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Abstract

Speaker identification under noisy conditions is one of the challenging topics in the field of

speech processing applications. Motivated by the fact that the neural responses are robust

against noise, this paper proposes a new speaker identification system using 2-D neuro-

grams constructed from the responses of a physiologically-based computational model of

the auditory periphery. The responses of auditory-nerve fibers for a wide range of character-

istic frequency were simulated to speech signals to construct neurograms. The neurogram

coefficients were trained using the well-known Gaussian mixture model-universal back-

ground model classification technique to generate an identity model for each speaker. In

this study, three text-independent and one text-dependent speaker databases were

employed to test the identification performance of the proposed method. Also, the robust-

ness of the proposed method was investigated using speech signals distorted by three

types of noise such as the white Gaussian, pink, and street noises with different signal-to-

noise ratios. The identification results of the proposed neural-response-based method were

compared to the performances of the traditional speaker identification methods using fea-

tures such as the Mel-frequency cepstral coefficients, Gamma-tone frequency cepstral

coefficients and frequency domain linear prediction. Although the classification accuracy

achieved by the proposed method was comparable to the performance of those traditional

techniques in quiet, the new feature was found to provide lower error rates of classification

under noisy environments.

Introduction

Speaker recognition is a biometric modality that uses underlying speech information to deter-

mine the identity of the speaker. Speaker recognition is employed for a wide range of applica-

tions such as in banking over a telephone network, voice dialing, voice mail, database access

services, telephone shopping, security control for confidential information, remote access to

computers, forensic tests, and information and reservation services. The application of speaker
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recognition can be divided into two parts: speaker identification and speaker verification.

Speaker identification (SI) is to determine the identity of an unknown speaker based on his/her

speech utterances whereas speaker verification is to use the voice to verify a certain identity

claimed by the speaker [1]. Recognition of speakers is done based on text-dependent and text-

independent speech samples. The text-dependent system requires the speakers saying exactly

the same utterance (word, phrase, or sentence) whereas the identification without constraints

on the speech content represents the text-independent identification system. A substantial

research has been done on speaker recognition under diverse background conditions over the

last few decades: from vector quantization (VQ)-based SI system [2] to adapted Gaussian Mix-

ture Model (GMM)-based system [3], and very recently speech factor analysis-based i-vector

frameworks [4]. In general, the features from the speech signal for speaker recognition are

extracted by modeling the human voice production system (such as linear prediction cepstral

coefficient, LPCC [5]) or from the responses of human auditory system. Human listeners are

capable of recognizing speakers in noisy environments, while most of the traditional speaker

recognition systems do not perform well in the presence of noise [6]. Unlike traditional meth-

ods in which features are extracted from the properties of the acoustic signal, this study pro-

poses a speaker identification technique using neural responses from a physiologically-based

computational model of the auditory periphery.

For speaker recognition, it is important to extract features from each frame which can cap-

ture the speaker-specific characteristics. The short-time features such as the Mel-frequency

cepstral coefficients (MFCC) and perceptual linear predictive (PLP) coefficients are widely

used for speaker recognition algorithms. The traditional MFCC-based system achieved almost

100% classification accuracy in clean condition [7, 8]. However, the performance of these

acoustic-property-based methods degrades substantially for speech signals under channel vari-

ations induced by the handset or microphones as well as for environmental or background dis-

tortions [6]. In recent years, efforts have been made aiming to extract features by removing the

noise from the speaker characteristic information directly such as cepstral mean normalization

[9], RASTA processing [10], warping methods [11], and robust parameterizations [12]. How-

ever, these methods have limited effectiveness against non-linear channel effects and non-sta-

tionary additive distortions. Recently, the missing data approach has been employed to design

a robust speaker identification system [13] which has a conceptual relationship with the

human auditory system and its ability to process corrupted speech signals [14]. Conceptually,

missing data processing is based on the idea that the noise-induced degradation can be reduced

by identifying the speech and noise dominant parts of the corrupted speech in the time-fre-

quency (T-F) representation, and thus the recognition perfromance could be substantially

improved.

In 2010, Li and Huang proposed a new front-end speech feature, cochlear filter cepstral

coefficient (CFCC) [15], that has been extracted by emulating the human peripheral hearing

system and is shown to achieve an improved perfromance in noise robustness under mis-

matched training and testing conditions. However, the auditory filters used in this study are

linear, and some of the parameters of this method are database-dependent. Recently, another

feature, frequency domain linear prediction (FDLP) coefficient [16], has been proposed using

2-D autoregressive (AR) models on the high energy peaks of the speech signal in the T-F

domain. It was reported that FDLP feature provided ~30% improvements in speaker recogni-

tion performance under noisy conditions compared to using the baseline MFCC feature. Also,

Zhao et al. [17] has reported a substantial improvement in speaker identification performance

using Gammatone frequency cepstral coefficients (GFCCs) when a computational auditory

scene analysis technique is employed to produce a binary T-F mask, especially under noisy

conditions.

Neurogram-Based Speaker Identification System

PLOSONE | DOI:10.1371/journal.pone.0158520 July 8, 2016 2 / 21



In the present study, the proposed feature was derived directly from the responses of a

computational model of the auditory periphery to speech signals. The proposed method differs

from all previous auditory-model-based methods in that a more complete and physiologically-

based model of the auditory periphery is employed in this study [18]. The auditory-nerve (AN)

model developed by Zilany and colleagues has been extensively validated against a wide range

of physiological recordings from the mammalian peripheral auditory system. The model can

successfully replicate most of the nonlinear phenomena observed at different level of the audi-

tory periphery (e.g., in the cochlea, inner-hair-cell (IHC), IHC-AN synapse, and AN fibers).

These phenomena include the nonlinear tuning, compression, two-tone suppression, level-

dependent rate and phase responses, shift in the best frequency with level, adaptation, and sev-

eral high-level effects [18, 19, 20]. The model responses have been tested to both simple (e.g.,

tone) and complex stimuli (e.g., speech) for a wide range of frequency and intensity spanning

the dynamic range of hearing. Thus the model is ready to be used for exploring the neural

mechanisms (i.e., feature representation) for robust identification in different tasks including

speaker recognition under diverse background conditions.

It is well-known that the features derived directly from the acoustic signals are very sensitive

to noise, and thus the performance of the speaker recognition systems under noisy conditions

declines sharply. On the other hand, neural responses are robust against noise due to the

phase-locking property of the neuron [21], i.e., the neurons fire preferentially at a certain phase

of the input stimulus (up to ~ 4 kHz at the level of the AN), even when noise is added to the

acoustic signal. Human behavioral responses are also robust under diverse background noise

conditions. Phase-locking also enables to extract inter-aural time differences down to a few

microseconds for sound localization and may also be crucial in pitch perception, which is the

salient feature of many speech vocalizations. It has also been reported that as the sound level

increases, the formants of a vowel sound dominate the responses of AN fibers over a larger

characteristic frequency (CF) region, and the responses of fibers with CFs near a formant fre-

quency are captured by the largest harmonic near the formant, meaning that they show phase

locking only to that harmonic [21]. It is this capture of responses by the formants, termed as

the synchrony capture, that makes temporal representations of spectral shape very robust in

the neural responses [22]. In response to a vowel sound at higher presentation levels, AN

responses show the loss of synchrony capture by the second formant whereas synchrony to the

first formant increases [23]. The current study was motivated by the fact that the ANmodel

used in this study captures all of these observed phenomena in the physiological responses of

the AN fibers [19, 24]. These properties of the model are expected to improve the proposed sys-

tem’s robustness to noise.

Several speech intelligibility metrics have been proposed based on the responses of this

model such as neurogram similarity index [25] and neurogram orthogonal polynomial mea-

sure (NOPM) [26]. The intelligibility scores predicted by NSIM and NOPM showed a good

regression with the subjective scores for listeners with normal hearing and also for people with

hearing loss under diverse background noise conditions such as with white Gaussian noise,

speech-shaped noise and other environmental noises. Motivated by these results, a text-depen-

dent speaker identification and verification systems were previously developed based on the

responses of the model of the AN [27, 28], and a substantial improvement in performance was

achieved over conventional systems.

The input to the ANmodel is the acoustic signal in the time domain, and the output is the

response of an AN fiber with a particular characteristic frequency (CF) in terms of spike train

sequence (i.e., discharge timings). By simulating the responses of a range of CFs, the 2D time-

frequency representation, referred to as neurogram, is constructed. In this study, the neuro-

gram coefficients were used as feature to determine the identity of unknown speakers. It is

Neurogram-Based Speaker Identification System
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expected that the neurogram feature encode sufficient and important information about the

speaker that would be crucial for recognition. In order to benchmark against some recently

reported features, the proposed neural-feature-based system’s performance was compared to

the performances of the conventional MFCC-, GFCC- and FDLP-based systems. Since the

focus of this study was to evaluate the effectiveness of the feature in speaker identification

(especially under noisy conditions), no effort was made to add any additional processing step

(such as de-noising techniques) to improve the systems’ performance.

Methodology

Fig 1 shows the block diagram of the proposed neural-response-based speaker identification

system. In the training stage, the processed speech signal was applied to the model of the audi-

tory nerve (AN) to generate the neurogram. The well-known Gaussian mixture model-univer-

sal background model (GMM-UBM) classifier was used to train the neurogram coefficients for

each speaker, and the resulting model was saved for identification. In the testing stage, the

extracted features of a test signal (speech of an unknown speaker) were used as an input to

each of the speakers’model. The model that provided maximum probability measure was iden-

tified as the speaker of the test sample. The performance of the proposed method was evaluated

in clean and under noisy conditions. The following subsections briefly describe the computa-

tional procedure of each step of the proposed method.

Pre-Processing

As a pre-processing step, the voice activity detector (VAD) algorithm [29] was used to remove

the silence periods from speech signals. This algorithm also detected the unvoiced signal (espe-

cially with very low energies) indices of the input speech signal and removed those to provide

voiced signal output.

Fig 1. Block diagram of the proposed speaker identification system.

doi:10.1371/journal.pone.0158520.g001
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Model of the Auditory Nerve (AN)

The computational AN model developed by Zilany and colleagues [19] serves as a useful tool

for understanding the underlying mechanical and physiological processes in the peripheral

auditory system. The schematic block diagram of this AN model is provided in Fig 1 in [19].

Each block of the AN model represents a phenomenological description of the major func-

tional components of the auditory periphery from the middle ear to the auditory nerve. The

input to the model is an instantaneous pressure waveform in Pascal, and the output is the spike

times. The first stage of the model filters the input signal to simulate the response properties of

the middle ear. After the middle ear module, the model splits into three paths. A narrowband

component 1 (C1) filter mimics the response properties of the basilar membrane (BM). The

feed-forward control-path regulates the gain and bandwidth of the C1 filter to account for

level-dependent properties associated with the outer hair cells (OHCs) such as compression,

suppression, and nonlinear phase responses in the cochlea. The C1 and component 2 (C2) fil-

ters in the signal path interact to account for the effects associated with the AN responses at

high sound levels such as the peak splitting and the C1/C2 transition [30]. The third stage sim-

ulates inner-hair-cell (IHC) mechanisms with a static nonlinearity followed by a fifth-order

low-pass filter. The IHC output drives the model for IHC-AN synapse which includes expo-

nential as well as power-law adaptations [20]. The model synapse output represents the proba-

bility of instantaneous discharge rate of AN fibers as a function of time which was used in this

study to construct neurograms. Finally, the discharge times are produced by a renewal process

that includes refractory effects.

In light of the current debate on human cochlear tuning [31, 32], some parameters of the

most recent version of this model were adjusted to better match human anatomy and physiol-

ogy. These modifications included changes to the middle-ear filter transfer function [33], the

basilar membrane (BM) distance-frequency map [34] that determines the frequency-offset of

the control path, and the BM frequency-tuning as a function of characteristic frequency [35,

36]. The sharpness of tuning was validated in a way that is consistent with the methodologies

utilized in the literature to obtain the estimates from human subjects. Furthermore, changes in

the model’s cochlear response delay because of the modified tuning were shown to be in agree-

ment with estimates of cochlear delays in human subjects [37].

In this study, the neural responses were simulated to speech signals for 25 CFs logarithmi-

cally spaced between 250 and 4000 Hz. The responses of higher CFs (> 4 kHz) were not

included in the proposed method, because the model synapse output becomes dominated by

the dc value (constant) and the synchrony goes to a very lower value. The speech signal

(original or noisy) was re-sampled to 100 kHz to apply as an input to the AN model. It is to

be noted that the high sampling rate does not produce any frequency component beyond

half of the sampling frequency of the original input signal, but it was required in order to

faithfully replicate the frequency response properties of different parts of the AN model [20,

38]. The output at each AN fiber represents the instantaeous discharge rates in response to

the input acoustic signal. For each CF, three types of spontaneous rates (SR) of fibers (high,

medium and low) were considered in this study. Consistent with the distribution of SR of

AN fibers [39], the maximum weight (0.6) was given to high SR fibers, and the weight given

to medium and low SR fibers was 0.2 each. The neural responses for each CF were then

binned with a 100 μs bin-width, and then a Hamming window of 42 ms was applied with a

60% overlap among adjacent frames to smooth the neural responses (i.e., the effective frame

length was 25.2 ms). The mean value of each frame was used as a feature in the proposed

method.

Neurogram-Based Speaker Identification System
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Neurogram and the Feature Dimension

Neurogram is a 2-D time-frequency representation which was constructed by combining the

neural responses (i.e., feature) from 25 AN fibers. Fig 2 shows an example spectrogram and

neurogram plots in response to a typical speech signal taken from the YOHO dataset. In this

study, the neurogram coefficients were extracted for each speaker to be used as a feature for

identification. The average size of the neurogram over three databases (considering all

speech signals) was 190 × 25, where the number of frames was 190, and the number of AN

fibers was 25.

In order to illustrate the effects of noise on the neurogram responses, Fig 3A shows the neu-

rogram plot for a clean speech signal taken from the YOHO dataset, and the neurograms for

the same speech signal distorted by white Gaussian noise with SNRs of 10 and 0 dB are shown

in Fig 3B and 3C, respectively. It was observed that as the noise level increased, the higher CF

responses (above 12) were distorted more severely by noise while lower CF responses (1–12

CFs) were less affected. The effect of noise was quantified by the correlation coefficients (Pear-

son product-moments) between the neural responses of the clean and the corresponding noisy

responses for each CF, and the result is shown in Fig 4. Two levels of noise were considered

such as the 0 and 15 dB SNR. The mean and standard deviation of correlation coefficients for

Fig 2. Time-frequency representation of the speech signal. (A) a typical speech waveform taken from the
YOHO database (to produce spectrogram and neurogram of that signal), (B) the corresponding spectrogram
responses, and (C) the respective neurogram responses.

doi:10.1371/journal.pone.0158520.g002
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five speech samples taken from the YOHO database are shown as a function CF. For clarity,

50% standard deviation values are shown. It is obvious that the lower CFs showed the higher

correlation measures for both levels of noise and the responses of higher CFs were more dis-

torted by noise. In other words, the neural responses of the first 12 CFs (up to ~1 kHz) were

more robust against noise compared to the responses of other higher-CF fibers. This is also

consistent with the observation that even with moderate amounts of noise, the low-energy

regions of the speech signal (i.e., high frequency information such as consonants) are substan-

tially modified and cause acoustic mismatch with the clean training data, whereas the high-

energy regions (such as the low frequency voiced part of the speech signal) are relatively less

affected by noise. Thus, a robust feature extraction scheme must rely on the high energy

regions in the spectro-temporal plane. In this study, considering the effects of noise on the neu-

ral responses, two different simulation conditions were suggested: (i) using responses of only

lower 12 CFs (~<1 kHz) and (ii) using responses of all 25 CFs. It is to be noted that the

Fig 3. Illustration of the effects of noise on the neural responses.Neurogram responses are shown for a
typical speech signal taken from the YOHO dataset. The neurogram to the clean speech signal is shown in
the panel A, and the two neurograms in response to speech signal distorted by two levels of white Gaussian
noise are shown in panels B (10 dB SNR) and C (0 dB SNR).

doi:10.1371/journal.pone.0158520.g003
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correlation measure of neural responses for 23–25 CFs to street noise (panel C) was higher

compared to those of other noise types. This was due to the fact that the street noise used in

this study was band-limited to ~3.7 kHz, and thus the neural responses to clean and noisy sig-

nals were highly correlated for CFs beyond that range.

In other words, responses of the first 12 CFs (250 Hz–<1 kHz) should be used for both

training and testing under noisy conditions, whereas the responses of all 25 CFs (250 Hz– 4

kHz) should be employed for SI in quiet. So, the dimension of the features used for training

and testing in the proposed method would be n by 12 or 25, where n is the number of frames.

On the other hand, the number of features in the alternative existing methods was substantially

higher, which is described in the next section.

Fig 4. Illustration of the effects of noise on the neural responses.Neural responses were simulated to
five clean speech signals taken from the YOHO database and to the corresponding noisy signals for SNRs of
0 and 15 dB with three types of noise: white Gaussian noise, pink and street noise. The correlation
coefficients were calculated between the clean and the corresponding noisy signals for each CF, and the
results are shown for 25 CFs (up to a phase-locking range of ~4 kHz). Panel A shows the mean and standard
deviation of the correlation coefficients calculated for white Gaussian noise, and the corresponding results for
pink and street noise are shown in panel B and C, respectively.

doi:10.1371/journal.pone.0158520.g004
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Existing Features

In this study, the performance of the proposed method was compared to the identification

results of three traditional baseline feature-based methods (MFCC, FDLP and GFCC). This

section presents a short description of each of the baseline method. To obtain a fair comparison

of the performance of different front-end features, only the front-end feature extraction was

varied and the configuration of the back-end of the system (i.e., the classifier GMM-UBM)

remained the same in all experiments throughout this paper. Also, the performances of all

methods were evaluated for two cases: using feature from the narrowband (250 Hz to ~ 1 kHz)

and wide-band (250 Hz to ~ 4 kHz) frequencies.

MFCC. Mel-frequency cepstral coefficient (MFCC) is a short-time cepstral representation

of a speech which is widely used as a feature in the field of speech processing applications such

as voice recognition [40], speaker recognition [41], speech emotion detection [42], and gender

classification [42]. In this study, the RASTAMAT toolbox [43] was used to extract MFCC fea-

tures from each speech signal. A Hamming window of length 25 ms (with an overlap of 60%

among adjacent frames) was used for dividing the speech signal into frames. The log-energy-

based 39 MFCC coefficients were then computed for each frame. This set of coefficients con-

sists of three groups: Ceps (Mel-frequency cepstral coefficients), Del (derivatives of Ceps) and

Ddel (derivatives of Del) with13 features for each group.

GFCC. The Gammatone filter cepstral coefficient (GFCC) is an auditory-based feature

used in speaker recognition. GFCC features can be computed by taking the discrete cosine

transform (DCT) of the output of Gammatone filter as proposed by Shao et. al. [44]. According

to the physiological observation, the Gammatone filter-bank resembles more to the cochlear

filter-bank [45]. The GFCC-based speaker identification is found to achieve a very robust per-

formance, as presented in [17].

In this study, the procedure provided by Shao et al. [44] was used to compute GFCC coeffi-

cients for each speech frame. A fourth-order 64-channels Gammatone filter-bank was used to

extract GFCC features. Instead of log operation which is commonly used in MFCC calculation,

the cubic root was applied to extract GFCC features. According to the observation of [17],

most information of 64-dimensional Gammatone features remains in the lower 23-order

GFCC coefficients due to energy compaction property of the DCT used in the method. Since

the zeroth cepstral coefficient was more susceptible to contamination of noise, 22-dimensional

GFCC features were used in the present study to simulate the result. The details of the method

can be found in [44].

FDLP. Ganapathy and colleagues [16] proposed an auto-regressive-model-based fre-

quency domain linear prediction (FDLP) technique to extract features from the speech sig-

nal. FDLP feature was designed based on high-energy peaks in the T-F domain. The

derivation of this feature was done in several steps. Initially, the sub-band Hilbert envelopes

was derived using frequency domain linear prediction auto-regressive (AR) model. The

FDLP envelopes in each sub-band were then integrated in short-term frames (a 25-ms frame

size with a shift of 10 ms). These all-pole envelopes from each sub-band were converted to

short-term energy estimates. Those energy values across various sub-bands were used as a

sampled power spectral estimate for the second AR model. The output prediction coeffi-

cients from the second AR model were converted to cepstral coefficients and used for speaker

recognition. This feature-based speaker identification method showed improved perfor-

mance compared to the results from the baseline MFCC features [16]. In this study, thirty-

nine (39) FDLP features were computed from each speech frame. The details of the method

can be found in [16].

Neurogram-Based Speaker Identification System
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Speech Dataset

Speech signals from three well-known text-independent databases and one text-dependent

database were used in this study to evaluate the performance of the proposed system in SI task.

The speech texts were extracted from the TIMIT, TIDIGT, YOHO and UM databases, and the

corresponding responses were simulated to extract features from the neural responses. A brief

description of each dataset is provided in this section.

YOHO. YOHO is a large scale high quality dataset frequently used for the speaker identifi-

cation and verification systems [46], and this was collected by the ITT (International Tele-

phone & Telegraph) technical institute in 1989 under the contract of US Government [46].

The sampling rate of this dataset was 8 kHz. In this study, 137 speakers (106 males and 31

females) out of 138 speakers in the database were considered (data for one speaker was cor-

rupted and could not be retrieved). Each speaker has four sets of enrollment session with 24

independent utterances (with three two-digits number, e.g., 27-82-39, pronunciation twenty-

seven eighty-two thirty-nine) for each enrollment session. For each speaker, eighteen (18)

speech samples out of 24 were randomly selected for training, and the rest of the 6 samples

were used for testing.

TIMIT. TIMIT (Texas Instrument-Massachusetts Institute of Technology) dataset was

frequently used for the general linguistic research and also for the text-independent speaker

recognition system [47]. TIMIT database is the collection of speech samples from 630 speakers

(438 males and 192 females) with eight major American English dialects having 10 different

phonetically rich sentences for each speaker. The sampling rate of the TIMIT dataset was 16

kHz. In this study, 100 speakers out of 630 speakers were randomly selected from different

regions and dialect combinations. From each speaker, 8 samples were used for training and the

remaining 2 samples were used for testing.

TIDIGIT. Texas Instruments, Inc. (TI) designed and collected speech data corpus to

develop and evaluate the text-independent recognition system for connected digit sequences

[48]. The speech signal was sampled at a rate of 20 kHz. There are 55 male speakers and 57

female speakers with 77 digit-utterance samples for each speaker. Speech signals of 40 speakers

(20 males and 20 females) out of 112 were randomly chosen in this study. Fifty speech samples

were selected for the speaker modeling (training), and the remaining 27 samples for each

speaker were used to test the proposed and the existing systems under different noisy

conditions.

Dataset: UM. Universiti Malaya (UM) dataset is a text-dependent dataset and is an asset

of the University of Malaya, Kuala Lumpur, Malaysia. This dataset has been collected for devel-

oping and testing the text-dependent speaker recognition systems [27, 28]. In this dataset,

speech samples have been collected from 39 Malaysian native speakers (25 males and 14

females) aged between 22 and 24 years. The speech signals were recorded with a sampling rate

of 8 kHz in a sound-proof booth which was specially designed for speech recording. Each

speaker was asked to say “Universiti Malaya” for 10 times in different recording sessions. In

this study, 7 speech samples out of 10 were selected randomly for training and the remaining

three speech signals were used to test the performance of the proposed method.

GMM-UBM as a Classifier

The most successful statistical classifier that can adopt the speaker modeling paradigm is the

Gaussian mixture model (GMM) [49]. The component distributions of GMM classifier can

represent individual speaker’s phonetic class distribution and provide smooth transition

through mixtures by weighting function which makes the system text-independent. The

GMM-based modeling in SI system becomes successful when the expectation maximization

Neurogram-Based Speaker Identification System
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(EM) [50] algorithm is applied in GMM. GMM parameters are iteratively refined by the EM

algorithm that monotonically increases the likelihood of the estimated model for the observed

feature vectors.

Sometimes GMMmodels all speakers except the test speaker, and it is referred to as a uni-

versal background model (UBM) and is mostly applied for speaker verification [3]. The GMM

speaker modeling is adapted with the UBM-based trained each speakers' data to make the sys-

tem faster, stable, and having better performances. The advantage of EM is that it can estimate

the necessary GMM parameters from a little amount of training data, and the estimated

parameters can be adapted to the new data by maximum a-posteriori (MAP) adaptation [51].

In this study, a GMM-UBM classifier with 128 mixture components was used to train the

proposed features to generate a model for each speaker. The same classifier with the same num-

ber of mixture components was also used to train the MFCC-, GFCC- and FDLP-based SI sys-

tems for comparison.

Results and Evaluations

In this section, the identification results achieved by the proposed SI system are reported. The

proposed system was tested both in clean and mismatched conditions. The performance of the

proposed method was also compared to the results using the baseline features such as the

MFCC, GFCC and FDLP coefficients.

Experimental Setup

The neural responses were simulated to construct neurograms in response to speech signals

from the databases. The overall sound pressure level (SPL) of each speech signal was normal-

ized to 70 dB before applying to the ANmodel. Two cases were considered for the proposed

method: using the responses of the first 12 CFs and all (25) CFs for both training and testing

phases of the SI system, and the results are shown in Figs 5–8.

In the training stage, generally 70% to 80% of clean speech samples for each speaker were

used for GMM-UBM speaker modeling. In the testing stage, the rest of the 20% to 30% of

speech samples for each speaker was used directly or corrupted by three types of noise (white

Gaussian noise, pink noise, and street noise) with a range of SNRs. The performance of the pro-

posed system was evaluated for three times (by randomly selecting the training and testing

samples) for each condition, and it was found that the SI score varied less than 1%.

Results

Fig 5 shows the text-independent speaker identification results for the YOHO database using

the proposed neural-response-based and traditional methods for both narrowband and wide-

band cases. In general, the performance of the proposed method using the responses from the

first 12 CFs (narrowband) was better than that of using responses from 25 CFs (wideband). It

is obvious that the performance of the proposed method was comparable to that of other meth-

ods in quiet (clean) condition for both narrowband and wideband cases. However, the pro-

posed method showed better identification accuracy compared to other methods under all

noisy conditions at low levels of SNR (<0 dB) for narrowband case, as shown in the left panels

of Fig 5. On the other hand, GFCC-based method showed better performances under pink and

white Gaussian noises for wideband case. The performance of the methods using the baseline

features of MFCC and FDLP coefficients declined substantially when noise was added to the

clean signal. However, the GFCC feature was found to be superior among the existing features

for speaker identification task. Also for wideband case, GFCC resulted better performance

compared to the proposed feature when the SNR was higher than 0 dB, as shown in the right

Neurogram-Based Speaker Identification System
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panels of Fig 5. For wideband case, FDLP-based method showed the highest performance

under street noise condition for SNRs higher than 0 dB, as shown in the lower right panel of

Fig 5.

The speaker identification performance of the proposed and several existing methods are

shown in Fig 6 for the text-independent TIMIT database. In general, the performance of all

methods in quiet was better for wideband case, and the narrowband case was preferable under

noisy conditions, especially at lower SNRs. GFCC-based method showed an overall better

result for this database. For narrowband case, the performance of the proposed method was

comparable to the GFCC-based performance for all types of noise, whereas the MFCC- and

FDLP-based methods showed poorer performances at all SNRs studied, as shown in the left

panels of Fig 6. However, for wideband case, the proposed method showed poorer results, espe-

cially for pink and street noises at moderate levels of SNR (10 and 15 dB). Again, the perfor-

mance of the existing methods using MFCC and FDLP coefficients for wideband case declined

Fig 5. Speaker identification performance of the proposed and existing methods using YOHO database. Two ranges of frequency
bands are considered. Left panels: narrowband in which features corresponding to ~<1 kHz are used for SI evaluation; right panels:
wideband in which features corresponding to the full range of frequencies (up to ~4 kHz) are considered. Results are shown as a function of
SNR with three different types of noise (A: white Gaussian noise, B: pink noise, and C: street noise). Speech samples from 137 speakers
were used for evaluation and comparison of the performance of different methods.

doi:10.1371/journal.pone.0158520.g005
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substantially under noisy conditions, although FDLP-based system showed better performance

under street noise condition.

The TIDIGIT dataset speech materials were used to test the SI performance of the proposed

and the existing methods, and the results are shown for both narrowband (left panels) and

wideband (right panels) cases in Fig 7. For the narrowband case, the GFCC-based system

showed an overall better performance irrespective of noise types and SNR levels, and the pro-

posed method performance was comparable to those of GFCC-based results. Although both

MFCC- and FDLP-based methods performed poorly compared to that of GFCC-based

method, FDLP-based method showed a relatively better performance than that of MFCCC-

based method. For the wideband case, the proposed method outperformed all baseline perfor-

mances under white Gaussian noise, whereas GFCC-based performances were better under

pink and street noises at moderate levels of SNR.

Fig 6. Speaker identification performance of the proposed and existing methods using the TIMIT database. Left panels: Performance
is shown for features corresponding to frequencies ~<1 kHz; right panels: features corresponding to the full range of frequencies (up to ~4
kHz) are considered for SI evaluation. Results are shown as a function of SNR with three different types of noise (A: white Gaussian noise, B:
pink noise, and C: street noise). Speech samples from 100 speakers were used for evaluation and comparison of the performance of different
methods.

doi:10.1371/journal.pone.0158520.g006
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For the text-dependent UM database, the overall performance of all methods was higher

compared to the corresponding results for the text-independent cases, which is shown in Fig 8.

Also, FDLP-based method for both narrowband and wideband cases showed a better perfor-

mance compared to the identification accuracy of other methods for different types of noise.

For narrowband case, the performance of the proposed system was better than the results of

GFCC- and MFCC-based methods for all types of noises, whereas the proposed method per-

formed poorly for wideband case. It is noteworthy that GFCC-based method showed an overall

better performance for text-independent databases, whereas for text-dependent SI system,

GFCC-based method performed poorly.

Discussions

This study investigated the implications of the proposed neural-response-based feature in the

speaker identification task both in quiet and under noisy conditions. The neural features were

Fig 7. Speaker identification performance of the proposed and existing methods using the TIDIGIT database. Left panels show the SI
performances using the features extracted from the lower frequencies (narrowband: <1 kHz), and right panels represent the performances
using features from the wideband frequencies. Results are shown as a function of SNR with three different types of noise (A: white Gaussian
noise, B: pink noise, and C: street noise). Speech samples from 40 speakers were used for evaluation and comparison of the performance of
different methods.

doi:10.1371/journal.pone.0158520.g007
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derived from the responses of a physiologically-based model of the auditory periphery. Differ-

ent databases with different combination of speech materials (sentences, words, and digits)

were used to test the proposed SI method. The most important finding of this study was that

the proposed neural feature resulted a consistent performance across different types of noise

(white Gaussian vs. other noises) irrespective of the speech materials and the duration of the

signal for both narrowband and wideband cases, whereas most of the baseline feature-based

(such as the MFCC, GFCC and FDLP coefficients) systems produced a relatively consistent

performance only for the narrowband case. Based on simulation results, the performance of

the proposed system using features from the lower frequencies (narrowband) was relatively

better than most of baseline feature-based systems under noisy conditions, especially at nega-

tive SNRs.

In this study, the performance of the proposed system was evaluated using two different

simulation conditions. The responses of the first 12 CFs (narrowband; 250 Hz–< 1 kHz) or all

Fig 8. Text-dependent speaker identification performance of the proposed and existingmethods using the UM database. Two
cases of frequency bands were considered: left panels show the performance of the SI systems using features from the narrowband
frequencies (<1 kHz), and the right panels represent performances for the wideband frequencies. Results are shown as a function of SNR
with three different types of noise (A: white Gaussian noise, B: pink noise, and C: street noise). Speech samples from 39 speakers were
used for evaluation and comparison of the performance of different methods.

doi:10.1371/journal.pone.0158520.g008
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the 25 CFs (wideband; 250 Hz– 4 kHz) were used. It was found that the responses of higher CF

fibers (above ~ 1 kHz) were severely affected by noises as shown in Fig 4 and thus provided a

comparatively lower SI performance as shown in the right panels of Figs 5–8. Thus, using only

the lower CF responses produced better speaker identification performance under noisy condi-

tions, whereas the performance in quiet was poor. However, the performance of the proposed

system was nearly 100% in quiet when all the 25 CF responses were employed for identifica-

tion. The performance of the proposed method as well as all other existing methods dropped

significantly under noisy conditions when higher frequency information was considered for

mismatched training and testing conditions (text-independent SI). It can be inferred that the

lower frequency responses (<1 kHz) were, in general, less affected by noises employed in this

study, and thus the SI system provided a relatively robust performance under noisy conditions.

In light of this observation, a pre-processing step (noise/no noise binary classifier rule) can be

implemented to improve the performance of the SI system. This can be done, for example, by

computing signal energies for the first few frames at the beginning of the input speech signal

which normally represents silence periods (speech absence). If the energy estimation lies over a

preset value of threshold, then the noise is detected and the speech signal is considered as noisy

signal (noisy condition); otherwise, the input speech is treated as a clean signal for the proposed

SI system.

Among different types of noises, the responses of lower 12 CFs were relatively more dis-

torted under street noise compared to the degradation observed (in correlation between the

noisy and clean responses) for white Gaussian and pink noises, as illustrated in Fig 4. Thus, the

performance of the proposed system under street noise was slightly lower across all databases

compared to the results for other noises (Figs 5–8). Although the results are relatively consis-

tent across databases, the noticeable differences in SI performance might arise from the varia-

tion in speech materials used in the study. For example, the standard deviation of signal length

for TIDIGIT dataset was quiet high for different digits alphabets, whereas for YOHO and

TIMIT, the variation in length of the speech signal was relatively smaller.

In this study, the performance of the proposed method was evaluated and reported for

speech signals corrupted by three different types of additive noise. In order to test the robust-

ness of the proposed method against other types of distortion, the HTIMIT dataset was used to

evaluate the speaker identification performance. The HTIMIT corpus is a recording of a subset

of the TIMIT corpus through 10 different telephone handsets. Using the same classification

technique and experimental setup for TIMIT database, the proposed method produced an

accuracy of 94.3% for 100 speakers randomly chosen from the database.

To study the effect of neurogram resolution on speaker identification, three different effec-

tive window lengths of 7.6, 12 and 25 ms were considered for smoothing. It was observed that

the SI performance was, in general, not substantially different from each other for these win-

dow resolutions, although a slightly overall lower performance was seen when a window length

of 7.6 ms was used (as shown in Table 1 for YOHO dataset). It is to be noted that the SI result

shown in [27] using temporal fine structure (TFS) neurogram was higher compared to the per-

formance using the low resolution envelope neurogram (as employed in this study). However,

the results reported in that study was for the text-dependent SI system. The performance of the

proposed method with a 12-ms window length was good for text-independent digit-based

dataset (as shown in Table 1), but resulted poor performance for the TIMIT dataset. Thus, in

this study the effective length of window was set to 25 ms which produced a relatively consis-

tent result across all datasets (text-dependent and text-independent cases).

For each frame (~25 ms) of speech signal, the proposed feature dimension was 25 (in quiet)

or 12 (under noisy conditions). On the other hand, the size of the baseline features for each

frame (effectively 15 ms) was 39, 22, and 39 for MFCC, GFCC, and FDLP, respectively.
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However, it is to be noted that the ANmodel used in this study incurs high computational

complexity, because it requires to simulate responses for a wide range of AN fibers (12 or 25)

from the peripheral auditory system. Thus the proposed system was computationally very

expensive. The time required to extract features for an input speech signal of 4.4 s was ~28, 4,

5, and 3 s for the proposed method, MFCC-, GFCC-, and FDLP-based methods, respectively,

using a standard computer in the laboratory.

The robustness of the proposed neural-response-based system could lie on the underlying

physiological mechanisms observed at the level of the auditory periphery. Since the AN model

used in this study is nonlinear (i.e., incorporates most of the nonlinear phenomena), it would

be difficult to tease apart the contribution of each individual nonlinear mechanism towards SI

performance. However, it would be useful to shed some light on the possible mechanism

towards the identification task, especially under noisy conditions. The AN fiber tends to fire at

a particular phase of a stimulating low-frequency tone, meaning that it tends to give spikes at

an integer time of period of that tone. It has been reported that the magnitude of phase-locking

declines with frequency and the limit of phase locking varies somewhat across species, but the

upper frequency boundary lies at ~4–5 kHz [52]. Thus, it is not surprising that in Fig 4, the cor-

relation between the noisy and clean responses declines as a function of CF, and the lower CFs

(<1 kHz) show higher correlation coefficients due to the phase locking property of AN model.

In general, the intelligibility declines significantly under noisy conditions when speech level

is higher than the conversational speech level (~65-70dB) [53, 54]. Therefore, the identification

of speech and speaker is expected to be degraded at SPLs higher than normal presentation

level. In addition to the broadened bandwidth of the AN fibers at higher levels, the potential

mechanism underlying degraded performance at higher levels is also hypothesized to be related

to the loss of synchrony capture by the second formant while synchrony to the first formant

increases at higher sound levels [26]. The AN model employed in this study successfully cap-

tured these phenomena. In order to investigate the effects of supra-threshold nonlinearity on

the SI task, the performance of the proposed method was evaluated and compared for YOHO

database in quiet at several sound pressure levels such as 40, 70 and 90 dB SPLs (using all the

25 CF responses). It was found that the SI score was the highest (100%) at 70 dB SPL, and the

score declined slightly (~99.39%) at 90 dB SPL, whereas at 40 dB SPL, the performance

degraded sharply to 54.12%. On the other hand, among the existing features, MFCC and FDLP

coefficients are completely independent of the effect of SPL, whereas the GFCC coefficients

take into account the effects of loudness [17]. In the present study, the GFCC-based system

Table 1. The effect of window resolution on the performance of the proposed SI system in quiet and under noisy conditions. The experiment was
done with YOHO speech materials taken from the first 32 speakers.

Noise Type Window Size SNR

-5 dB 0 dB 5 dB 10 dB 15 dB Clean

White Noise 7.6 ms 27.08 48.77 77.06 89.06 95.83 100

12 ms 27.08 57.38 79.69 90.63 94.79 100

25 ms 22.92 55.21 75 85.94 93.75 100

Pink Noise 7.6 ms 25.52 51.04 78.13 87.5 94.27 100

12 ms 32.81 62.5 85.42 90.1 97.4 100

25 ms 30.21 58.33 79.17 87.5 94.27 100

Street Noise 7.6 ms 15.52 26.04 48.44 67.71 83.85 100

12 ms 17.71 32.29 51.56 72.4 84.9 100

25 ms 15.1 34.38 56.77 69.79 85.94 100

doi:10.1371/journal.pone.0158520.t001

Neurogram-Based Speaker Identification System

PLOSONE | DOI:10.1371/journal.pone.0158520 July 8, 2016 17 / 21



was also tested for YOHO database in quiet at 40, 60, and 90 dB SPL, and the identification

score was found to be 93.5%, 93.5% and 96.5%, respectively.

Frequency selectivity in the inner ear is fundamental to hearing and plays a critical role in

the ability to distinguish and segregate different sounds perceptually. This implies that the

cochlear-filter bandwidth might have a crucial effect on the speaker identification performance,

especially in light of the current debate on human cochlear tuning (humans might have a

sharper tuning than the frequency selectivity of most of the laboratory animals often taken as

models of human hearing). To address this, the Q10 values of the basilar-membrane filter of the

AN model were varied to adjust the cochlear-filter bandwidth to half (sharper) and four times

(broader) of the normal values. It is to be noted that the tuning parameters (normal values) of

the AN model used in this study were implemented based on the physiological data in cats.

The performance of the proposed method in quiet was evaluated for YOHO database for three

different values of cochlear-filter bandwidths. The obtained SI score was 100%, 99.1%, and

55.3% for normal, half, and four times broader bandwidth, respectively. This clearly suggests

an important role of frequency selectivity in the inner ear towards the speaker identification

task. However, exploring the detail contribution of each nonlinear phenomenon observed at

the peripheral level of the auditory system on SI task is beyond the scope of this study and

could be pursued as a future work.

Conclusions

This study proposed a novel neural-response-based metric for a robust speaker identification

system which worked well for both text-dependent and text-independent tasks. The proposed

neural feature successfully captured the important distinguishing information about speakers

to make the system relatively robust against different types of degradation of the input acoustic

signals. The neural feature was extracted from the responses of a physiologically-based model

of the auditory periphery. The performance of the proposed method was evaluated in quiet

and under noisy conditions, and also compared to the classification accuracy from several

existing methods. In general, the existing SI methods using baseline features as well as the pro-

posed method resulted a relatively robust performance under noisy conditions when features

were employed from the lower frequencies (<1 kHz). Using simulated responses from the

lower CF fibers (<1 kHz), the performance of the proposed method was relatively better than

the results of most of the existing methods, especially at negative SNRs. Also, the proposed

neural feature provided a relatively consistent performance across different types of noise irre-

spective of the speech materials used and the duration of the signal for both narrowband and

wideband cases. On the other hand, the performance of most of the existing methods was

dependent on the type of noise and the database used for wideband case. For the proposed fea-

ture, although it was difficult to assess the effect of each individual nonlinear phenomenon

observed at the level of the auditory periphery on the identification accuracy, based on simula-

tion results, it can be inferred that they certainly play important roles in the speaker identifica-

tion tasks.
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