
A ROBUST SPEAKER CLUSTERING ALGORITHM

J. Ajmera
�

IDIAP
P.O. Box 592

CH-1920 Martigny, Switzerland
jitendra@idiap.ch

C. Wooters
�

ICSI
1947 Center St., Suite 600
Berkeley, CA 94704, USA
wooters@icsi.berkeley.edu

ABSTRACT

In this paper, we present a novel speaker segmentation and
clustering algorithm. The algorithm automatically performs
both speaker segmentation and clustering without any prior
knowledge of the identities or the number of speakers. Ad-
vantages of this algorithm over other approaches are: no
need for training/development data, no threshold adjustment
requirements, and robustness to different data conditions.
This paper also reports the performance of the algorithm
on different datasets released by NIST with different ini-
tial conditions and parameter settings. The consistently low
speaker diarization error rate clearly indicates the robust-
ness of the algorithm.

1. INTRODUCTION

The goal of a speaker segmentation system is to divide a
speech signal into a sequence of speaker-homogeneous re-
gions. Thus, the output of such a system provides the an-
swer to the question, “Who spoke when?” The output from
such a system can be extremely useful for improving the
quality of speech-to-text (STT) systems. Knowing when
each speaker is speaking can be useful as a pre-processing
step in STT systems. Such pre-processing may include vo-
cal tract length normalization (VTLN), or speaker-adaptation.
Automatic speaker segmentation is also useful in informa-
tion retrieval and in the indexing of audio archives.

One of the difficulties with automatic speaker segmenta-
tion is deducing the appropriate number of clusters. Ideally,
one would like to have as many clusters as there are speak-
ers in the audio, which is not known a priori. It may also
be desirable to have separate clusters for non-speech/music
and silence.

�
This work was supported by the Swiss National Science Foundation

through project no. 2100-65067.01 on ”AudioSkim”�
This material is based upon work supported by the Defense Advanced

Research Projects Agency Information Awareness Office EARS program.
ARPA Order No. N614, Program Code No. 2E20, issued by DARPA/CMO
under Contract No. MDA972-02-C-0038 as part of a subcontract to ICSI
by SRI International.

Several clustering schemes have been proposed in the
literature, most of which first segment and then cluster the
data. The segmentation is either assumed to be known [1,
2, 3] or performed automatically prior to clustering [4, 5].
These approaches have limitations: in the former case, the
correct segmentation is rarely known a priori for practical
applications, and in the latter case, the errors made in the
segmentation step are not only difficult to correct later, but
can degrade the performance of the subsequent clustering
step. In the proposed technique, we perform clustering di-
rectly on the data, deriving the segmentation (according to
the clusters) in the process.

The proposed algorithm for speaker segmentation de-
duces the number of clusters automatically while optimiz-
ing a likelihood-based objective function. The algorithm
runs iteratively, where the likelihood of the data along the
best segmentation path (Viterbi score) increases until it reaches
an optimal point and then it begins decreasing. We stop the
process at the maximum value in the likelihood function.
An important property of this algorithm is that it does not
have a threshold term to adjust, for which a development
test set is generally required. The algorithm is quite robust
to different initial conditions and choice of acoustic feature
vectors. These properties are demonstrated with the help of
a number of experiments.

2. SPEAKER CLUSTERING ALGORITHM

As shown in Fig. 1, our speaker clustering algorithm is based
on an ergodic hidden Markov model (HMM) formalism where
the number of states in the HMM is equal to this initial
number of clusters. Each state is composed of a set of �
sub-states. These sub-states impose a minimum duration on
the model. Thus, each state of the HMM is a cluster and is
expected to represent a single speaker. The probability den-
sity function (PDF) of each state is assumed to be a Gaus-
sian mixture model (GMM) with � Gaussian components,
which are shared among all sub-states.

In the absence of any a priori information about the

GMM

sub-states

states (clusters)

S1 S-1

1

2

k

k-1

2

Fig. 1. HMM Topology Used for Clustering

number of speakers (and hence number of clusters), we start
by over-clustering the data. The term “over-clustering” refers
to the process of segmenting the data into an initial number
of clusters � , where � is greater than the expected number
of speakers in the audio file. A result of over-clustering is
that data from a single speaker is likely to be assigned to
different clusters. Thus, our goal is to identify clusters that
have been assigned data from the same source and merge
them. It will be shown later that the algorithm is not sen-
sitive to the exact value of � as long as that value is large
enough.

The initialization of the HMM parameters is done by
assuming a uniform segmentation of the data in terms of �
clusters and estimating the parameters of the cluster GMMs
over these segments. K-means algorithm was also tried for
this purpose, but our experiments showed that the algorithm
is robust to this initialization mainly because of the large
minimum duration that we impose.

The next step is to train this initial HMM topology. This
is done by using the standard Expectation-Maximization (EM)
algorithm. In the E-step, a segmentation of the data is ob-
tained to maximize the likelihood of the data, given the
parameters of the GMMs. This is followed by an M-step
where the parameters of the GMMs are re-estimated/updated
based on this segmentation.

The final step in the algorithm is cluster merging. A
consequence of over-clustering is that data from a single
speaker may be assigned to different clusters. Thus, a re-
quirement of our algorithm is to identify clusters containing
data from the same source and merge them. The details of
cluster merging are explained in Section 2.1 below.

Once we have merged a pair of clusters, we return to the
segmentation and training step. We repeat the process of
segmentation-training-merging until there are no more clus-
ters to be merged.

2.1. Cluster Merging

We begin with a high-level description of the overall prob-
lem: If �������	��
���
�
�����������
������ 1 is the audio data to be seg-
mented, we want to find the optimal number of clusters (���)
and their acoustic models (����) that produce the “best” seg-
mentation of the data (�) according to:

� ��
�� � ���! #"%$&�(')+*(, �.-0/ �1
�2�3547698�: � �
#�<; (1)

where 2�3547698 is the Viterbi segmentation path with the highest
likelihood. Thus, we want to find the set of clusters and their
acoustic models that maximize the likelihood of the data and
the associated segmentation based on this HMM topology.

Since we do not want to consider all possible values for� , we begin by choosing a maximum value (�=���). Then,
through the process of cluster merging, we reduce the value
of � until we find an optimal number of clusters (�>�) and
their acoustic models (����) according to (1). However, if
we merge two clusters, resulting in one fewer state in the
HMM topology, then the total number of parameters in the
HMM will be reduced. Because the same amount of data
will be modeled using fewer parameters, the likelihood of
the data given the model will decrease monotonically with
decreasing model size. Since the merging process will not
result in a maximum in the likelihood function, we would
need to choose a threshold at which to stop merging.

Ideally, we would like to find a method of selecting clus-
ters for merging such that a correct merge (i.e. a merge in-
volving clusters of data from the same speaker) will produce
an increase in the objective function (1) and an incorrect
merge will result in a decrease. A common method of se-
lecting between competing models is to use the Bayesian
Information Criterion (BIC) [1]. BIC imposes a trade-off
between model quality and model complexity. Using BIC
as a merging criterion, two clusters would become a candi-
date for merging if the following is true:

log -0/@? : A�;CB
D
EGF � log HJI log -0/K?ML : A L ;ON log -0/@? 3 : A 3 ;

(2)
1Generally this is a sequence of acoustic feature vectors extracted from

the audio waveform at a regular time interval e.g. every 10ms.

where:

� ? L and ? 3 represent the data in two clusters and A L
and A!3 represent the parameters of the PDFs of these
two clusters respectively.

� ? is the data from ? L � ? 3 and A represents the pa-
rameters of PDF of ? .

� F is ideally set to
D � �

� H is the number of data points in � ? �
� � is the difference in the number of parameters be-

tween A L and A 3
BIC provides a simple way to decide when to stop merg-

ing. However, we found in our experiments that we have
to tune the value of F to get best results. Moreover, this
value changes with the data conditions and so a develop-
ment dataset is required to estimate the optimal value of
this parameter. Thus, we would like to eliminate the use of
threshold (F) to avoid the need of finding an optimal value
of this parameter.

2.1.1. New Merging Criterion

If we use BIC, but keep the number of parameters constant,
we eliminate the need for the penalty term in (2). Thus,
when we merge two clusters, we simply model the PDF of
the new cluster using a model containing a number of pa-
rameters equal to the sum of the number of parameters of
the two merged clusters. As with BIC, the objective func-
tion in (1) increases for correct merging (merging of two
clusters having data from the same source) and decreases
for incorrect merging. We define our merging criterion as
follows:

� Let � L and � 3 represent the number of parameters
(Gaussian components) in A L and A!3 respectively.

� Let us hypothesize a new cluster having data ? �
? L � ? 3 with a PDF modeled by a GMM parameter-
ized by A with � L N � 3 number of Gaussian compo-
nents.

Given these conditions, a pair of clusters (? L and ? 3)
becomes a candidate for merging if the following is true:

��� " - /K? : A�; I ��� " - /K? L : A L ;GN ��� " - /K? 3�: A!3�; (3)

This is similar to BIC, except that the number of param-
eters in A is equal to the sum of the number of parameters
in A L and A!3 . By keeping the number of parameters con-
stant from one iteration to the next, we have eliminated the
need for the penalty term (B �
 F � log H). We have verified

empirically that selecting candidates for merging using this
criterion always results in an increase in the objective func-
tion associated with (1).

After every new segmentation-training step, we look for
the best pair satisfying (3). In the case of many such candi-
date pairs, we choose the pair that maximizes the difference
of the terms of left hand side and right hand side of (3). The
merging is stopped when there are no suitable candidates
satisfying (3).

Thus we now have a way to merge clusters without the
use of any tunable parameters. Additionally, this method
provides a fully automatic stopping criterion. However, there
are a few “hyper-parameters” in this algorithm, namely the
initial number of clusters (�), the initial number of Gaus-
sian components in each cluster (�), the type of initializa-
tion used to create the clusters, and the set of acoustic fea-
tures used to represent the signal. In Section 3 we present
the results of several experiments in which we explore the
effects of varying the hyper-parameters.

3. EXPERIMENTS AND RESULTS

3.1. Evaluation Criterion

Evaluation of the algorithm was done using NIST’s RT-03S
scoring script (SpkrSegEval-v21.pl). This calculates
a time-based score (error) that is the percentage of speaker
time not attributed correctly to a reference speaker. Thus, a
score of �+� � would represent a perfect segmentation. Also, it
is possible to have an error � D ���<� � because of the inclusion
of false alarms. The error is calculated as:

�
	�	
��	 ���
�����

��������� 6�� � � � L"! � �$#�%'& � 6�� , � �)(*� � 6��+�', �.-)/ #'#�% -+0 � 6��+�)1
��

���2�
��������� 63� � �$#�%'& � 6���1 (4)

where the speech data is divided into contiguous segments
whose boundaries are defined by all speaker change points
(including both reference and hypothesized speakers) and
where, for each segment 4 :576 	 / 4�; = the duration of 4H � 438 / 4�; = the # of reference speakers speaking in 4H 639�6 / 4�; = the # of system speakers speaking in 4H;:�< ��� 4 : 8 / 4>=@?<; = the # of reference speakers speaking in 4

for whom their matching (mapped) system speakers are
also speaking in 4 .

3.2. Data

The algorithm was tested on 3 different sets of data released
by NIST, namely dryrun(data used for preliminary experi-
ments), devdata (data used as development data) and eval-
data (data used for final RT03s evaluation). dryrun consists

of 6 10-minutes audio segments, and devdata and evaldata
consist of 3 30-minutes audio segments each.

Note: not all the experiments were carried out on 3
datasets. We experimented with different hyper-parameters
at different stages on different datasets. Also, the results
are shown for the complete datasets to avoid presenting too
many numbers.

3.3. Baseline System

We used default values shown in Table 1 for all the hyper-
parameters in each of the experiments listed below, unless
otherwise noted. The performance of the baseline system is
shown in Table 2.

Initialization Uniform
Initial number of Gaussians (�) 5
Initial number of clusters (�) 15(dryrun)

40(devdata), 40 (evaldata)
Minimum duration (�) 2 seconds
Feature type LPC Cepstrum (LPCC)
Feature vector frequency 100 Hz

Table 1. Default values for the “hyper-parameters”

Table 2 presents results of the baseline system for the
three datasets.

Dataset Error
dryrun 28.85%
devdata 26.11%
evaldata 21.40%

Table 2. Baseline results for the three datasets.

The results on evaldata were submitted as part of RT-
03s (http://www.nist.gov/ speech/tests/rt/rt2003/spring) eval-
uation and the performance of the system was highly com-
petitive compared to other submitted systems. However, as
seen in table 1, there are a number of hyper-parameters,
which can be seen of as ’tunable’ parameters. We verified
with the help of a series of experiments that the algorithm
is not highly sensitive to any of these parameters. This to-
gether with experiments on different datasets show the ro-
bustness of the algorithm. These experiments are summa-
rized in next subsections.

3.4. Initialization

As mentioned earlier, two different initialization were tried
on dryrun dataset. Table 3 presents results for this experi-
ment:

We realized that because of the minimum duration con-
straints and an iterative EM algorithm, the initialization does

Initialization Error
Uniform 28.85%
K-means 29.56%

Table 3. Results for two different initialization schemes on dryrun
dataset

not make a big difference. Thus, for the subsequent experi-
ments, we tried only uniform initialization.

3.5. Experiments with different acoustic features

Table 4 presents the results of using different acoustic fea-
tures in the segmentation. In addition to the default 12-
LPCC features, we tried 19-Mel-frequency cepstral coeffi-
cients (MFCC).

?�� � � 4>= � � = �
� 6 	 =���� - = �
	�	
��	

dryrun LPCC 28.85%
dryrun MFCC 29.22%
devdata LPCC 26.11%
devdata MFCC 25.13%
evaldata LPCC 21.40%
evaldata MFCC 20.79%

Table 4. Results obtained with alternate features.

As expected, the performance of LPCC and MFCC fea-
tures in all the cases are comparable. However, while an-
alyzing performance on individual files of each dataset, it
was noticed that MFCCs work better in case of noisy con-
ditions, while LPCCs work better during clean speech.

3.6. Experiments with minimum duration

Table 5 presents the results obtained by varying the mini-
mum duration of each cluster. These experiments were also
carried out on devdata.

Minimum Duration (secs) Error
2 26.11%
3 26.55%
4 26.18%

Table 5. Results obtained with different minimum durations

Results in table 5 show that the algorithm is not sensitive
to the minimum duration that we impose. However, it also
depends on the average duration of the speaker segments. If
there are many short segments, a large minimum duration
may hurt. Thus, if we have an a priori information about
this, it can be used in the algorithm.

3.7. Experiments with the number of initial clusters �
We have verified experimentally that this algorithm is not
overly sensitive to the initial number of clusters, as long as
we start with a reasonably large number. Generally, we have
observed that a number of clusters greater than the number
of minutes of data is sufficient.

Tables 6 shows results for varying the number of initial
clusters.

dataset � Error
dryrun 15 28.85%
dryrun 30 28.35%
devdata 30 29.28%
devdata 40 26.11%
devdata 50 25.80%

Table 6. Results obtained by varying the number of initial clusters.

Again, results in Table 6 show that the algorithm works
well as long as we start from large enough number of clus-
ters. A simple trick is to choose a number greater than the
number of minutes of audio data. However, it should be
noted that a large number of initial clusters results into a
higher computational complexity.

3.8. Experiments with the number of initial Gaussians
(�)

Note that we use a small number of Gaussians compared
to numbers used in the speaker recognition framework. In
the speaker recognition framework, the goal is to make a
robust model for each speaker, and hence a large number
of Gaussians are employed. However, the goal here is to
make discriminative models for the speakers in a single au-
dio stream. Thus, we need fewer Gaussian components to
estimate the PDFs of each cluster. Generally, we choose five
for this purpose, but we verified in our experiments that the
performance of the algorithm does not appear to be overly
sensitive to this choice. Table 7 presents the results of exper-
iments in which we varied the number of Gaussian compo-
nents in each initial cluster while experimenting on devdata.

� Error
5 26.11%

10 27.44%

Table 7. Results obtained for different number of Gaussians (�) for
devdata

From the results in Table 7, we see that the algorithm is
not very sensitive to the number of Gaussians employed for
each cluster in the beginning. Thus, for all our experiments
(including those submitted to NIST), we used 5 Gaussians.

4. CONCLUSION

In this paper, we presented a speaker clustering algorithm
and showed its robustness to different data conditions with
the help of numerous experiments. The algorithm is basi-
cally an HMM based agglomerative clustering framework
where the clusters are merged in successive iterations to fi-
nally reach the optimal number of clusters. A merging cri-
terion is defined for this purpose which always results in
an increase in a likelihood based objective function. The
important property of this algorithm is that it does not rely
on an adjustable threshold/parameter, which not only makes
the algorithm robust but also eliminates the need for a de-
velopment dataset.

5. REFERENCES

[1] S. S. Chen and P. S. Gopalakrishnan, “Speaker, environ-
ment and channel change detection and clustering via
the Bayesian information criterion,” Tech. Rep., IBM
T.J. Watson Research Center, 1998.

[2] M. Sugiyama, J. Murakami, and H. Watanabe, “Speech
segmentation and clustering based on speaker features,”
IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 2, pp. 395–398, 1993.

[3] A. Solomonoff, A. Mielke, M. Schmidt, and H. Gish,
“Clustering speakers by their voices,” IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, pp. 757–760, 1998.

[4] M . A. Siegler, U. Jain, B. Raj, and R. M. Stern, “Au-
tomatic segmentation, classification and clustering of
broadcast news audio,” DARPA Speech Recognition
Workshop, Chantilly, pp. 97–99, Feb 1997.

[5] T Hain, S. E. Johnson, A. Turek, P. C. Woodland,
and S. J. Young, “Segment generation and cluster-
ing in the HTK broadcast news transcription system,”
Proc. DARPA Broadcast News Transcription and Un-
derstanding Workshop, pp. 133–137, 1998.

