quality. Specifically, our method has the following main
contributions.

• Initial estimation. In general it is difficult to dis-
tinguish features from noise, especially when noise
level is high. Therefore, we introduce an initial es-
timation stage (§4) to generate an improved mesh
from the input noisy model. This strategy can largely
reduce the noise level and better shape the input
triangular mesh, and thus can significantly facilitate
follow-up feature operations.

• Feature operations. To preserve features during the
denoising process, we propose a string of feature
operations including feature detection (§5.1), iden-
tification (§5.2), and connection (§5.3). We present
a sparsity-inspired L1-norm regularization to first
detect all the features in one single iteration that
may contain a few pseudo-features. Then, we define
several criteria to effectively identify the detected
features. Finally, the remaining continuous features
are connected to form feature edges which can fur-
ther remove remaining pseudo-features and provide
accurate neighboring information for vertex update.

• Vertex update. To achieve desired results, we design
a new feature-aware vertex update algorithm (§6)
that is iterative, effective and fast. This algorithm
takes advantage of local geometric neighboring in-
formation of each vertex and updates vertices in a
feature-aware manner.
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Fig. 1. Denoised results of a raw Wilhelm model. Our approach can soundly recover feature edges, while the results by the selected state of the art
methods are visually hackly (refer to the top zoomed region).

In our experiments, our approach can outperform the
state of the art mesh denoising methods [1], [2], [3], [4]
in terms of robustness and effectiveness. Through vari-
ous experiments and comparisons (§7), we show that our
method can achieve noticeably better denoised results than
the previous techniques. One of comparison examples is
shown in Figure 1. Finally, we discuss the three stages of our
method, the potential use of our method, and its limitations
(§8).

2 RELATED WORK

In this section, we only review recent research efforts that
are most relevant to this work. For a comprehensive review
on this topic, interested readers are referred to the articles by
Botsch et al. [5], [6]. Specifically, we first review traditional
mesh denoising/smoothing methods, and then focus on
sparsity inspired mesh denoising techniques.

2.1 Traditional Mesh Denoising

Most early mesh smoothing methods cannot preserve ge-
ometric features since they are isotropic (i.e., independent
of surface geometry). A non-shrinking, two-step smooth-
ing method via signal processing was proposed by Taubin
[7]. Vollmer et al. [8] presented a simple and fast Lapla-
cian smoothing algorithm. However, it generates surface
shrinkage and cannot preserve sharp features. Meanwhile,
a fairing method [9] based on diffusion and curvature flow
was put forward for irregular meshes. Later, researchers
proposed a variety of isotropic denoising methods on the
basis of volume preservation, pass frequency or differential
properties [10], [11], [12], [13], [14].

Due to the fact that isotropic methods have difficulty in
preserving geometric features, anisotropic denoising meth-
ods have attracted considerable attention. Various meth-
ods based on diffusion or differential information have
been proposed [15], [16], [17], [18], [19], [20], [21], [22].
Researchers successfully extended bilateral filtering in the
domain of image denoising [23] to 3D mesh denoising. A bi-
lateral mesh denoising method, directly applied to vertices,
was also proposed by Fleishman et al. [24]. Later, researchers

presented various bilateral filters to handle surface normals
instead of vertex positions [1], [25], [26].

Besides directly updating vertices, the idea of first filter-
ing normals followed by updating vertices has also caught
much attention in recent years [1], [25], [27], [28], [29],
[30], [31], [32], [33], [34], [35]. Taubin [27] and Ohtake
et al. [28] made seminal contributions to such two-step
methods. Yagou et al. [29], [30] proposed mean, median
and alpha-trimming filters to estimate face normals. Later,
a fuzzy median filter was introduced by Shen and Barner
[32]. Bilateral filters have been extended to filter surface
normals as well [1], [25], [26]. Sun et al. [33], [34] presented
two different two-step methods by first weighted averag-
ing neighboring face normals and then updating vertex
positions accordingly. Recently, Zhang et al. [35] presented
a variational method for face normal filtering and vertex
update using the algorithm in [33].

A few recent techniques [4], [36], [37], [38], [39] have
focused on vertex/face classification before mesh denois-
ing, in order to achieve better denoised results. Since the
classification step in these methods is generally performed
on noisy models, their results are sensitive to the noise level.
For example, some vertices or faces could be misclassified.

2.2 Sparsity Inspired Mesh Denoising

If the underlying signal indeed has a sparse representation,
in theory it can be reconstructed by solving a sparse problem
[40]. Several recent works have introduced the concedpt
of sparsity into mesh denoising applications [2], [3]. For
example, He and Schafer [2] presented a L0 minimization
framework by introducing a discrete differential operator. In
their work, the area-based edge operator is sparse for a mesh
model (i.e., there are only a small number of edges whose
operator norms are large). Later, Wang et al. [3] proposed a
method to decouple noise and features via weighted L1-
analysis compressed sensing. Their work asserts that the
pseudo-inverse matrix of the Laplacian of a mesh is a
coherent dictionary for sparsely representing sharp feature
signals on the shape.

From a sparsity perspective, feature vertices on a mesh
model are sparse and the number of them is typically much
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smaller than non-feature vertices. We thus formulate a novel
sparse problem in order to detect features. L0 optimization
is in fact the sparsest solution, e.g., the work of [2], but it
is highly non-convex and requires to solve a combinatorial
problem. At certain cases the convex L1 minimization can
be used to replace L0 to find a sparse approximation of L0,
e.g., the method in [3]. However, the method in [3] contains
additional constraints; thus, it is less robust, which could
lead to unsatisfactory results for some cases.

Input:
noisy model

Feature Detection

Feature Identification

Feature Connection

Feature Operations

Vertex Update

Initial Estimation Output:
denoised model

Fig. 2. The pipeline of our feature-preserving approach for mesh denois-
ing.

Fig. 3. An example for demonstrating the pipeline of our mesh denoising
approach. (a): The ground truth. (b): The input noisy model. (c): The ini-
tial estimation from (b). (d): The connected feature edges (rendered with
various colors) after feature operations (feature detection, identification
and connection) are applied. Here, corner points (described in §5.3) are
colored with red, and edge points (§5.3) are colored with blue. (e): The
final denoised result after the vertex update step is applied to (d). Note
the model is zoomed in for clear observation.

3 METHOD OVERVIEW

Our method consists of three stages: initial estimation; fea-
ture detection, identification and connection; and feature-
aware vertex update, as illustrated in Figure 2. An example
for demonstrating our mesh denoising approach is shown
in Figure 3.

Initial estimation. First, we estimate an initial mesh from
the input noisy model by solving a weighted least squares
optimization problem. At this stage, users can adjust the
employed parameters to achieve a desired estimation.

Feature detection, identification and connection. Based
on the estimated mesh from the previous stage, we first de-
tect all of its features by optimizing a L1-norm regularized
formula. Then, we identify the detected features and remove
the pseudo-features by introducing several criteria. Finally,
we connect the identified features to form feature edges,
which are used at the follow-up vertex update stage.

Feature-aware vertex update. At the final stage of our
method, we introduce a novel iterative vertex update algo-
rithm to produce denoised results efficiently.

4 INITIAL ESTIMATION

The basic idea of this initial estimation step is to smooth
an input noisy model to some extent while preserving its
features. Inspired by the L0 minimization framework [2], we
formulate the initial estimation of the input noisy model as
the following weighted least squares optimization problem.

min
∑

i

‖p̃i − pi‖22 + α
∑

e

w(e)‖D(e)‖22 + β
∑

e

w(e)‖R(e)‖22,

(1)
where p̃i is the unknown (to be solved) position of

the i-th vertex, pi is the position of the i-th vertex in the
input noisy mesh, α and β are weighting coefficients which
balance the three terms. D(e) is an area-based edge operator
to measure the edge sharpness, and R(e) is a regularizer to
eliminate spurious overshoots and fold-backs [2]. w(e) is
the weight for edge e, and it is expected to be small when
both the two vertices of an edge are features in order not
to be smoothed. Thus, it can be defined as an exponential
function, using the pairwise face normals of the two faces
sharing edge e.

w(e) = e
−
(

θ
σθ

)2

,

where θ is the angle between a pair of face normals
whose corresponding faces share the same edge e, and
σθ is the angle threshold to scale the pairwise normal
similarity. It is noteworthy that as shown in Eq. 1, we
formulate the initial estimation problem as a weighted least
squares optimization problem, which is different from the
formulated L0 minimization problem in the work of [2]. The
main reasons are: (1) L0 minimization is computationally
intensive and is hard to optimize due to its non-convex
nature; (2) L0 minimization is prone to generate results with
planar regions (e.g., lost details or weak features), such as
Figure 15. Thus it is inappropriate to use such an algorithm
at the pre-processing step. In contrast, our formulation is
fast and can produce a satisfactory initial estimate for the
follow-up stages.

Eq. 1 estimates the input noisy mesh in the following
way: it automatically offers large weights to non-feature
vertices and small weights to feature vertices, and therefore
smoothes non-features and preserves features. Such a way
significantly reduces noise interferences and ensures that
this optimization can estimate a sound mesh from the noisy
input. Figure 4 shows that encoding edge weight w(e) to
Eq. 1 can estimate an initial mesh with preserved features.
We also test the involved parameters in Figure 5, and found
that a larger σθ or α tends to produce smoother estimation.
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Fig. 4. The initial estimations with and without the edge weight w(e). (a)
an input noisy model, (b) the estimated result with the edge weight w(e),
(c) the estimated result without the edge weight w(e).

Fig. 5. The values of parameters used in the initial estimation stage. (a):
raw noisy model. (b): α = 0.3, σθ = 15. (c) α = 0.3, σθ = 30. (d) α =
0.8, σθ = 30. For (b) (c) and (d): α = β = 0.03 at the first unweighted
(without w(e)) iteration; β = 0.03 for three weighted iterations.

Note that β (by default β = 0.1α for weighted optimiza-
tions) is the coefficient of the triangle shape regularizer R(e)
and should be set based on the noise level. Hence, param-
eters of this stage should be carefully tuned to preserve
weak features or details. Figure 6 shows the necessity of the
initial estimation stage: without this stage, the noisy model
could hardly be effectively denoised afterwards since many
features are misdetected.

To generate a sound initial estimation for follow-up
stages, our method optimizes Eq. 1 for several times. For the
three parameters employed in Eq. 1, in our experiments, we
empirically set α = β = 0.1 and optimize the unweighted
form (i.e., without w(e)) of Eq. 1 at the first iteration.
Then, at follow-up iterations (3 iterations by default), we
set α = 0.5, β = 0.05, and σθ = 30◦. Note that Eq. 1
can be straightforwardly solved as a sparse system of linear
equations [41].

5 FEATURE DETECTION, IDENTIFICATION AND

CONNECTION

With the estimated mesh from the above stage, we then
perform a series of operations on features, including feature
detection, feature identification, and feature connection, de-
scribed below.

5.1 Feature Detection

We observe that if the i-th vertex and its 1-ring neighbors are
co-planar, its uniformly-weighted Laplacian (i.e., differential

Fig. 6. The importance of the initial estimation stage. (a) A noisy input
model, (b) the detected features (colored with green, described in §5.1)
on the noisy model, (c) feature operations (§5) on the initial estimated
mesh. Here, feature edges (described in §5.3) are rendered with differ-
ent colors. Corner points, end points and edge points (§5.3) are colored
with red, yellow and blue, respectively.

coordinates) [42] is perpendicular to the surface normal at
this vertex. The underlying causality is: if a vertex and
its 1-ring neighboring vertices are co-planar, its uniformly-
weighted Laplacian is expected to be parallel to this plane,
since this vertex normal is perpendicular to this plane, and it
is also perpendicular to the uniformly-weighted Laplacian.
Our observation can also be applied to the scenario where
the Laplacian is a zero vector.

In the following, we first define fi, a function used to
determine whether the i-th vertex is a feature or not. In
general, the absolute value of fi of feature vertices should
be significantly larger or smaller than those of non-feature
vertices. Based on this observation, it is intuitive to define
fi as the dot product of the i-th vertex normal nV

i and its
Laplacian LiP for the i-th vertex, as follows.

fi = nV
i (LiP )T , (2)

where the superscript V denotes vertex, Li is the i-th
row of the uniformly-weighted Laplacian matrix L, and P

is the vectorized form of all vertex positions. The superscript
T stands for transposition.

It is obvious that in a model there exist only a small
(i.e., sparse) number of vertices (i.e., features) whose |fi| is
large. In other words, most vertices (i.e., non-features) have
a close-to-zero |fi|; features are indeed sparse in a model.
L0-norm minimization is theoretically the sparsest solution
[40]. However, L0-norm problems are non-convex and dif-
ficult to optimize, and current approximate optimizations
generally take long computational time [2].

To alleviate the above issue, we introduce a simple L1-
norm regularized formula that can be efficiently optimized.
The convex L1-norm regularization is used to find a sparse
approximation of L0 minimization and given by,

min ‖x− f‖2 + λ ‖x‖1, (3)

where f = (f1, · · · , fn)T , x is the vectorized form of
the unknowns, and λ is the regularization parameter to
control the number of non-zero elements (i.e., sparsity) of
the vector x, by regulating the trade-off between ‖x− f‖2
and ‖x‖1. A larger λ would result in a smaller number
of non-zero elements; and vice versa. The vertex normal
nV
i is computed by normalizing the area-weighted average
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among its neighboring face normals. In this work, we use
the CVX package [43] to solve Eq. 3 and interpret xi as a
non-zero entry if |xi| > 10−5.

Fig. 7. Feature detection results using different fi. We tune λ to let the
number of non-zero entries be the same for the four cases. (a) Using fi
in Eq. 2, (b) using fi with an intuitive standardization (described in §5.1),
(c) using the mean curvature [44], (d) using fi in Eq. 4. The form of fi
in Eq. 4 clearly produces the best detection result (refer to the blue and
red circled regions, pointed by arrows). Note that, the red circled regions
pointed by red arrows are zoomed in to clearly show the differences.

However, we found that the defined fi in Eq. 2 does not
take into account surface sampling density, which might be
unrobust (Figure 7(a)) for irregularly sampled meshes [45].
In other words, fi does not include any kind of standard-
ization. Lacking of a standardization would lead to some
potential failure cases. For example, if a non-feature vertex
is far from its neighbors or the face area formed by a vertex
and its neighbors is large, then this vertex might be mis-
identified as a feature since its fi could be large. Besides,
the feature vertex normals may be inaccurately estimated
using the general area-weighted computation. As a result,
some features might be missed via optimizing Eq. 3 (an
example is shown in Figure 7(a)). The premise is to use
the general area-weighted computation to estimate vertex
normals. So, efforts need to be paid to find an appropriate
standardization.

A straightforward way would be to divide fi by the total
area of the 1-ring neighboring faces of the current vertex. But

our experiments show that the detected results are poorer
(shown in Figure 7(b)) than those without standardization
(i.e., using Eq. 2). This is not surprising since the Laplacian
of a vertex is closely related to the vertex and its 1-ring
neighboring vertices. Therefore, we extend Eq. 2 to a new
form in Eq. 4 by including area standardization, as follows:

fi =
1

∑

j∈NF (i) aj

∑

j∈NF (i)

aj(n
V
i − nF

j )(LiP )T , (4)

where NF (i) is the 1-ring neighboring faces of the i-
th vertex, aj is the j-th face area in NF (i), the superscript
F denotes face, and nF

j is the corresponding face normal.
Optimizing Eq. 3 by substituting Eq. 4 to Eq. 3 can generate
better detection results than using Eq. 2 (shown in Figure
7(c)). Besides the comparisons among the four forms of fi
(Eq. 2, the intuitive standardization, the mean curvature
[44] and Eq. 4, illustrated in Figure 7), we also tested
the cotangent-weighted Laplacian instead of the uniformly-
weighted Laplacian, and we found the latter involved in
Eq. 4 has a better performance for feature detection.

It is noteworthy that a weighted L1-analysis technique
has been recently proposed by Wang et al. [3]. The main
differences between their method and our approach are:
(1) they apply L1-analysis on residual, nV

i (pi − p̃i)
T : the

dot product of the surface normal nV
i and the direction

by subtracting the Laplacian smoothing position p̃i from its
original noisy position pi, while our formula on fi is more
intuitive: the Laplacian of a vertex is perpendicular to both
the vertex normal and the surrounding face normals of this
vertex if it and its neighbors are co-planar, that is, fi = 0
(Eq. 4); (2) their method has a weighted L1-norm constraint,
while our method introduces a simple unweighted L1-norm
regularization without any additional constraints; (3) their
method is iterative (i.e., optimizing L1 for multiple times),
while our method is non-iterative, which is much more
computationally efficient.

5.2 Feature Identification

We can obtain detected features from the above step. Nev-
ertheless, some of the detected features may be pseudo-
features that should be identified and discarded. Recent
sparsity-inspired methods [2], [3] do not take special care
of this aspect. We design effective feature identification
strategies based on the following criteria.

• Isolation criterion. We first adopt the normal tensor
voting algorithm [46] to the isolated features to iden-
tify corners. The identified corners are immediately
excluded from isolated features and marked as true
features. Afterwards, if isolated single features exist
in the detected features, we mark them as pseudo-
features and remove them accordingly. In a similar
way, we can identify and remove isolated coupled
features that are only adjacent to each other (i.e., not
having other neighboring detected features).

• Threshold criterion. Even if there exist multiple
features around a detected feature, it may also be
a pseudo-feature. To identify those pseudo-features,
we first define a measurement function for the k-th
detected feature as follows. This function measures
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Fig. 8. Denoising results of the Joint model (comparison among our method and the selected start of the art methods). Please refer to the zoomed
red rectangular windows.

Fig. 9. Denoised results of the Chair model (comparison among our method and the selected start of the art methods). Please refer to the zoomed
red rectangular windows.

Fig. 10. Denoised results of the Table model (comparison among our method and the selected start of the art methods). Please refer to the zoomed
red rectangular windows.

the energy of a detected feature, and the energies of
true feature vertices should be generally greater than
those of pseudo-feature vertices.

Mk =
1

∑

j∈NF (k) aj

∑

j∈NF (k)

ajn
V
k (n

V
k − nF

j )
T (5)

Adaptive threshold. Then, we compute the average of
the measurements of all other neighboring detected
features around the k-th feature vertex as follows:

M
Avg
k =

1

|NV1(k)|
∑

j1∈NV1(k)

Mj1 , (6)

where NV1(k) is the neighboring detected features of
the k-th feature vertex, and |NV1(k)| is the number of
elements in NV1(k). We can observe that the average
measurement varies since each detected feature has
different neighboring detected features. Therefore,

M
Avg
k acts as a self-adaptive threshold. In our work,

if Mk < γM
Avg
k , we identify the k-th feature as a

pseudo-feature. γ is the only parameter at this step.

In our experiments, it is typically set in the range of
0.25 to 0.55.

The two criteria defined above can be applied alternately
several times (2 times empirically), and can reliably identify
most of pseudo-features from the detected features. To the
end, the remaining pseudo-features (if existing) can only
impose limited impact on the next step, and actually they
can be further removed.

5.3 Feature Connection

At the feature connection step, we connect continuous fea-
tures to form distinct edges called feature edges (refer to
Figure 3(c)). We first classify the resulting features from the
above step into three categories: corner points, edge points,
and end points. Note that an end point is the start or end
of a feature edge, but it is not a corner point. We use the
following steps for feature connection.

(1) We employ the normal tensor voting algorithm [46] to
identify corners. We also further check whether a feature
point is an end point, by checking whether it has only a
single neighboring feature point. The remaining feature
points are edge points.
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Fig. 11. Denoising results of the Vase model (comparison among our method and the selected start of the art methods). Note that the denoised
result by He and Schaefer [2] is also clean (without folded faces), but it looks unnatural, especially at the neck of the vase model.

Fig. 12. Denoised results of the Vase model contaminated with heavy noise. Our method still robustly achieves a clean and high-quality result which
is clearly better than the selected state of the art methods.

Fig. 13. Denoising results of the Fandisk model (comparison among our method and the selected start of the art methods). Please refer to the two
zoomed regions.

(2) In general, the first point and last point of a feature edge
are corner points or end points, unless the feature edge
is a loop. We thus start at a corner point or an end
point, and put it and one of its neighboring features
into a new feature edge list. To determine if the next
neighboring feature point can be added to the current
feature edge, we compute the angle, κ, between the
first line segment (formed by the last vertex and its
previous vertex in the current edge list) and the other
line segment (formed by the last vertex in the current
edge list and its next neighboring feature vertex). If
κ > κthr and only one neighboring feature point exists,

we add this neighboring feature to the current feature
edge. If there are multiple neighboring features, we first
select the one with the largest κ and then check whether
κ > κthr . If so, we also add it to the current feature edge.
We repeat this operation until encountering a corner
point or an end point, or κ ≤ κthr . We empirically
set κthr = 130◦, and users may loose this constraint
by choosing a smaller κthr .

(3) We search for a limited distance to check if two feature
edges can be further connected as a longer one. Specif-
ically, we start at the beginning or the ending feature
point of a feature edge Et1, and put its neighboring
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Fig. 14. Denoised results of the Cat model (comparison among our method and the selected start of the art methods). Please refer to the two
zoomed windows for comparing differences.

Fig. 15. Denoised results of the Ateneam model (comparison among our method and the selected start of the art methods). Please refer to the
zoomed regions.

feature point in Et1 and it into a search list, as the first
and second elements, respectively. We then search one
of the 1-ring neighboring vertices of the last point in the
search list that has the largest angle, κ1, between two
line segments (one is formed by the last point and its
previous point in this search list, and the other is formed
by the last point in the search list and this searching
point). If κ1 > κthr , we move this searched point into
the search list and further seek the next neighboring
point. If the distance is less than or equal to the user-
specified distance threshold (5 points by default), which
means the search meets the beginning or the end of
another feature edge Et2, then we add the searched
points and Et2 onto Et1, and also delete Et2. Otherwise,
we discard the search and leave Et1 and Et2 unchanged.

(4) A 3D model may contain looping feature edges (e.g.,
Figures 8, 10 and 11). We randomly select a feature

point from the remaining features and mark it as a
virtual corner point. Then, we perform the above step
(2). We set this virtual point as an edge point if the newly
connected feature edge has the same beginning and end,
which indicates it is a looping feature edge. We repeat
this operation until no new feature edges can be created.

After the feature connection step, the remaining un-
connected features are identified as pseudo-features, and we
just simply eliminate them.

6 FEATURE-AWARE VERTEX UPDATE

From the above stage we can obtain feature edges. Now we
need to make non-feature regions smooth while preserving
features. Our basic idea is to smooth non-feature places by
considering the 1-ring neighbors of each non-feature vertex,
and smooth the constructed feature edges by taking the two
bilateral neighbors (along the corresponding feature edge)



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, (ACCEPTED IN NOVEMBER 2015) 9

Fig. 16. Denoised results of a scanned Cube model (comparison among our method and the selected start of the art methods). Please refer to the
zoomed red and blue regions.

Fig. 17. Denoising results of a scanned Pierrot model. The selected state of the art methods generally produce undesired results, such as the
zigzag pattern (refer to the zoomed rectangular window). By contrast, our approach can generate a desired result which significantly reduces the
zigzag pattern.

Fig. 18. Denoised results of a raw Decorative pattern embossed model. Even this model involves many weak features and details, our method can
also produce a desired result, in terms of fine details and features preservation.

of each feature vertex. Specifically, we propose a novel,
efficient, iterative vertex update method as follows.

p
′

i =
piN +

∑

j2∈NV2(i)
pj2

|NV2(i)|

N + 1
, (7)

where p
′

i and pi are the new position and the original
position of the i-th vertex, respectively, N is an integer
constant that balances the importance between the vertex
itself (data term) and the centroid (smooth term) of its actual
neighboring vertices NV2(i), and |NV2(i)| denotes the num-
ber of elements in NV2(i). Specifically, NV2(i) is computed
as the 1-ring neighbors of a non-feature point or an end
point, and the two bilateral neighboring feature points of
an edge point. We handle corner points in the following
way: we simply fix them after the first stage because the
corners of the initial estimated mesh are reasonable while
the corners of the input noisy model may be still kept noisy.

In our method, we set different N for non-feature ver-
tices and feature vertices. A larger N means a stronger

bias on the data term, which will make the smoothing task
more difficult. In our experiments, we set N = 1 for non-
feature vertices. Because the curvedness of a curved feature
edge is expected to be preserved, we have to further clas-
sify feature edges to two types: curved edges and straight
edges. Our classification scheme is simple and efficient: we
apply PCA to each feature edge and its half, and take the
most significant principal component as the main direction,
respectively; it is a curved edge if the angle between the
two main directions is larger than a threshold (=10◦ in our
experiments). We set N = 6 for the edge points of a curved
feature edge, N = 1 for the edge points of a straight feature
edge, and N = 6 for the end points and corner points.

7 EXPERIMENTAL RESULTS

We tested our method on many mesh models corrupted
with either synthetic or raw scanned noise. Meanwhile, we
also tested several state-of-the-art mesh denoising methods
on the same test set as comparisons. In this section, we use
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Method I to denote our approach. The selected state of the
art mesh denoising methods are Method II [1], Method III
[2], Method IV [3], and Method V [4]. Method II has two
forms of solutions (local and global), thus we further denote
them as Method II (local) and Method II (global).

Parameter sets. Each mesh denoising method has its
own parameters. Specifically, we used the following param-
eter sets for the above approaches: Method I = (λ, γ, vertex
update iterations); Method II (local) = (normal filtering
iterations, σs, vertex update iterations); Method II (global)
= (λ, σs, vertex update iterations); Method III = (µ, α0, λ);
Method IV = (τ ); and Method V = (σs1, n1, σs2, n2).

Parameters choosing. We used the default parameter
values suggested by the original authors [2], [3] for the
Methods III and IV. Specifically, the parameter values used
in the Method III and IV are (

√
2, 0.1γ, 0.01l2γ) - abbre-

viated as Default1, and (0.1
√
n) - abbreviated as Default2,

respectively. The parameter values used in the Method I, II
and V are elaborately tuned to achieve best visual results for
all the test models. Specifically, in the Method I, a larger λ

detects a smaller number of non-zero elements (i.e., features)
and λ is in the range of [0.01, 0.1]; γ is used to identify
the detected features and is in the range of [0.25, 0.55]; the
number of vertex update iterations is in the range of [5, 30]
and a greater number would lead to smoother results. In
the Method II [1], the number of normal filtering iterations
is in the range of [3, 25] in our experiments, and a larger
number would result in smoother normals; σs is suggested
to be in the range of [0.2, 0.6], with a greater values for
a higher level of noise; λ is in the range of [0, 1], and a
smaller value of it leads to smoother results; the number
of vertex update iterations is in the range of [5, 50] in our
experiments, and it should be larger for a higher level of
noise as the vertices deviate further from their true positions
[33]. In the Method V [4], both σs1 and σs2 are in the range
of [0.2, 0.6], with larger values for heavier noises; n1 is in the
range of [3, 20], with greater numbers for smoother normal
initialization; n2 is in the range of [1, 15], with greater
numbers for larger noises. Table 1 shows the used parameter
values of all the methods on some test 3D models. In terms
of the implementation of the selected comparison methods,
we used the source code provided by Zheng et al. [1] and
implement the other three methods [2], [3], [4] by strictly
following their algorithms and additional responses from
their original authors for our technical inquiries.

Test models. We test both our approach and the selected
state of the art methods on a variety of models with either
synthetic or raw noise.

• Models with synthetic noise. Models corrupted with
synthetic noise are obtained by adding zero-mean
Gaussian Noise with standard deviation σ to their
corresponding ground truth. σ is proportional to l,
the average edge length of the ground truth. From
Figures 8 to 13, we clearly observe that our approach
can generate substantially better results than the
selected state of the art methods, in terms of fea-
ture preservation and cleanness. Note that the Chair
model (Figure 9) and the Table model (Figure 10)
have thin side faces which may bring extra difficulty
for denoising, but our method can robustly generate

sound results. Figure 12 further demonstrates the
robustness of our approach when dealing with a
high level of noise. Figures 14 and 15 show that our
approach can also produce good quality results in
terms of cleanness and details-preserving, even using
the first stage of our pipeline alone.

• Models with raw noise. In addition to the models
corrupted with synthetic noise, we also tested all the
methods on real 3D scanned data. Figure 1 shows
that when all the methods (Methods I to V) were ap-
plied to a raw scanned Wilhelm model, our method is
noticeably better than all the other methods in terms
of feature preservation (refer to the zoomed rectan-
gular windows). Figure 16 shows that our approach
can generate better results than the state of the art
methods in terms of sharp edge recovery. From Fig-
ure 17, we found that the selected state of the art
methods generate less desired results (e.g., the zigzag
pattern) compared with our approach. In Figure 18,
we demonstrate that our method can also generate
compelling results when denoising 3D models with
many weak features or details, by adopting the first
stage only.

Quantitative comparisons. Besides the above visual
qualitative comparisons, we also compared our approach
with the state of the art methods in a quantitative way, listed
in Table 1. We chose the quantitative metrics Ev (L2 vertex-
based error) and MSAE (the mean square angular error)
suggested by the previous works [1], [4]. Ev is to measure
the positional error between the ground-truth model and the
denoised model, and MSAE is to estimate the mean square
angular error between the face normals of the ground-truth
model and those of the denoised model. Additionally, we
recorded computational time for each stage of our approach
on some test models (shown in Table 2).

From Table 1, we can observe the following: First, for
all the test models in Table 1, MSAE by our approach is
significantly smaller than all the selected state of the art
methods, which is consistent with the qualitative (visual)
comparison outcomes. Second, we found mixed comparison
results in terms of Ev . In other words, Ev generally, but
not invariably, is in agreement with the visual comparison
outcomes, which was also reported in the previous work
[33]. The justification for mixed Ev outcome is that, vertices
may be repositioned towards larger or smaller Ev during
denoising. Specifically, our approach generated larger Ev

for some test models (i.e., Table, Vase (Figure 11), Cat and
Ateneam in Table 1), since all the faces of the noisy input are
better reshaped and vertices are relocated in our method,
which could result in a larger positional error between the
denoised model and the ground truth. Nevertheless, for
some other test cases (i.e., Joint, Chair, Vase (Figure 12)
and Fandisk in Table 1), our method may produce a more
similar structure with that of the ground truth, thus leading
to smaller Ev than the other methods. In brief, a better
denoised result does not necessarily have a smaller Ev , but
generally achieves a smaller MSAE. It is noteworthy that
the MSAE is irrelevant in some application scenarios, where
geometry accuracy is paramount.

In terms of computational time, as shown in Table 2, we
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found that the first stage of our method accounts for the
majority of the total computational time, since solving the
global equation in Eq. 1 is time-consuming, and we empiri-
cally fixed α, β and σθ and ran 4 times (the unweighted form
once and the weighted form three times) for each test model
in our experiments. To reduce the computational time, an
alternative would be to decrease the solving iterations for
Eq. 1 by tuning α, β and σθ . Note that our approach
denoised the Cat and Ateneam models (Figures 14 and 15)
by skipping its last two stages.

TABLE 1
Quantitative comparisons among all the five mesh denoising methods.

Models Methods
MSAE
(×10−2)

Ev

(×10−3)
Parameters

Joint
(Figure 8)
|V |: 5636
|F |: 11276

I
II (local)
II (global)
III
IV
V

0.342
4.337
4.413
0.629
3.321
4.507

13.98
14.84
14.84
15.70
15.23
14.85

(0.047, 0.5, 15)
(5, 0.35, 10)
(0.1, 0.35, 10)
Default1
Default2
(0.35, 3, 0.35, 7)

Chair
(Figure 9)
|V |: 3301
|F |: 6606

I
II (local)
II (global)
III
IV
V

0.667
17.06
15.33
1.620
11.85
19.19

7.732
8.071
8.013
8.430
8.137
8.067

(0.031, 0.27, 30)
(5, 0.35, 20)
(0.06, 0.4, 20)
Default1
Default2
(0.35, 4, 0.3, 10)

Table
(Figure 10)
|V |: 4556
|F |: 9108

I
II (local)
II (global)
III
IV
V

1.123
50.17
53.36
1.810
5.591
53.90

8.300
6.827
6.811
7.971
8.173
7.384

(0.044, 0.3, 30)
(10, 0.35, 20)
(0.01, 0.4, 20)
Default1
Default2
(0.35, 7, 0.4, 12)

Vase
(Figure 11)
|V |: 3827
|F |: 7650

I
II (local)
II (global)
III
IV
V

0.415
13.71
13.03
1.199
3.686
13.19

11.64
11.44
11.48
12.94
12.53
11.47

(0.06, 0.4, 10)
(5, 0.4, 12)
(0.05, 0.35, 12)
Default1
Default2
(0.35, 4, 0.4, 8)

Vase
(Figure 12)
|V |: 3827
|F |: 7650

I
II (local)
II (global)
III
IV
V

0.879
111.3
90.50
2.187
4.910
109.3

14.42
20.76
20.73
21.33
20.44
21.24

(0.055, 0.25, 20)
(15, 0.4, 30)
(0.05, 0.45, 30)
Default1
Default2
(0.4, 8, 0.35, 15)

Fandisk
(Figure 13)
|V |: 6475
|F |: 12946

I
II (local)
II (global)
III
IV
V

0.440
8.287
7.891
0.655
4.354
8.522

8.309
8.697
8.669
9.373
9.090
8.716

(0.03, 0.4, 10)
(5, 0.35, 10)
(0.02, 0.4, 10)
Default1
Default2
(0.35, 4, 0.35, 8)

Cat
(Figure 14)
|V |: 27109
|F |: 54192

I
II (local)
II (global)
III
IV
V

0.998
6.208
5.863
2.314
3.190
5.440

2.819
2.606
2.606
2.830
2.833
2.607

(-, -, -)
(4, 0.45, 6)
(0.1, 0.4, 6)
Default1
Default2
(0.4, 3, 0.35, 4)

Ateneam
(Figure 15)
|V |: 7311
|F |: 14552

I
II (local)
II (global)
III
IV
V

6.663
18.89
18.69
13.16
13.35
19.81

16.36
15.81
15.78
16.53
16.11
15.78

(-, -, -)
(4, 0.4, 8)
(0.1, 0.35, 8)
Default1
Default2
(0.35, 3, 0.35, 5)

8 DISCUSSION

As shown in the above section, our approach can generally
achieve noticeably better results than the selected state of the
art mesh denoising methods. In addition to the comparative
results (§7), it is necessary to discuss the three stages of our
method in detail.

• First, the initial estimation stage in our approach
provides a sound estimated mesh from a noisy input.
Though inspired by the work of [2], this strategy is

TABLE 2
Timing statistics of our approach. The running time (seconds) was

recorded on the same experimental computer with an Intel Core(TM)
i7-3770 3.40-GHz CPU.

Models
Stage 1
Initial estimation

Stage 2
Feature operations

Stage 3
Vertex update

Total

Joint (Figure 8)
|V |: 5636 |F |: 11276

2.461 0.51 0.105 3.076

Vase (Figure 11)
|V |: 3827 |F |: 7650

1.602 0.334 0.028 1.964

Fandisk (Figure 13)
|V |: 6475 |F |: 12946

2.174 0.583 0.524 3.281

Cat (Figure 14)
|V |: 27109 |F |: 54192

7.098 - - 7.098

Wilhelm (Figure 1)
|V |: 43644 |F |: 85553

7.234 3.57 0.067 10.871

Fig. 19. Denoising a model corrupted with very heavy noise. In this case,
our approach successfully forms two looping feature edges, but only
connects a part of the middle looping feature edge (refer to (b)), thus
leading to an unsatisfactory result (refer to (c)).

new, as previous mesh denoising methods did not
propose a similar one, to the best of our knowledge.
It introduces a quadratic optimization which itera-
tively removes noise while preserving features. The
whole mesh can be better shaped after this stage,
meanwhile fold-backs, overshoots as well as degen-
erate triangles can be largely wiped out. Besides,
existing mesh denoising methods can potentially
take this stage as a vertex pre-filtering scheme before
the methods themselves. Users can also tune the
involved parameters if they found the default values
cannot meet their requirements: a larger α or σθ

would lead to smoother estimations given the same
number of iterations, and β is generally smaller than
α (e.g., β = 0.1α) except at the first iteration.

• Second, the intermediate stage of our method con-
sists of three steps: feature detection, identification
and connection. The feature detection step is in-
spired by sparsity. However, our feature detection
technique is widely different from the recent works
[2], [3] (refer to §5.1). In fact, significant differences
exist between our L1-norm regularization and the
L1 optimization [40]: (a) the latter directly applies
L1 in optimization for point clouds, while our L1
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Fig. 20. Denoising a model with an extreme triangulation. Our method
fails to achieve a desired denoised result.

formulation is to detect features on mesh shapes; (b)
the optimized formulas are quite different. Specif-
ically, the L1 optimization in the work of [40] is
to denoise point sets and generate well-organized
points, and thus could facilitate other geometry pro-
cessing, such as surface reconstruction. However, our
L1-norm regularized formula is to detect features on
mesh shapes, which is one of the three operations
in the feature operating stage. To the best of our
knowledge, the last two steps (feature identification
and connection) proposed in this work are the first-
of-its-kind, since previous mesh denoising methods
generally focus on detecting features and pay little
attention to the refinement of the detected results.
It should be noted that this stage can be potentially
extended to cope with feature recognition problems
on triangular meshes [46].

• Lastly, our proposed feature-aware vertex update al-
gorithm utilizes local geometric information around
each vertex. Triangles of the mesh can be further
shaped by our vertex update, because the new posi-
tion of a vertex is weighted averaged by itself and the
centroid of its practical neighboring vertices. Similar
to the vertex update in [1], [33], our algorithm is also
iterative, fast and effective. Nevertheless, their vertex
update relies on filtered face normals while ours
needs to know which vertices are features or non-
features. As a consequence, our approach directly
acts on vertices, unlike methods that filter surface
normals followed by vertex update (e.g., [1], [4]).

Similar to previous mesh denoising works, the input
of our approach is a noisy mesh, and the noise typically
has two types: raw noise and synthetic noise. Synthetic
noise is used to generate different levels of noise (similar
to image denoising), and raw noise arises from real scanned
data. Synthetic noise is common in practice, for example,
Gaussian White Noise in images. As mentioned in many
previous mesh denoising works, a sound mesh denoising
method is expected to well handle both synthetic and raw
noise. Because: First, if a method could do a good job in
suppressing synthetic noise, most likely it could reasonably
suppress raw noise in scanned meshes. Second, for scanned
meshes with raw noise, we typically cannot obtain their
ground-truth models for comparison and quantitative anal-
ysis; by contrast, models added with synthetic noise do not
need to face this issue. Hence, it is practically necessary and
useful to utilize synthetic noise to test and validate a mesh
denoising method. In fact, not only our work, almost all
previous mesh denoising works have also done validation

experiments on synthetic noise. In addition to other models
with synthetic noise, we use one or two examples with large
noise (Figures 12 and 19) to test the competence and limit of
our method. Besides, we also validate the proposed method
on raw scanned models (Figures 1, 16, 17 and 18), demon-
strating the real application of our method. Raw scanned
models may be obtained by first performing existing surface
reconstruction techniques (e.g., Ball Pivoting [47]).

It is noteworthy that, in general our method can well
handle noisy models with continuous features that can be
connected into feature edges. However, noisy models with
details or weak features (i.e., weak sharpness) could be chal-
lenging to denoise by employing the whole pipeline: details
or weak features might be over-smoothed. Two successful
examples of our approach are shown in Figures 1 and 13.
An alternative is to skip the last two stages of our method,
for example, Figures 14, 15 and 18 can be effectively and
robustly denoised by only adopting the first stage.

Our method has certain limitations in spite of its demon-
strated superiority over the state of the art approaches.

(1) Like existing methods [2], [4], our approach cannot well
handle noisy models with an extreme triangulation,
since vertices only exist at sharp features. A failure
example is shown in Figure 20.

(2) If the noise level is very high, it is possible to smooth
out some features at the first stage of our method, thus
leading to challenges for the following stages. Therefore,
it may produce undesired denoised results (a failure
example is shown in Figure 19).

(3) Currently we fix open boundaries and corner vertices
in our implementation (after the first stage). Such an
assumption might be unreasonable for some cases.

9 CONCLUSION

In this paper we present a novel approach for robust feature-
preserving mesh denoising. Given a noisy mesh input, our
method first estimates an initial mesh, then performs feature
detection, identification and connection, and finally, itera-
tively updates vertex positions based on the constructed
feature edgs. As demonstrated in many experimental re-
sults, our approach can robustly denoise input mesh models
with synthetic noise or raw scanned noise. The qualitative
and quantitative comparisons between our method and the
selected state of the art methods show that our approach can
soundly outperform them in terms of both result quality and
robustness.

Our work concentrates on mesh denoising, which aims
to recover high-quality 3D models from meshes corrupted
with raw or synthetic noise. An interesting research di-
rection for future investigation would be the combination
of the mesh denoising layer with the point set denoising
layer and even possibly with the surface reconstruction
layer. We believe that, with some non-trivial efforts, such a
combination could potentially generate desirable complete
shapes.

ACKNOWLEDGMENTS

The authors would like to thank the in-part funding sup-
port from NIH 1R21HD075048-01A1, NSF IIS-1524782, and



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, (ACCEPTED IN NOVEMBER 2015) 13

Natural Science Foundation of China (NSFC) grant (No.
61328204).

REFERENCES

[1] Y. Zheng, H. Fu, O.-C. Au, and C.-L. Tai, “Bilateral normal fil-
tering for mesh denoising,” IEEE Transactions on Visualization and
Computer Graphics, vol. 17, no. 10, pp. 1521–1530, Oct 2011.

[2] L. He and S. Schaefer, “Mesh denoising via l0 minimization,”
ACM Trans. Graph., vol. 32, no. 4, pp. 64:1–64:8, Jul. 2013. [Online].
Available: http://doi.acm.org/10.1145/2461912.2461965

[3] R. Wang, Z. Yang, L. Liu, J. Deng, and F. Chen, “Decoupling noise
and features via weighted l1-analysis compressed sensing,” ACM
Trans. Graph., vol. 33, no. 2, pp. 18:1–18:12, Apr. 2014. [Online].
Available: http://doi.acm.org/10.1145/2557449

[4] M. Wei, J. Yu, W. Pang, J. Wang, J. Qin, L. Liu, and P. Heng, “Bi-
normal filtering for mesh denoising,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 21, no. 1, pp. 43–55, Jan 2015.

[5] M. Botsch, M. Pauly, L. Kobbelt, P. Alliez, and B. Lévy, “Geometric
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