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Abstract— In this paper, we propose a robust face modelling 
approach based on multilevel fusion of 3D face biometric 
information with audio and visual speech information for 
biometric identity verification applications. The proposed  
approach combines the information from three audio-video 
based modules, namely: audio, visual speech, and 3D face and 
performs tri-module fusion in an automatic, unsupervised and 
adaptive manner, by adapting to the local performance of each 
module. This is done by taking the output-score based reliability 
estimates (confidence measures) of each of the module into 
account. The module weightings are determined automatically 
such that the reliability measure of the combined scores is 
maximised. To test the robustness of the proposed approach, the 
audio and visual speech (mouth) modalities are degraded to 
emulate various levels of train/test mismatch; employing additive 
white Gaussian noise for the audio and JPEG compression for 
the video signals. The results show improved fusion performance 
for a range of tested levels of audio and video degradation, 
compared to the individual module performances. Experiments 
on a 3D stereovision database AVOZES show that, at severe 
levels of audio and video mismatch, the audio, mouth, 3D face, 
and tri-module (audio+mouth+3D face) fusion EERs were 42.9%, 
32%, 15%, and 7.3% respectively for biometric speaker identity 
verification application.  

I. INTRODUCTION  

 
.Biometrics is a field of security technology devoted to 

verification or identification of individuals using 
physiological or behavioral traits. Verification, a binary 
classification problem, involves the validation of a claimed 
identity whereas identification, a multi-class problem, 
involves identifying a user from a set of enrolled subjects; and 
becomes more difficult as the number of enrollees increases. 
In audiovideo processing, the video modality lends itself to 
two modules, the face module and the visual speech module 
(referred to as the mouth module here). 

Most of the speaker recognition systems currently deployed 
are based on modelling a speaker based on unimodal  
information, i.e. either audio or visual features. Audio-based 
identification achieves high performance when the signal-to-
noise ratio (SNR) is high. Yet, the performance degrades 
quickly as the test SNR decreases (referred to as a train/test 
mismatch), as shown in [1] and elsewhere. Using visual 
modality in addition to voice information, such as 3D face or 
2D region around mouth can make the system robust against 

SNR degradation, typical of mismatch between and training 
and test operating environment.   However, visual modality 
based speaker modelling approaches  are also susceptible to 
pose/illumination variation, occlusion, and poor image quality 
[2], [3]. Further, use of 2D visual speech features extracted 
from mouth region on its own cannot model a  speaking face 
in its entirety, and normally used along with other biometric 
modalities. However, mouth region contains important 
liveness related information, which can be used to detect 
fraudulent replay attacks involving a still photo of the speaker 
and replay of audio, or artificially synthesized speaking face. 

To combat these limitations of unimodal modules, a 
modelling approach based on  multilevel multimodal fusion 
approach can be adopted. This can both improve robustness 
and overall system performance against impostor attacks and 
fraudulent replay attacks for speaker identity verification 
application . The audio, face, and mouth modalities contain 
non-redundant, complementary information about speaker 
identity.  

Further, using 3D face dynamics in addition, allows better 
modelling of a speaker [4, 5], as we can better quantify the 
differences between two persons’ facial feature variations in 
3D as compared to 2D face images.  The subtle nuances 
related to facial expressions and gestures during speaking act 
that can best discriminate individuals can also be modeled 
better with 3D face dynamics. From a biometrics point of 
view, the concept of recognizing a person based on 3D facial 
motion during speech is attractive; since facial movements 
comprise a complex sequence of muscle activations, and it is 
almost impossible to imitate another person’s facial speech 
and expressions, as these characteristics are unique to an 
individual [6,7]. In experimental psychology, determining the 
precise role of 3D facial motion in ascertaining identity is still 
largely unknown, and is being actively pursued [6]. However, 
some recent findings described in the next section provide 
considerable motivation for using 3D face models during 
speech production for identity verification tasks. 

This paper is organised as follows. The next section 
describes the motivation for multilevel speaking face 
modelling. Section III and IV describe the proposed  
multilevel fusion approach for speaking face modelling. In 
Section V, the stereovision audio visual corpus AVOZES 
used for evaluation is described. In Section VI, the 
experimental results of extensive evaluations examining the 
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individual module performance and multilevel fusion 
performance for a SIV(Speaker Identity Verification) 
application  scenario are presented. The results are discussed 
in Section VII and finally in SectionVIII, conclusions from 
the results are drawn. 

II. MULTILEVEL SPEAKING FACE MODELLING  

 
This section discusses the motivation for using 3D 

information for robust speaking face modelling based on 
some recent findings in cognitive psychology [6] and 
psychophysical analysis of visual speech [7]. As with the 
other forms of biological motion, humans are known to be 
very sensitive to the realism in the ways the lips move. One of 
the most significant finding by Yehia,  Kuratate, Munhall, and 
Bateson [8,9] suggest that in order to determine the elements 
that come to play during analysis of visual speech, it is 
important to capture the detailed 3D deformations of faces 
when talking [9]. Yehia, Bateson and Kuratate [8] suggest 
that a  speaking face is a kinematic-acoustic system in motion, 
and the shape, texture and acoustic features during speech 
production are correlated in a complex way, and a single 
neuromotor source controlling the vocal tract behavior is 
responsible for both the acoustic and the visible attributes of 
speech production. Hence, for a speaking face not only the 
facial motion and speech acoustics are correlated, but the head 
motion and fundamental frequency (F0) produced during 
speech are also related. Though there is no clear and distinct 
neuromotor coupling between head motion and speech 
acoustics, there is an indirect anatomical coupling created by 
the complex of strap muscles running between the floor of the 
mouth, through the thyoid bone, attaching to the outer edge of 
the cricothyroid cartilage, as shown in Figure 1. Due to this 
indirect coupling, speakers tend to raise the pitch when head 
goes up while talking. These spatio-temporal correlations can 
be modeled better with 3D face models instead of just using 
2D dimensional face or lip region images. 

It has also been shown by several other linguistic and 
psychophysical researchers [6,7,8,9], that the facial 
movements play an important role in interpreting spoken 
conversations and emotions. They occur continuously during 
social interactions and conversations. They include lip 
movements when talking, conversational signals, emotion 
displays and manipulators to satisfy biological needs. 
Unfortunately when and how a movement appears and 
disappears, and how co-occurrent movements are integrated 
(co-articulation effects, for instance) are difficult to quantify.  

In addition, the problem of overlaying and blending facial 
movements in time, and the way felt emotions are expressed 
in facial activity during speech, have not received much 
attention. This suggests that during speech production other 
regions of the face in addition to the lip region are active, and 
the activities of human facial muscles for this act is far from 
simply additive. 

 

 
Fig. 1. The facial muscles (from [2]) 

 
A typical example would be smiling while speaking. The 

Zygomatic Major and Minor muscles contract to pull the 
corner of lip outward, resulting in a smile. The viseme 
corresponding to the diphthong /oU/ in the word “Hello” 
requires the contraction of the lip funneler Orbicularis Oris, 
which drives the lips into a tight, pursed shape. However, the 
activation of the Zygomatic Major and Minor muscles 
together with the lip funneler Orbicularis Oris would create an 
unnatural movement. The activation of a muscle may require 
the deactivation of other muscles in the jaw and chin region. 

These findings from face speech anatomy provide clues 
that facial movements during speech involve highly complex 
biomechanics with depth, motion and correlation interactions. 
Capturing these interactions can truly enhance the 
performance of face modelling approaches for complex 
application such as speaker identity verification systems. We 
propose a novel multilevel modelling approach using features 
which capture the multiple channels of spatio-temporal facial 
movements during speech involving 3D, 2D and 1D dynamics 
and correlations between acoustic-labial articulators as well as 
other areas of face and head such as jaw, chin, forehead and 
eyebrows. 

III. MULTILEVEL AUDIO VISUAL FUSION 

 
The three individual audio visual modules used for 

multilevel fusion are described in this section 

A. Audio Module 
The MFCC features (mel frequency cepstral coefficients) of 

dimension 16 were extracted from each frame. The energy of 
each frame was also calculated and used as a 17th static 
feature. Seventeen first order derivatives or delta features 
were calculated using WD adjacent static frames, where WD 
is the delta window size. The delta frames were appended to 
the static audio features to give an audio feature vector of 
dimension 34. Cepstral mean normalization [10] was 
performed on the audio feature vectors (of each audio 
utterance). 

Each speaker is represented by a GMM(Gaussian Mixture 
Model)  model λ. The speaker utterance that is to be classified  
(the unknown pattern) is a sentence, which is represented by a 
sequence, OA, of speech feature vectors or observations 
denoted by, 
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where ot is the speech observation (frame) at time t and TA 

denotes the number of observation vectors in the sentence.  
 
We obtain N class-conditional joint probabilities 

 
( )λλ

ATtA oooopOp LL ,,,,)( 21=   (2) 
 

that the observation sequence OA was produced by the 
client speaker model λ.. p(OA|λ) is referred to as the 
likelihood that OA was caused by λ. For GMM classifiers, the 
output scores are in log-likelihood form, denoted by ll(OA|λ). 
 

B. Visual Speech (Mouth) Features module 
The visual sentences were modeled using the same GMM 

methodology described for the audio sentences. Three types 
of features used are DCT features fDCT, the explicit grid based 
lip motion features fGRD and the contour based lip motion 
features fCTR were extracted. The dimension of the visual lip 
feature vector is 24 with 8 fGRD, 8 fCTR and 8 fSHP   features.  

For the normal visual mouth DCT features, the mouth ROI 
.consists of a 49×49 colour pixel block. To account for 
varying illumination conditions across sessions, the grey scale 
ROI was histogram equalised and the mean pixel value was 
subtracted. The two dimensional DCT was applied to the 
preprocessed gray scale pixel blocks. 

For lip motion features, the explicit lip motion feature 
extraction technique involves the stages of face detection, 
normalisation and lip region extraction from 2D face images. 
Grid based motion features were extracted by estimating 
dense motion over a uniform grid of size Gx × Gy on the 
extracted lip region image. We use hierarchical block 
matching to estimate the lip motion with subpixel accuracy 
(quarterpel) by interpolating the original lip image using the 6 
tap Wiener and bilinear filters specified in H.264/MPEG4 
AVC [11]. The motion estimation procedure yields two 2D 
matrices, which contain the Gx and Gy components of the 
motion vectors at grid points, respectively. The first M DCT 
coefficients along the zigzag scan order, both for x and y 
directions, are combined to form a feature vector f of 
dimension 2M as depicted in Fig. 2. This feature vector 
representing the dense grid motion will be denoted by fGRD  in 
rest of the paper.  

For lip contour extraction, we employ the lip geometric key 
points and  fit polynomials on the outer lip contour based on a 
technique proposed in [12,13]. The technique is based on six 
designated key points detected on the lip contour. The 
algorithm fits additional points on the outer lip key points by 
guiding a “jumping snake” onto the upperlip boundary [12]. 
The additional detected key points serve as the junction points 
of four cubic polynomials and two line segments to be fitted 
onto the lip contour via least squares optimization. 

The DCT coefficients computed separately for the x and y 
directions are concatenated to form the feature vector that is 
denoted by fCTR. 

 

 
 

Fig. 2. Grid and Contour Based Lip motion feature extraction 
 

The three types of visual features were concatenated to form a 
24 dimensional feature vector. This is shown in Eqn. .(3) 
where fDCT , fGRD , fCTR represent the DCT, grid, and contour 
based lip motion features respectively and ot refers to the 
observation feature vector for the frame at time t. 

 
[ ]CTR

t
GRD
t

DCT
tt oooo ,,=        (3) 

 
Similarly to the audio case, we have TV visual observations 

(TA ≈ 2TV) and a sequence, OM, of visual mouth speech feature 
vectors or observations denoted by: 

{ }
vTtM ooooo ,,,,, 21 LL=       (4) 

 

C. 3D Face Module 
The 3D facial feature module is described in detail in 

[14,15,16]. The dimensionality of the features varies 
depending on the type of the facial data representation and 
feature extraction techniques. For 3D face module, each face 
is modelled with 3D shape and texture features, the TEX-
GABOR for texture features [14,15],  and CURV-PD for the 
shape features [15,16].  

IV. MULITLEVEL FUSION STRATEGY 

For each transaction, the audio-video sentence observation 
from a speaker is decomposed into its three constituent parts, 
giving a sequence of audio feature vectors OA, a sequence of 
visual speech (mouth) feature vectors, OM, and a sequence of 
3D facial feature vectors O3F. These three observations are 
processed by the three classifier modules to give three 
individual sets of likelihoods, ll(OA|λ), ll(OM|λ), and ll(O3F|λ). 
The objective is to discern from these sets of scores, the 
reliability of each module and hence determine appropriate 
module weights. 

However, we used the following design criteria were taken 
into account, when designing the proposed multilevel fusion 
strategy. The multilevel fusion method should easily allow the 
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addition of other modules. The system must be robust to mild 
through adverse test levels of both audio and visual speech 
(mouth) noise. The contribution from each source of 
information to the final decision must be weighted 
dynamically by taking the current reliability of each source of 
information into account. The module score weightings must 
be determined in an automatic unsupervised manner. The best 
performing fusion mode and the score weightings from SIV 
experiments are then to be used for performing LV 
experiments.  

Given these criteria, we decided to use late fusion at the 
score level, based on the theoretical and empirical evidence 
from findings in the previous related work and the related 
literature [1,2,3]. With regards to the type of fusion rule, the 
sum rule is known to be superior to the product rule [2,3], 
particularly when the module scores have large errors. Thus 
the weighted sum rule should be resilient to noise and is a 
good choice for score level fusion, particularly in this 
application where either or both of the audio and video 
(mouth) modalities may be highly degraded.  

By taking all of this into consideration, the proposed 
multilevel fusion strategy is based on weighted sum score 
fusion with min-max normalization. The fusion is 
implemented as follows. We first perform a fusion of two 
modules (e.g. audio with 3D face, audio with mouth, or 3D 
face with mouth). Then this bi-module fusion is extended to 
include an additional third module, thus yielding tri-module 
fusion at two different levels which can be applied to the 
audio, mouth, and 3D face modules.  

 

Fig. 3. Multilevel Fusion with cascaded Biomodal Fusion modules 
 
We use ll(Om|λ) to denote the confidence score output from 

the mth module representing the log-likelihood that the 
observation Om was caused by the client model/template λ  
where m ∈  {A, M, 3F}, with A, M, and 3F representing the 
audio (OA), mouth (OM), and face (O3F) module observations 
respectively.  Figure 3 illustrates the proposed multilevel 
fusion strategy  with cascaded  modules. 

This multilevel fusion strategy consisting of combining two 
bi-module fusion modules in cascade can take account of a 
noisy audio or video signal and also of any one of the three 
modules performing poorly, thus weighing the contribution of 

each module to the final decision appropriately. The 
advantage of this fusion method is that, being adaptive, the 
training of the fusion parameters is not required. Importantly, 
no assumption has been made about the type or level of audio 
or video noise that may cause a module to perform poorly. 
This is important for a practical audio-video system because 
learned noise statistics that are used to map the reliability 
estimate to the weighting parameter have been previously 
shown to vary with the type of degradation causing the 
train/test mismatch [4,5]. This compromises the mapping, as 
it must perform well for all types of noise (audio or video) 
and not just for one specific type of noise. Furthermore, the 
training of fusion parameters requires additional audio-visual 
data, which poses problems for the testing of existing audio-
visual databases and also for practical applications, due to the 
small amounts of available audio-visual data. The proposed 
method requires no training data, and the weights are 
determined solely on the outputs scores from each module. 
We will now describe the three dimensional audio-video data 
corpus used, and the fusion experiments that were carried out 
using the proposed method.  

 

V. 3D AUDIO VISUAL DATA CORPUS 

 
The AVOZES 3D stereovision  database [17] was used for 

all the experiments described in this paper. AVOZES contains 
video recordings from 20 native speakers (10 male and 10 
female) of Australian English. Video recordings were made 
using a calibrated stereo camera system. Video frames are 
stored as DV-AVI files in the NTSC format (29.97Hz frame 
rate, 720x480 pixels resolution). Audio recordings were made 
using a mono microphone. Audio data are stored both in the 
DV-AVI files as well as in separate WAV files as 48 kHz 16 
bit linear encoded samples. Module 6 of the corpus was used 
for training, and sentences from Module 4 were used for 
testing. Module 6 contains application-driven sequences with 
examples of continuous speech from each speaker. The three 
sequences are: 

 
1. “Joe took father’s green shoe bench out.” 
 
2. “Yesterday morning on my tour, I heard wolves 

here.” 
 
3. “Thin hair of azure colour is pointless.” 
 
 
Together with the first sentence, the second and third 

sentences were designed in such a way that they contain 
almost all phonemes and visemes of AuE (/æ/ is the only 
phoneme missing). Module 4 contains several short sentences 
in CVC/VCV words enclosed by the carrier phrase “You grab 
/WORD/ beer.”.  
To test the robustness of the proposed system, both the audio 
and video test signals were degraded to provide a train/test 
mismatch. Ten levels of audio and video degradation were 
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applied. This mild to adverse train/test mismatch noise levels 
emulates the operating scenarios encountered in a realistic 
operating environment. The audio models were trained on the 
“clean” audio speech, which was the original AVOZES audio 
data. Additive white Gaussian noise was applied to the clean 
audio at SNR levels ranging from 48 dB to 21 dB in 
decrements of 3 dB. In order to account for practical video 
conditions encountered in real operating scenarios, the video 
frame images were compressed using JPEG compression. Ten 
levels of JPEG QF were tested, with 

{ }2,3,4,6,8,10,14,18,28,50=QF , where a QF of 100 
represents the original uncompressed image. The variation of 
the mouth ROI images w.r.t. JPEG QF is shown in Figure 4. 
JPEG blocking artifacts are evident at the lower QF levels. 
 

 

Fig. 4. Ten levels of JPEG compression on mouth ROI images 

VI.  EXPERIMENTAL RESULTS 

For evaluating the performance of the proposed multilevel 
fusion approach in this paper, we have used the AVOZES 3D 
stereovision face database [17]. The AVOZES database 
contains 10 male and 10 female stereo video data speaking 
phonetically balanced sentences. The AVOZES database 
consists mostly of frontal faces and does not exhibit 
significant expression variations. However, some scans have 
slight in-depth pose variations and different expressions. 
Although the quality of the data is high, we used median 
filtering after three-dimensional reconstruction, first to 
remove the impulse noise, and then mean filtering was 
applied to smoothe the facial surface. Module 6 of the 
database was used for training and Module 4 was used for 
testing. The neutral face image (1st  frame of the sequence) 
was used for building the face template. 
First we report the performance of audio only and visual 
speech only module results, followed by the performance of 
the fusion of the two modules and then of all three modules.  

A. Performance of Audio only Module  
 
For examining audio only performance, we built ten-

mixture GMM speaker models trained with 34-dimensional 
audio MFCC features. Gender specific UBM were used as 
described. The three sentences from Module 6  in AVOZES 
were used for training and the 2 sentences from Module 4 
were used for testing. The gender specific UBMs were trained 
using all three sentences from all the speakers from the 
separate male and female cohorts. All models were trained 
using the clean speech and tested using the various SNR 

levels. Figure 5 shows how the audio-only module performs 
w.r.t. the audio degradation. The numerical EERs are given in 
Table 9.4. The best EER of 2.4% was achieved at 48dB. At 
21dB the EER dropped to worst possible EER of 50%. 

 

 
 

Fig. 5.  Effects of audio degradation on fusion performance 
 

B. Performance of Visual Speech  only Module  
 
In this set of single mode experiments, the effect of the 

GMM mixtures on the performance of the four visual speech 
feature types (fDCT, fGRD, fCTR), and concatenated (fDCT-fGRD-
fCTR) was tested initially. These tests were carried out using 
matched training and testing data sets, i.e., the original 
“clean” images. To examine whether the dynamic lip motion 
features, such as the fGRD and fCTR, features, would perform 
better with a larger number of GMM mixtures, we increased 
the number of mixtures from one until a performance trend 
became apparent. For each lip feature type, a trend in the 
EERs with respect to the number of mixtures can be seen. The 
number of mixtures that maximised the visual speech features 
performance for each of the four feature types, are given in 
Table I.  

TABLE I:  NUMBER OF GAUSSIAN MIXTURES THAT MAXIMISES THE EER 
PERFORMANCE FOR EACH OF THE FOUR TYPES OF VISUAL SPEECH FEATURES 

ACROSS TEN LEVELS OF JPEG Q 
 

 
 
The fDCT, features performed best even with just two 

mixtures and decreased steadily with increasing number of 
states. The number of states, that maximised the EERs for the 
fGRD and fCTR features, were 15 and 18 respectively. The 
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concatenated fDCT -fGRD- fCTR feature vector was modelled best 
using four mixtures. 

For the video degradation experiments the mouth module 
GMMs were trained on the “clean” (uncompressed) video 
images and tested on the degraded video images. This 
provided for a mismatch between the testing and training 
video conditions. The tests on the degraded mismatched video 
data were carried out using different number of mixtures, 
which maximised the performance for each of the four visual 
feature types (as above). 

This is different to all the experiments conducted for audio 
only mode, where ten Gaussian mixtures were always used 
for both training and testing. Table I and Figure 6 show how 
different visual speech features perform w.r.t. JPEG 
degradation. 

 

 
 

Fig. 6.  Effects of video quality degradation on fusion performance 
 

C. Performance of Fusion of  2D Mouth-3D Face Features 
 
The face gallery (training) set, comprising three images, 

was formed by arbitrarily extracting the first image frame 
from each of the first three training sentences from AVOZES 
module 6. These were used to form a face template for each 
of the N subjects.  

 
TABLE II:  THE MOUTH, FACE AND FACE-MOUTH EERS FOR TEN LEVELS  

OF JPEG QF 
 

 
In all the face experiments, the probe images used for 

testing was obtained from the module 4 sentences (again, the 
first frame). The gallery sets consisted of the original 

uncompressed images and the probe sets consisted of 
degraded images at the ten levels of JPEG compression. This 
provided for a gallery/probe mismatch.  

 The fusion of TEX-GABOR for texture module and 
CURV-PD for the shape module was used in score-level 
fusion, and the performance of the 2D Mouth - 3D face fusion 
module w.r.t. JPEG QF is given in Table II and Figure 7. 

 

 

Fig. 7. Fusion Performance for .3D Face- 2D mouth Features  
 

D. Performance of TriModule Fusion 
 

For this set of experiments, we examined the performance of 
all the three modules, involving the fusion of audio, 2D mouth 
features and 3D face features in a cascaded fusion .strategy 
shown in Figure 3. The results for this set are shown in Table 
III and Figure 8. 
 

TABLE III:  THE AUDIO – FACE – MOUTH  PERFORMANCE FOR DIFFERENT  
LEVELS OF JPEG QF AND AUDIO SNRS IN TERMS OF EERS 

 

 
 

We define an operating point as the fusion of the audio 
module with the video module/modules at a particular audio 
SNR and video JPEG QF levels. For a clearer comparison, ten 
operating points are shown in Figure 9. 
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Fig. 8. Tri-module Fusion Performance 
 

 

Fig. 9. Ten operating points (dB, QF), comparing multilevel fusion 
modes 

VII. DISCUSSION 

The audio module performed very well under near “clean” 
testing conditions, however the performance roll off w.r.t. 
SNR is very high, which can be seen in Figure 5. This 
highlights the vulnerability of a unimodal acoustic based 
modeling approach to mismatched train and test conditions. 
For the mouth module experiments, the fact that the fDCT 
visual features performed best with just two Gaussian 
mixtures indicates that GMMs can really model the static lip 
shapes better, and there is not need for exploring other 
complex type of Gaussian models such as HMMs and 
embedded HMMs. Other person recognition studies based on 
the mouth ROI have ignored the temporal mouth information 
and modelled the statistical distribution of the mouth shape 
using just static DCT type features using GMMs [79,96]. 
Here we have used explicit DCT based lip motion features 
fGRD and fCTR in addition to static fDCT features. The best mouth 
module performance of 8% is surprisingly high, considering 

that only mouth information was employed. While the fDCT - 
fGRD –fCTR concatenated features outperform the static fDCT 
features for high QFs (fDCT - fGRD -fCTR  9.6% versus fDCT 
14.3% at a QF of 50), the performance at a QF of 2 is 50%, 
which is similar to fDCT performance. The lip motion features 
perform very poorly for low QF levels, both falling to around 
50% at a QF of 2. The results also show that the static fDCT 
features are more important, and are more robust than the 
dynamic lip motion features for the identity verification 
scenario. Also,  non-temporal GMM modelling used here may 
be more suitable than temporal HMM modelling. This 
validates our observations for viewing the mouth features as a 
supplement to the existing facial features employed by the 
face recognition systems.  

It was expected that the 3D face module, employing 
features located throughout the entire face would outperform 
the visual speech module, employing features extracted from 
just the mouth ROI. The 3D face module outperformed the 
mouth module at all levels of train/test mismatch. The highest 
face module performance was 1.2% EER, which is 15% better 
(relative) than the highest mouth EER accuracy. The face 
module also exhibits higher robustness to JPEG compression, 
when compared to the mouth module, with EERs less than 
2%, for all test mismatch levels exceeding a QF of 4. At the 
highest mismatch QF level of 2, the 3D face module EER was 
25%, and the mouth module EER was 50%. The superior 
performance of 3D face module is more impressive when 
considering that the 3D face training set consists of only three 
images, whereas the mouth model has the advantage of 
“seeing” three sequences of video frames (100 visual frames 
in one sequence) and hence more variation in the subjects’ 
appearance. Nonetheless, it is still interesting to examine if 
the combination of the 3D and mouth modules would yield 
any improvement in performance and robustness.  

For the fusion of the 3D face and mouth modules, a perfect 
face-mouth EER of 0% is achieved at several levels of JPEG 
QF mismatch. Also, the face-mouth EERs are lower than 
either of the face or mouth expert EERs for all levels of JPEG 
QF mismatch, i.e. we have synergistic fusion. The most 
significant improvements are obtained for the higher levels of 
mismatch, for example at the lowest QF level of 2, the face-
mouth, face and mouth EERs are 12.5%, 25%, and 50% 
respectively. The performance of the face and mouth modules 
both roll off suddenly at a QF of 4. This is also the case for 
the face-mouth EERs, which are approximately 0% until a QF 
of 4 and then rise up, albeit with a lower roll off compared to 
either the face or mouth modules. The improved face-mouth 
performance indicates that the mouth features complement the 
acial features that the 3D face module uses. The improvement 
may be due to two factors. Firstly the 3D face module 
emphasises eye information and hence the mouth module is 
complementary, and secondly the mouth module can capture 
the variation of the mouth ROI better over the three training 
video frame sequences. 

The audio-mouth EER performance also represents an 
improvement over the individual audio and mouth module 
performance at all tested levels of audio and video train/test 
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mismatch. At the (21dB, 2QF) operating point, the audio, 
mouth, and audio-mouth EERs are 50%, 50%, and 28.6%, 
respectively, representing a relative improvement of 49% over 
the mouth module.  

Further, the audio-face results show an improvement over 
the individual  modules. At the (21dB, 2QF) operating point, 
the audio, face, and audio-face accuracies EERs are 50%, 
25%, and 13.7% respectively. 

For the Tri-module experiments, perfect audio-face-mouth 
EERs of 0% were achieved at the majority of operating points. 
The tri-module fusion attains a significant increase in 
robustness to both audio and video degradations. This is 
evident from the flatness of the audio-video surface in Figure 
8.  

As can be seen in Figure 9, the improvements in robustness 
were most significant at the highest levels of train/test 
mismatch. At 21dB, the audio EER is 50% and at a JPEG QF 
of 2, the face and mouth EERs are 25% and 50% respectively. 
At the (21dB, 2QF) operating point, the audio-mouth, audio-
face and audio-face-mouth EERs are 28.6%, 13.7%, and 7.3% 
respectively. Improvements over the face-mouth EERs were 
also achieved, particularly at the (21dB, 2QF) operating point, 
where an EER of 7.3% outperforms the face-mouth EER of 
12.5% at a QF of 2. This exemplifies the increased robustness 
of the tri-module fusion over bi-module fusion with audio and 
video degradation. Importantly, fusion in a highly 
mismatched scenario (e.g. audio 50% at 21dB) with a “clean” 
test (e.g. face 25%, mouth 50% at QF2) does not result in 
catastrophic fusion (audio-face-mouth 7.3%). These results 
were achieved with the Tri-module fusion block having no 
prior knowledge of the level or type of audio or video 
degradation. Hence, we have a generalised fusion 
methodology, which will not be adversely affected by varying 
types of audio and video degradations. 

VIII. CONCLUSIONS 

In this paper, a multilevel fusion approach to 3D face 
modelling was proposed for biometric speaker identity 
verification applications. The approach combines information 
from three modules, namely audio, visual speech, and 3D face 
information in an automatic unsupervised fusion, adapting to 
the local performance of each module, and taking into account 
the output-score based reliability estimates of each of the 
modules. These results as a whole are important for remote 
authentication applications, where bandwidth is limited and 
uncontrolled acoustic noise is probable, such as video 
telephony and online authentication systems. Experiments on 
a 3D stereovision database AVOZES show that, at severe 
levels of audio and video mismatch, the audio, mouth, 3D 
face, and tri-module (audio+mouth+3D face) fusion EERs 
were 42.9%, 32%, 15%, and 7.3% respectively for a biometric 
speaker identity verification application. 
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