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Abstract

We present a robust shape model for localizing a set of

feature points on a 2D image. Previous shape alignment

models assume Gaussian observation noise and attempt to

fit a regularized shape using all the observed data. How-

ever, such an assumption is vulnerable to gross feature de-

tection errors resulted from partial occlusions or spurious

background features. We address this problem by using a

hypothesis-and-test approach. First, a Bayesian inference

algorithm is developed to generate object shape and pose

hypotheses from randomly sampled partial shapes - sub-

sets of feature points. The hypotheses are then evaluated

to find the one that minimizes the shape prediction error.

The proposed model can effectively handle outliers and re-

cover the object shape. We evaluate our approach on a

challenging dataset which contains over 2,000 multi-view

car images and spans a wide variety of types, lightings,

background scenes, and partial occlusions. Experimental

results demonstrate favorable improvements over previous

methods on both accuracy and robustness.

1. Introduction

Deformable shape matching has been studied exten-

sively in the past two decades with the emphasis on

the alignment of human faces and anatomical structures.

Representative work include Snakes [14], Active Shape

Model [4] and Active Appearance Model [3], Bayesian

shape model [24, 13], nonlinear shape models [4, 19, 25],

view-based [6] and three dimensional models [1, 12], and

models for weak initialization [16, 17, 23].

A common assumption in these models is that the ob-

servation noise is Gaussian distributed. However, in real-

world images shape observations are usually corrupted by

large-scale measurement errors which are in gross disagree-

ment with the true underlying shape. Such errors, usually

called outliers, are caused by the failures of the appearance
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model or undesirable conditions such as shadows and oc-

clusions. Due to the iterative nature of most algorithms,

these gross errors may become arbitrarily large and there-

fore cannot be “averaged out”, as is typically done in the

least-squares framework. Rogers and Graham [18] attempt

to address this problem by use of M-estimators. However,

M-estimators tend to suffer from local optima, and pose pa-

rameters have been ignored in their model.

Another limitation in the previous models is the sensi-

tivity to initialization. The objective functions are usually

highly nonlinear and a suboptimal initialization may cause

the model to get stuck at local minimums. Previous work

attempt to tackle this problem by sampling - starting from

multiple initializations and choosing the optimal resulting

shape [17, 23]. However, each individual sample was eval-

uated and matched in a least-squares fashion, so that the

alignment process could still fail in the presence of outliers.

It is also unclear how many samples are sufficient to achieve

the best solution.

In this paper, we address these two problems in a

hypothesis-and-testing framework. Our key insight is the

following: since object shape typically resides in a low-

dimensional subspace, the degree-of-freedom of a shape

model is considerably less than the number of the observed

features; therefore, a small subset of “good” features are

sufficient to “jump start” the matching and produce a rea-

sonable estimate. We adopt the random sample consensus

(RANSAC) paradigm of Fischler and Bolles [9]. In particu-

lar, a Bayesian inference algorithm is developed for a gener-

ating shape and pose hypothesis from a randomly sampled

subset of features; each hypothesis is matched against the

full observation by a robust measure to identify the optimal

one; and the hypothesis is further refined by incorporating

more inliers into the corresponding subset.

We apply the approach to multi-view car alignment -

identifying detailed car shapes from different viewpoints.

The task is challenging because car images are often sub-

ject to significant amount of occlusions, and detecting indi-

vidual parts are difficult. Combining our alignment model

with a random forest [2] based detector we develop a robust,

fully automatic car alignment system.
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2. Problem Formulation

Consider the shape of a deformable object which

consists of a set of 2D landmark points. Let Y =
(u1, v1, . . . , uN , vN )

T
denote the locations of the points ob-

served from an input image. The observation contains not

only noises, but also gross outliers. Our goal is to estimate

the true underlying shape from such observation, and iden-

tify the outliers.

Instead of using the whole observation Y for estimation,

we will first use a randomly selected subset of Y , denoted

by Yp, to generate a shape hypothesis. The subset of points

are postulated as inliers which, by assumption, satisfy the

underlying noise model,

Yp = MpTΘ (S) + η. (1)

The vector S denotes the normalized true shape which we

refer to as canonical shape. It is transformed onto the im-

age plane by TΘ (S) = sRS + t with rotation R, scale s
and translation t. Mp is a 2M × 2N indicator matrix which

specifies the subset. Observation noise η ∼ N (0,Σ) is as-

sumed to be independent for individual points. One should

note that large-scale measurement errors will not conform

with the Gaussian noise assumption, therefore the model

(1) applies only to Yp.

The canonical shape S is parameterized by a probabilis-

tic PCA model [22, 24],

S = µ + Φb + ǫ (2)

with the mean shape µ, the low-dimensional eigen subspace

spanned by Φ, and the shape deformation parameter b. Each

element of b controls the magnitude of deformation along

the corresponding axis in the subspace. A diagonal prior

b ∼ N (0,Λ) (3)

is put on b, where Λ = diag {λ1, λ2, . . . , λr}, and λi’s are

eigenvalues. The shape noise ǫ is chosen to be isotropic,

ǫ ∼ N
(

0, σ2I
)

, and its variance σ2 = 1
2N−r

Σ2N
i=r+1λi is

determined by the residual, off-eigenspace shape energy.

Combining (1)∼(3), we have established a hierarchical

probabilistic model that can be used for generating hypothe-

ses. Specifically, our problem is to estimate shape deforma-

tion b and pose Θ = {R, s, t} from a partial shape Yp, i.e.,

find the MAP {b∗,Θ∗} = argmax
b,Θ

p(b, Θ|Yp). This is a typ-

ical missing data problem that can be solve by Expectation-

Maximization as described in Sec. 3. Given a hypothesis of

b and Θ, we can easily hallucinate the rest part of the shape

Yh = Mh(sRS + t), (4)

where Mh is a binary matrix that indicates the remaining

set of points. The hallucinate shape Yh is then used to test

the hypothesis. Sec. 4 explains the details.

3. Generating Hypotheses from Partial Shapes

In this section, we develop a Bayesian Partial Shape In-

ference (BPSI) algorithm to estimate the model parameter

Π = {b, Θ} iteratively. Detailed algorithm is shown in

Alg. 1.

The inference can be performed by the standard EM al-

gorithm. In the E-step, we compute the posterior of S given

the partial observation Yp and Π(t−1). Note that S rep-

resents an “augmented” shape which can be decomposed

into the partial observation Sp and the hallucinated shape

Sh. In particular, the posterior means are given by Eqn. 6

and 7. It shows that the hallucinated shape Sh is generated

completely from the shape prior, while Sp subsumes two

sources of information: one arises from the observation Yp;

the other reflects the subspace constraint on b. Sp is essen-

tially a weighted average of the observation and prior and

the weight is determined by the two sources of noise.

In the M-step, we optimize Π(t) which maximize the ex-

pectation of the complete log-likelihood log p(Yp, S|Π
(t))

over the posterior of S obtained in E-step. It shows that b
and Θ can be optimized independently.

One important parameter that has yet to be defined is

the observation variance Σ = diag{ρ2
1, ρ

2
1, . . . , ρ

2
M , ρ2

M}.
Since shape alignment can be viewed as an iterative model

fitting process, the observation noise can be estimated from

the last iteration. In our implementation, ρi is defined as the

prediction residual

ρ2
i = ||Y (t−1) − TΘ(t−1)(S(t−1))|| (5)

where ||·, ·|| denotes the Euclidean distance, and TΘ is the

rigid transform which brings the canonical shape S to the

observation space by Θ.

3.1. Discussion

The BPSI algorithm provides us some insights to the

noise-presenting shape model. However, from the optimiza-

tion point of view, the objective function and search method

remain obscure. In this section, we re-examine the BPSI

algorithm and focus on its optimization method.

In Step 6, we first compute the posterior mean of p(b|S)
which can be viewed as the probabilistic version of PCA

projection. In addition to the subspace projection performed

in PCA, BPSI applies an inhomogeneous shrinkage on each

subspace dimension. The shrinkage parameter is defined by

γi =
λi

λi + σ2
(i = 1, . . . , r) (9)

Recall that σ2 is the average of the remaining eigen-values.

Since b captures significant amount of variance (98% in our

implementation), σ2 has a very small value (i.e., σ2 ≈ 0
and γi ≈ 1). This implies that the PCA projection and

reconstruction in Step 6 would not alter Sp substantially.
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Algorithm 1 Bayesian Partial Shape Inference (BPSI)

Input: Partial observation Yp. b′ and Θ′ from last iteration.

Output: Updated b and Θ.

1: Initialize b = b′ and Θ = Θ′

2: for t = 1 to T do

3: E-Step:

4: Update Sp by blending, and Sh by reconstruction

S̃p ←W1T
−1
Θ (Yp) + W2(Φb + µ)p (6)

S̃h ← (Φb + µ)h (7)

where
W1 = s2σ2(s2σ2I + Σ)−1

W2 = I −W1

5: M-Step:

6: Estimate shape

b← Λ(Λ + σ2I)−1Φt(S̃ − µ)

Sp ← (Φb + µ)p

7: Estimate pose (Procrustes analysis [11])

Θ← arg min
Θ
||Yp − TΘ(Sp)|| (8)

M , (Sp − S̄p)(Yp − Ȳp)
t, [U, W, V ] , SVD(M)

R = V U t, s = tr(W )/tr(M), t = −sRS̄p + Ȳp

8: end for

Based on this observation, we can plug Eqn. 6 into Eqn. 8

Yp − TΘ(Sp) ≈ Yp − TΘ
[

W1T
−1
Θ (Yp) + W2(Φb + µ)p

]

= Yp − [W1Yp + W2TΘ(Φb + µ)p]

= (I −W1)Yp −W2TΘ(Φb + µ)p

= W2 [Yp − TΘ(Φb + µ)p]

It shows that Step 7 in BPSI solves a weighted least-squares

problem

min
Θ

M
∑

i=1

wi(ρi)||Yi − TΘ(Si)|| (10)

The weight wi is a quasiconvex function of ρi

wi(ρi) =

(

ρ2
i

s2σ2 + ρ2
i

)2

(11)

Fig. 1 shows the profile of the weight function. Recall that

ρi is defined as the prediction residual from the previous

step (Eqn. 5). Thus, the BPSI algorithm minimizes the sum

of square errors via the iterative reweighted least-squares

(IRLS).

min

M
∑

i=1

wi(ρ
(t−1)
i )ρ2

i (b, Θ) (12)
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Figure 1. Graphic representation of the quasiconvex weight func-

tion.

4. Testing Hypotheses by RANSAC

If we have a priori knowledge about Yp such that it con-

tains only inliers, the partial inference algorithm provides a

principled framework for shape and pose estimation. How-

ever, a random feature subset may potentially contain out-

liers and the fitted parameters can become arbitrary. In this

section, we adopt the random sample consensus (RANSAC)

paradigm of Fischler and Bolles [9] to generate a large num-

ber of hypotheses and identify the optimal feature subset.

In the RANSAC framework, a minimal subset of fea-

tures are used to estimate the model parameters. Specif-

ically, our model requires six parameters (which capture

98% variance) to describe the shape b, and four parameters

(scale/rotation/translation) to represent the pose Θ. Since

each 2D point provides two constraints on the parameters,

five points are sufficient to form a proposal subset Yp.

Ideally every possible subset would be considered, but

this is usually computationally infeasible. Fischler and

Bolles [9] proposed that the number m of subsets can be

chosen sufficiently high to achieve statistical significance.

Assuming that the whole set of points may contain up to a

fraction γ of outliers, one can determine m by

m =
log(1− P )

log(1− (1− γ)p)
(13)

where p = 5 is the number of features in one subset. P is

the expected chance that at least one of the proposal subsets

is good. In our implementation, we assume γ = 40% and

require P = 0.99, thus m = 57.

Given the proposal subsets Y
(k)
p (k = 1, . . . ,K), the

resulting shape b can be obtained by the least median of

squares (LMedS) estimator [20]

min
k

Med
i

r2
i

(

Y
(k)
p̄ , Y

(k)
h

)
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Figure 2. The partial shape Yp (red dots) is used to hallucinate

the remaining shape Yh (gray dots). The marginal variance of the

hallucinated points can be calculated and shown here in ellipses.

where ri is the residual between the i-th corresponding

point of Yp̄ and Yh.

In the traditional RANSAC literature, one usually as-

sumes no a priori knowledge about the target model and the

voting inliers are assumed to be iid. For instance, in the line

fitting example, any two points can determine a model and

the residual is simply the Euclidean distance from a voting

sample to the fitted line. However, in a deformable shape

alignment task varying amounts of residuals should be ac-

commodated to deal with the inherent shape variation.

Note that the the hallucinated shape Yh is generated from

b through the canonical shape S. By propagating the infor-

mation in b, we obtain the prior distribution of Yh

E[Yh] = Mh(sRµ + t)

Var[Yh] = s2MhR(ΦΛΦt + σ2I)RtM t
h

In general, the points in Yh are correlated, thus the

LMedS estimator cannot be applied directly. To remedy this

problem, we make an independent assumption and use the

marginal variance Σi of each point to compute the residual

r2
i (Yp̄, Yh) = [Yp̄(i)− Yh(i)]

t
Σ−1

i [Yp̄(i)− Yh(i)] (14)

ri is essentially the Mahalanobis distance between Yp̄(i)
and Yh(i). Fig. 2 illustrated the inhomogeneous prior vari-

ance exhibited in Yh.

Although the LMedS estimator is highly resistent to out-

liers, it has a relatively low statistical efficiency and the es-

timate tends to be variable [21]. A post-processing must

be employed to incorporate more inliers and re-estimate the

model. Alg. 2 summarizes the complete hypothesis-and-test

algorithm.

Algorithm 2 Robust Shape Alignment

Input: Observation Y . b′ and Θ′ from last iteration.

Output: Regularized Y . Updated b and Θ.

1: Generate random subsets Y
(1)
p , Y

(2)
p , . . . , Y

(K)
p

2: for k = 1 to K do

3:
[

b(k),Θ(k)
]

← BPSI
(

Y
(k)
p , b′,Θ′

)

4: Hallucination: Y
(k)
h ←MhTΘ(k)(Φb(k) + µ)

5: ǫ(k) ← Median
i

r2
i

(

Y
(k)
p̄ , Y

(k)
h

)

6: end for

7: k̂ ← arg min
k

ǫ(k)

8: Include more inliers to Y
(k̂)
p and run BPSI to refine b

and Θ
9: Y ← TΘ(Φb + µ)

5. Experiments

5.1. The Dataset

We evaluate our model on the MIT StreetScene dataset 1.

This dataset contains over 3,000 street scene images which

were originally created for the task of object recognition

and scene understanding under uncontrolled environment.

We labeled 3,433 cars which span a wide variety of types,

sizes, background scenes, lighting conditions, and partial

occlusions. All the shapes are normalized to roughly the

size 250x130 by the Generalized Procrustean Analysis [8].

The labeled data were manually classified into three views:

1,400 half-front view, 803 profile view and 1,230 half-back

view. We randomly select 400 images from each view for

training, and the rest for testing. For the occluded land-

marks, we place their label at the most probable locations,

but the corresponding local patches are excluded during

training the appearance model.

5.2. Learning the Discriminative Appearance
Model

The goal of appearance model is to provide an initial

shape for the alignment algorithm. Due to the background

clutter and substantial variations in color and pose, it is very

challenging to capture the local appearance. To address the

problem, we take a discriminative approach and learn the

appearance density from the data.

We generate training samples from the labeled car im-

ages of three different views. The car shape is represented

by 14, 10, and 14 landmarks respectively. For each land-

mark, we extract a 40x40 image patch as the positive sam-

ple. Negative samples of the same size are extracted uni-

formly around three concentric-circles centered at the land-

mark with 5 pixels apart. 36 negative samples are collected

1http://cbcl.mit.edu/software-datasets/streetscenes/
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Figure 3. Random forest for posterior estimation. The descriptor

is dropped to N decision trees. The final posterior is the average

over all the resulting histograms reached by the input descriptor.

for each landmark.

Local patches are further described by the Histogram of

Oriented Gradients (HOG) descriptor [7]. The HOG de-

scriptors are computed over dense and overlapping grids

of spatial blocks, with image gradient features extracted at

9 orientations and gathered into a 576-dimensional feature

vector (we use 8x8 cells, and 2x2 blocks).

The extracted descriptors are fed to a Random Forest [2]

for discriminative learning. A random forest is essentially

an ensemble of decision trees which are induced by boot-

strapped data. Specifically, we adopt the Extremely Ran-

domized Trees of Geurts et al. [10] for training. The ran-

dom forest consists of N randomly generated decision trees,

each of which is trained by 5000 bootstrapped samples. At

each non-terminal node, two random dimensions, denoted

by i and j, are chosen from the descriptor d. The splitting

measure at that node is specified as

B(d) =

{

1, if d(i) < d(j)
0, otherwise

where B(d) indicates the branch that d should continue. At

each terminal node, we save a normalized histogram that

counts the frequency of each class reaching the node. Our

random forest representation is similar to the feature clas-

sification trees by Lepetit et al. [15]. However, our task is

to estimate the posterior of the landmark given the observed

patch rather than classify it into different categories.

Since the decision trees are generated randomly, we can

even combine all the landmarks into one random forest. In

this case, each landmark represents a distinct class, while

all the negative samples from different landmarks are com-

bined into one single negative class. The resulting random

forest is shown in Fig. 3. Given an input descriptor d, the

posterior that it belongs to landmark li is given by

p(li|d) =
1

N

N
∑

j=1

pj(li|d) (15)

where pj(li|d) is the posterior returned by tree Tj .

The proposed random forest model offers two benefits:

First, training and testing the model are extremely efficient

(a) (b) (c)

Figure 4. (a) A normalized image. We apply the trained ran-

dom forest on the entire image. Posterior maps are shown for the

wheels (b) and the top-right corner (c).

as we only need to examine a subset of randomly selected

feature dimensions. In addition, by combining all the land-

marks and training the forest jointly, the model implicitly

captures the image context information, thus being able to

distinguish between neighboring landmarks. Fig. 4 illus-

trates the random forest result.

5.3. Performance Evaluation

We compare our approach with Active Shape

Model (ASM) [5] and Bayesian Tangent Shape Model

(BTSM) [24]. We initialize the car shape by a randomly

perturbed mean shape, and the same initialization is applied

to all three algorithms. Fig. 5 illustrates two example

images. In the first example (top row), the appearance

model is distracted by some bogus background features.

ASM attempts to compensate the errors with large pose

change, but at the expense of diverging the good features

from their true locations. BTSM generates smoother results

by assigning different weights on the observation and

the shape prior. However, the errors are too large to be

accommodated by its Gaussian noise model. Our approach

successfully detects the outliers (colored in black) and

excludes them from the parameter estimation. The second

example shows a typical image with partial occlusion

(bottom row). Again, the fitting is improved because the

occluded features are automatically identified. Fig. 5(e)

shows the random hypotheses generated by RANSAC.

Although they are all car-like, our algorithm success-

fully identifies the optimal one which enjoys maximum

agreement from the observation and the trained shape

model.

Fig. 6 shows the root mean square error (RMSE) with re-

spect to the labeled ground truth. We observe consistent im-

provement on the proposed model over the other approaches

in all three views. A further investigation shows that our ap-

proach achieves comparable result as BTSM on “good” test

images, but performs significantly better on the images with

gross errors. Given that the error is averaged over 2,000

images, the pixel-level improvement is substantial for the

alignment task.

To investigate the robustness of our algorithm to random

initialization, we vary the noise level when perturbing the

initial shape. Fig. 7 show the RMSE for different noise

levels at each view. As expected, the performance of our

2470



(b) (c) (d)(a) (e)

Figure 5. (a) The observed shape. (b) ASM. (c) BTSM. (d) Our approach (solid colored points represent the partial shape that generates the

optimal hypothesis; white ones are the inliers included in the refinement step; and blacks ones are the outliers rejected by the model). (e)

Random shape hypotheses generated by RANSAC. Top row shows an example with spurious background features; and bottom row shows

an example with partial occlusion.
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Figure 6. Test errors for ASM, BTSM and our approach. The initial shape is set to be the mean shape plus 5 pixels random noise on each

landmark. For each test image, we use the same initialization for all three methods. The RMSE of each landmark is shown for different

views: half-front view (left pane), profile view (middle pane), and half-back view (right pane).

alignment model drops as the noise level increases. How-

ever, the average error increases less than 1 pixel even when

20 pixels random shift is added to the initial shape. This is

because our algorithm relies on a minimal subset of features

to generate a hypothesis, therefore can recover the meaning-

ful shape in a couple of iterations. Traditional approaches

are more likely to fail in this case because shape observation

is contaminated by more outliers.

Fig. 6 shows the landmark-wise average error over the

entire test dataset. To investigate the error distribution, we

need to make a side by side comparison for each example.

We focus on the half-frontal view which contains 1,400 im-

ages. For each example, we run BTSM and Robust align-

ment respectively, using the same initialization. In Fig. 8,

we use the sorted error of BTSM as reference and plot the

corresponding error of the proposed method. A cubic curve

is also fitted on the blue plot to provide a global illustration

of the error distribution. As we can see, the two methods

are comparable on the first 600 or so examples, while ro-

bust method overtakes BTSM in the remaining ones. Fur-

ther inspections show that many of those difficult examples

correspond to occlusion images.

Fig. 9 shows some alignment results by our approach.

We demonstrate car images with various viewpoints, light-

ings, occlusion patterns, and cluttered background.
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Figure 8. Side-by-side comparison of BTSM and our approach.
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Figure 7. Test error for our approach using different initializations. The initial shape (mean shape) is perturbed by different levels of noise

from 0 to 20 pixels.

6. Conclusions

We have described a RANSAC-based approach for ro-

bust object alignment, and applied it to a challenging

multiple-view car alignment task. It is encouraging to see

that the approach is capable of dealing with large measure-

ment errors such as occlusions. The current algorithm takes

locally detected feature point as input. However, there are

great potentials for extending the RANSAC framework to

operate over multiple, globally detected feature points. We

plan to explore this approach in the future work.
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Figure 9. Alignment results by our approach. For each test image, we show the final result on the top and the observed shape at the bottom.
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