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Abstract

Representing images with layers has many important ap-

plications, such as video compression, motion analysis, and

3D scene analysis. This paper presents a robust subspace

approach to reliably extracting layers from images by tak-

ing advantages of the fact that homographies induced by

planar patches in the scene form a low dimensional lin-

ear subspace. Such subspace provides not only a feature

space where layers in the image domain are mapped onto

denser and better-defined clusters, but also a constraint for

detecting outliers in the local measurements, thus making

the algorithm robust to outliers. By enforcing the subspace

constraint, spatial and temporal redundancy from multiple

frames are simultaneously utilized, and noise can be effec-

tively reduced. Good layer descriptions are shown to be

extracted in the experimental results.

1. Introduction

Decomposing an image sequence into layers has been

proposed as an efficient video representation for coding,

motion and scene analysis, and 3D scene representation [26,

17, 2, 22]. There are two types of layers: 2D layer and 3D

layer. A 2D layer consists of 2D sub-images such that pixels

within the same layer share common 2D parametric trans-

formation. A 3D layer consists of a 3D plane equation, the

texture of that plane, a per-pixel opacity map and depth-

offset [2]. Extracting 3D layers usually requires the knowl-

edge of camera motion, which is essentially a structure from

motion (SFM) task, a non-trivial task for computer vision,

and may not be necessary for some applications such as

video coding, where 2D layers are usually sufficient. This

paper focuses on 2D layer extraction from uncalibrated im-

ages.

The major issues of layer extraction are: (1) model ini-

tialization, including the number of layers and the model-

based motion of each layer; and (2) the determination of

spatial support for each layer. A nature approach is to for-

mulate the layer extraction as a MLE or MAP estimation

problem [12, 6, 1, 27, 25, 16], which is then optimized by

the Expectation-Maximization (EM) algorithm. The num-

ber of layers is usually determined by some model selection

criteria, e.g., MDL [6, 1]. Model initialization is a critical

but difficult step in order for the EM algorithm to converge

to desired optimal solutions [21, 25, 15].

Another category of approaches is to group pixels or

regions into layers based on the affinity of local measure-

ments, e.g., the ✂ -means algorithm [26], or the normalized

graph cut [21]. Grouping pixels based on pure local mea-

surements does not have the initialization difficulty. How-

ever, such approach ignores the global constraints and tends

to make early commitments to noisy local measurements.

Moreover, grouping in high dimensional space is often un-

reliable given noisy local measurements.

In this paper, we present a low dimensional robust lin-

ear subspace approach which can exploit the global spatial-

temporal constraints. We formulate the layer extraction

problem as clustering in the low dimensional subspace

where clusters become denser, better-defined, and thus

more reliably identifiable. Such subspace also provides a

constraint for detecting outliers in the local measurements,

resulting in a robust layer extraction algorithm.

Linear subspace constraints have been successfully used

in computer vision. Tomasi and Kanade [24] used the

rank-3 constraint in Structure from Motion (SFM). Shashua

and Avidan [20] derived the linear subspace of planar ho-

mographies induced by multiple planes between a pairs of

views. Zelnik-Manor and Irani [28, 29] extended the re-

sults to multiple planes across multiple views, and applied

such constraints to estimate the homographies of small pre-

defined regions.

The subspace constraints to be exploited in this paper

are derived from the relative affine transformations col-

lected from large number of local regions across multiple

frames. To avoid over-fitting in computing the local mea-

surements, we design a local process to improve the motion

estimation results, and to detect outliers at early stage. In

the final stage of assigning pixels to layer models, we take



into account the spatial coherence by using over-segmented

color regions instead of individual pixels. We assume that

each over-segmented homogeneous color region is a planar

patch. Such assumption is generally valid for images of nat-

ural scenes, and has been extensively used in motion anal-

ysis and stereo [3, 7, 23]. To deal with the case when such

assumption is violated, we enforce the fact that the shape

of each layer in the image domain is coherent or changes

gradually across time [22].

2. Subspace of Relative Affine Homographies

This section shows that the homographies induced by 3D

planar patches in a static scene, each represented by a col-

umn vector in the parameter space, reside in a low dimen-

sional linear subspace. Such subspace comes from the fact

that multiple planar patches in the scene share the common

global camera geometry.

2.1. Projective Homography

Given two projective views of a static scene, any homog-

raphy induced by a 3D plane in the scene can be described

by [10]: ✄✆☎✞✝✟☎✡✠☛✌☞✍☎✞✝✟☎✏✎✒✑✟✓✕✔✗✖
(1)

Here

✔ ☛✙✘✛✚✞✜✣✢✤✚✣✥✣✢✤✚ ☎✣✦ ✖
defines the 3D plane1. ✧ ✑ ✓ ★ ✝✩☞ ☛✌✪

is any decomposition of the fundamental matrix

✪
, where☞

is a homography matrix induced by some plane ([10],

pp.316).

Given ✂ planes in the scene, we have ✂ homography ma-

trices

✄✬✫ ✢✤✭✍☛✯✮✞✢✤✰✱✢✳✲✕✲✕✲✕✢ ✂ . Suppose we construct a matrix✴✶✵ ✝✟✷
by considering each

✄✸✫
as a column vector. The

rank of
✴

is known to be at most four [20]. In other

words, all homographies between two projective views span

a four dimensional linear subspace of ✹ ✵ . This result was

extended to the case of multiple projective views, and has

been used to accurately estimate the homographies for small

predefined planar patches [28].

2.2. Relative Affine Homography

In this section, we derive the subspace constraints for

affine camera models. Affine camera [18] is an important

model usable in practice. One advantage of affine camera

is that it does not require calibration. Moreover, when per-

spective effect is small or diminishes, using affine camera

model avoids computing parameters that are inherently ill-

conditioned [19, 9].

Given uncalibrated cameras, it is known that the projec-

tive homography can only be determined up to an unknown

1We ignore the degenerate case where a plane is projected into a line in

the image.

scale. This is not the case for affine cameras. In affine

camera, the 2D affine transformation can be uniquely de-

termined, and we can rewrite Eq.(1) as [10, 15]:✺ ✥ ✝✟☎ ☛ ✺✒✻ ✎✼✑✟✓ ✔✗✖ ✲ (2)

Here ✺✒✻ is the affine transformation induced by the refer-

ence plane.

✑ ✓ ☛✽✘✛✾✣✜✣✢✤✾✳✥ ✦ ✖
, where

✘✛✾✣✜✣✢✤✾✳✥✞✢✤✿ ✦
is the direction

of epipolar lines in homogeneous coordinate in the second

camera. The 3-vector

✔
representing the plane is indepen-

dent of the second affine camera.

Notice that Eq.(1) has an unknown scale while Eq.(2)

does not. We can define relative affine transformation as:❀ ✺ ☛ ✺❂❁✒✺✒❃ ☛ ✑✟✓✕✔✗✖ ✲ (3)

where ✺✒❃ is the affine transformation induced by the refer-

ence plane. The reference plane can be either a real plane

or a virtual plane.

2.3. Subspace of Relative Affine Homographies

We will show that the collection of all relative affine

transformations across two or more views resides in a three

dimensional linear subspace:

Proposition 1 Given a static scene with ✂ planar patches,

a reference view ❄ ❃ and other ❅ ✘ ❅✶❆ ✮ ✦
views ❇✣❄❉❈❋❊ ● ☛✮✞✢✳✲✕✲✕✲✕✢ ❅■❍ of this scene, the collection of all relative affine

transformations induced by these ✂ planar patches between

the reference view ❄ ❃ and any other view ❄❉❈ resides in a

three dimensional linear subspace of ✹❑❏▼▲ .

Proof: Denote the ✂ affine transformations between the

reference view and view ● as ✺ ❈✳◆ ✜✣✢✳✲✕✲✕✲✕✢ ✺ ❈✳◆ ✷ . From Eq.(2)

we have
❀ ✺ ❈✳◆ ✫ ☛ ✺ ❈✳◆ ✫ ❁✌✺ ❈✳◆ ❃ ☛ ✑ ✓❈ ✔ ✖✫ , where

✔❋✫ ☛
✧ ✚✞✜ ◆ ✫ ✢✤✚✣✥ ◆ ✫ ✢✤✚ ☎ ◆ ✫ ★ ✖ . Reshape each

❀ ✺ ❈✳◆ ✫ into a ❖■P ✮ column

vector, and stack them into a matrix
✴ ❈❏ ✝✟✷ . The following

factorization is obvious [20]:

✴ ❈❏ ✝✟✷ ☛
◗❘❘❘❘❘❘❙
✾ ❈✳◆ ✜ ✿ ✿✿ ✾ ❈✳◆ ✜ ✿✿ ✿ ✾ ❈✳◆ ✜✾ ❈✳◆ ✥ ✿ ✿✿ ✾ ❈✳◆ ✥ ✿✿ ✿ ✾ ❈✳◆ ✥

❚ ❯❯❯❯❯❯❱❳❲
◗❙ ✚✞✜ ◆ ✜❨✲✕✲✕✲✶✚✞✜ ◆ ✷✚✣✥ ◆ ✜❨✲✕✲✕✲✶✚✣✥ ◆ ✷✚ ☎ ◆ ✜❨✲✕✲✕✲✶✚ ☎ ◆ ✷

❚❱
☛❬❩ ❈❏ ✝✟☎ ❲❪❭

☎✞✝✟✷
(4)

where ❭ is common to all views. Therefore, we have:

✴ ❏▼▲ ✝✟✷ ☛
◗❘❘❙
✴ ✜✴ ✥✲✕✲✕✲✴ ▲

❚ ❯❯❱ ❏▼▲ ✝✟✷
☛ ◗❘❘❙

❩ ✜❩ ✥✲✕✲✕✲❩ ▲
❚ ❯❯❱ ❏▼▲ ✝✟☎ ❲❪❭

☎✞✝✟✷
(5)



The matrix dimension on the right-hand side of Eq.(5)

implies that the rank of
✴

is at most 3. ❫
For the special instantaneous homography, it is known

that there is a similar definition of relative projective ho-

mography and its subspace [29]. Instantaneous motion is

not required here. The affine camera is allowed to undergo

large motion (e.g., rotation) between frames.

The actual dimension of the subspace, i.e., the rank of ❴
in Eq.(5), depends on the scene and the camera geometry,

and could be lower than three. For example, if all planes

in the scene are parallel to each other (not necessary front-

parallel), or if there is only one plane in the scene, then the

subspace dimension is one instead of three.

Another important fact is that the assumption of static

scenes for deriving Eq.(5) is a sufficient condition but not a

necessary one. This means that even with moving objects

in the scene, we may still have a low dimensional linear

subspace.

3. Algorithm for Layer Extraction Using Sub-

space

Our algorithm to layer extraction has the following four

major steps: 1) construct the measurement matrix; 2) com-

pute the low dimensional linear subspace using robust SVD;

3) cluster the local measurements into initial layer models in

the subspace; 4) assign regions to layers, and post-process

to refine the layer supports. Outliers in local measurements

are detected in both Step 1 and 2.

In Step 1 and 4, we need to compute motion-

compensated residuals (pixel-wised) for a given region.

Given a multi-frame sequence, we need to sum up its mo-

tion compensated residuals between the reference frame and

every other frame in the sequence. Although the use of mul-

tiple frames introduces temporal redundancy and decreases

ambiguity, it unfortunately increases the chance for a region

to be occluded, which in turn results in unreliable average

residuals.

We use the temporal selection technique [14] to deal

with the above occlusion problem. The motion compen-

sated residual of region ❵ between the reference frame and

every other frame in the sequence are sorted in ascending

order. Only the first half part of the sorted results are used

to compute the final average residuals for region ❵ .
3.1. Measurement Matrix Construction

To derive the subspace, we must collect local measure-

ments (the affine motion of each local region/block) to build

the measurement matrix
✴

in Eq.(5). We divide the refer-

ence image (the image being segmented) into small ❛❜P❜❛
overlapped blocks ( ❛ ☛❝✮ ❖ in our experiments), where ad-

jacent blocks are overlapped with each other by half of the

block size 2. The affine motion directly estimated from a

small block often over-fits the data inside that block, and

could differs greatly from the global optimal motion, i.e.,

the corresponding layer model. Simply increasing the block

size reduces over-fitting effect, but at the same time in-

creases the chance that such block contains multiple mo-

tions, and therefore no longer corresponds to a planar patch

in the scene.

To deal with the above problem, we design a local pro-

cess to gradually expanding each small block into a larger

k-connected component (KCC). Each KCC should cover the

original starting block, while at the same time the residuals

inside it should be less than some small pre-defined value❞
. Being k-connected discards the thinly connected pixels,

which are usually textureless and are from other layers other

than the layer containing the starting block. The shape of a

KCC could be irregular. Given a ❛❜P❜❛ block ❵ in the ref-

erence frame, its ❡❣❢❤❢ is derived by the following local

process:✐
Step 1 (motion estimation): Compute the homography

of current ❡❣❢❤❢ w.r.t. every frame in the sequence,

and compute its motion compensated residuals using

temporal selection [14].✐
Step 2 (expanding/shrinking): Remove pixels with

residuals larger than
❞

from current ❡❣❢❤❢ . For each

pixel ❥ on the boundary of current ❡❣❢❤❢ , a ❛❦P❧❛
( ❛ ☛✙♠ in our experiments) test window ♥ is centered

at ❥ . ♥ is added to (removed from) ❡❣❢❤❢ if the ma-

jority of the pixels inside ♥ have residuals less (larger)

than
❞
. In our experiments, Step 2 is repeat four times

in one iteration to save computation time.✐
Step 3 (evaluation): Enforce the k-connected require-

ment. If the resulted ❡❣❢❤❢ becomes stable (the change

of area or motion parameters is small enough) or the

maximum number of iterations has been reached, then

the block ❵ is declared as an inlier. If the resulted❡❣❢❤❢ does not cover the original block ❵ , then ❵ is

marked as an outlier. Otherwise, goto Step 1.

The parameter
❞

specifies the noise level to be tolerated.

It depends on the geometry (the planarity) and the texture

of the underlying layer, and is set to a conservative small

value (

✮✳♠
in our experiments, with the pixel intensity range

of ✧ ✿✱✢✤✰✞♠✞♠ ★ ). Fig.(1) shows an example of the above local

process, given a ten-frame sequence. The small rectangle

in Fig.(1a) shows the initial block ❵ . Fig.(1b) shows the

residuals 3 after compensating the motion estimated based

2Overlapped blocks can effectively deal with occlusions or other

noises. For example, if a block is occluded (or contains multiple motions),

it is often the case that at least one of its overlapped blocks is not occluded.
3The residuals are scaled up for visualization.



on pixels inside ❵ . Although pixels inside ❵ are well com-

pensated, those pixels outside ❵ but inside the same layer

of ❵ (flower bed) are not well compensated. Fig.(1c) shows

the k-connected component after five iterations of the above

process. Fig.(1d) is the final converged result. We can see

that the pixels in the same layer are much better compen-

sated in (c) and (d) than that in (b), which indicates a bet-

ter global motion estimation result under the tolerable noise

level
❞
. In our experiments, we find that three to five iter-

ations are enough to obtain stabilized motion parameters.

For our purpose, we do not require the local process to con-

verge. Three iterations are enough to produce the desired

local measurements. In Fig.(1e), the initial region ❵ con-

tains two motions (the tree and the flower garden). The re-

sulted ❡❣❢❤❢ does not cover ❵ , therefore ❵ is marked as an

outlier.

3.2. Robust Subspace Computation

The subspace can be derived by factorizing the matrix♦✴
in Eq.(5) using SVD:♦✴ ❏▼▲ ✝✟✷ ☛✌♣ ❏▼▲ ✝ ❏▼▲✏q❤❏▼▲ ✝ ❏▼▲ ❭

✖ ❏▼▲ ✝✟✷ (6)

The diagonal of q contains the eigenvalues r ✫ of
♦✴

in de-

creasing order. The actual rank of
♦✴

depends on the cam-

era and the planes in the scene, and is detected by [11]:s✌t✫✈✉❋✇ r ✥✫s ❏▼▲✫✈✉❋✇ r ✥✫✆①③② (7)

where ④ is the rank of ⑤✴ , and ② determines the noise level

we want to tolerate.

The linear subspace ⑥ is defined by the first ④ columns

of ⑦ , which are the bases of the subspace. The remain-

ing

✘ ❖✞❅ ❁ ④ ✦ columns form the bases of the residual space,

which is orthogonal to ⑥ , and is denoted as ⑥✏⑧ . SVD as-

sumes Gaussian noise model and is sensitive to outliers,

which often exist in motion data. The existence of subspace

provides a constraint for outlier detection, making the sub-

space computation robust.

There are two kinds of outliers:✐
data with extreme values that inflate the covariance

matrix of
♦✴

.✐
data that can not be represented by the subspace ⑥ , and

have large projection values in the residual space ⑥✏⑧ .

The detection of the above outliers is based on the Ma-

halanobis distance ④ ✥✫ of the

✭
-th data point ⑨ ✫ :

④ ✥✫ ☛✽✘ ✺✒⑩✩❁ ✺ ✦❶✖❸❷■❹ ✜ ✘ ✺✒⑩✩❁ ✺ ✦ ☛ ❏▼▲❺❻ ✉ ✜ ✚
✥✫ ◆ ❻ (8)

where

❷
is the covariance matrix of

♦✴
. The derivation

of Eq.(8) is based on

❷ ❹ ✜ ☛❂♣✆❼ ❹ ✥ ♣ ✖
and ✺✒⑩✱❁ ✺ ☛♣✆❼ ✔ ⑩ .

Under the assumption that data are sampled from an un-

derlying elliptic normal distribution with covariance ma-

trix

❷
, ④ ✥✫ follows ❽ ✥ distribution with ❾ degrees of free-

dom [13]. All data samples with ④ ✥✫ lie outside the ❥ -

th percentage point of the corresponding ❽ ✥❿ distribution

( ❾ ☛ ❖✞❅ is the degrees of freedom) are marked as outliers.

A problem with the above distance measurement ④ ✥✫ is

that it may not give enough weight to the bases of the resid-

ual space ⑥❪⑧ , which usually identify the outliers that vio-

late the correlation structure imposed by the bulk of data,

but not necessarily inflate the covariance matrix. For this

reason, we also look at the residual space ⑥✏⑧ by examining

the following value: ➀ ✥✫ ☛ ❏▼▲❺❻ ✉ t✤➁ ✜ ✚
✥✫ ◆ ❻

where ④ is the rank of
♦✴

; and ➀ ✥✫ follows ❽ ✥❿ distribu-

tion [8], with degrees of freedom ❾ ☛ ❖✞❅ ❁ ④ .
Our algorithm for robust subspace computation consists

of the following steps:
✐

Step 1: Use SVD to compute an initial subspace.
✐

Step 2: Compute ④ ✥✫ and ➀ ✥✫ for each data point. Data

whose ④ ✥✫ and ➀ ✥✫ are outside the ❥ -th confidence inter-

val of ❽ ✥ distribution are marked as outliers.
✐

Step 3: Apply SVD to the set of inliers to recompute

the subspace.
✐

Step 4: Repeat Step 2 and 3 until the set of inliers sta-

bilizes.

3.3. Model Initialization by Subspace Clustering

We now apply a clustering algorithm to the data points

(projected local measurements) in the ④ -dimensional sub-

space for initial layer models (cluster centers). We adopt the

mean shift based clustering algorithm, proposed by Com-

maniciu and Meer [4, 5], because: (1) it is non-parametric

and robust; and (2) it can automatically derive the number

of clusters and the cluster centers. Refer to [4, 5] for a clear

description and details on this algorithm. Here we point

out two implementation details. First, the initial seeds for

the mean shift algorithm are chosen to uniformly distribute

across the image domain. Second, the window radius ❵ can

be derived from the covariance matrix of
♦✴

. According

to [4], in our experiments it is to be set proportional to➂ ☛✯➃ ② ❵✣➄✟➅ ✾✞✘ ➅ ➀ ✚✱✘ ♦✴ ✦▼✦
. We have found by experiments

that a wide range of ❵ produces the desired results, due to

the use of multiple frames.



(a) (b) (c) (d) (e)

Figure 1. Deriving the k-connected component (k=5): (a) initial region ➆ given by the white rectangle; (b) residuals after compen-

sation based on the motion estimated using the initial region ➆ ; (c) residuals and k-connected component after five iterations of the

local process; (d) converged residuals and k-connected component; (e) outlier region (final KCC does not cover the original block).

(a) reference frame (b) color segmentation (c) detected outliers (d) 4 layers extracted

(e) refined result (f) (g) (h)

(i) reference frame (j) color segmentation (k) detected outliers (l) 4 layers extracted

(m) refined result (n) (o) (p)

Figure 2. Layer extraction results. (a): reference frame; (b): color over-segmentation result; (c) detected outliers in local measure-

ments; (d): four initial layers extracted; (e): refined results on (d); (f-h): final results on another three frames of the flower-garden

sequence. (i)–(p) are the results on mobile & calendar sequence.



3.4. Assigning Color Regions to Models and Layer
Refinements

Once we are given the initial layer models (the cluster

centers), we can assign each color segment to the best layer

model. To utilize the spatial coherence, we assign over-

segmented color regions to layers, instead of individual pix-

els. To deal with occlusions, temporal selection [14] is used

here to determine the best layer model for a color region.

Very fine-grained over-segmentation [4] has been used to

assure that each homogeneous color segment is contained

inside only one layer. However, we still observe some spu-

rious regions, largely due to noises in the images, or the

disparities between color segment boundaries and motion

boundaries in some places. Such spurious regions appear at

different random positions in different frames, and can be

removed by using the fact that each layer corresponds to a

rigid and consistent plane in the scene, such that its shape in

the image domain is coherent or changes gradually across

time [22].

4. Experimental Results and Applications

We apply our algorithm to two real image sequences:

flower garden and mobile & calendar. To segment each

frame, its 10 neighbored frames are used as input to our

algorithm. Both sequences were found to have a three-

dimensional subspace of the original space ✹❑❏ ✇ , with the

noise level parameter in Eq.(7) set to ② ☛✌➇✞➈✞➉ .

4.1. Layer Extraction Results

Fig.(2a) shows one frame of the flower garden sequence,

where the scene is static and the camera is translating ap-

proximately horizontally. Fig.(2b) shows the very fine-

grained color over-segmentation result. Even the tree,

which has visually homogeneous color, has been over-

segmented into many color regions. Fig.(2c) highlights the

outliers detected by our algorithm. Motions estimated from

blocks containing multiple motions are mostly identified as

outliers. Fig.(2d) shows the four cluster centers (with as-

signed color regions) derived by the mean shift clustering

in the subspace. Color segments that are occluded in some

frames are still assigned to the right layers due to the use

of temporal selection in this step. Fig.(2e) shows the layers

refined by enforcing shape coherence across time. Fig.(2f-

h) show the layer extraction results on three other frames

in this sequence. Four layers corresponding to the house,

flower bed, tree, and tree branch are consistently extracted

in this sequence.

The rest of the images in Fig.(2) show the results of ap-

plying the same algorithm and parameters to the mobile &

calendar sequence. In this sequence, the train is pushing the

ball (rotating), and the calendar is moving up. At the same

time, the camera is zooming out and tracking the train. Four

layers are identified, namely the background, the ball, the

train, and the calendar. Notice that the ball has small sup-

port, but distinct motion, which tends to be missing in other

previous work, for example in [1].

4.2. Application: Video Compression

We show the preliminary results of applying layer rep-

resentation to video compression. Each input video seg-

ment is compactly represented by layer mosaics 4. Fig.(3a

& b) shows the four layer mosaics of the flower garden

sequence (30 frames). We are able to compress the orig-

inal video sequence from about

➈✞➊✙➋
to about ➌ ✿ ❡ ➋ 5.

Fig.(3c) shows the recovered frame based on the layer rep-

resentation, whose original frame is shown in Fig.(2a). The

remaining images in Fig.(3) show the similar results for mo-

bile & calendar sequence. We are able to compress it from

about

➇✞➊✙➋
(30 frames) to about ➌ ♠ ❡ ➋ . Note that higher

compression ratio can be achieved with longer sequence.

5. Conclusions

We have presented a robust subspace approach to ex-

tracting 2D layers from image sequence. Our subspace ap-

proach has the following advantages: (1) clusters in the sub-

space become denser and better-defined; (2) robustness is

achieved by both the local process (Section 3.1) and the sub-

space constraint; (3) spatial and temporal constraints from

multiple frames are simultaneously utilized by using sub-

space; and (4) noise in estimated motion is reduced by sub-

space projection. Together with mean shift based clustering

algorithm, we have demonstrated that the use of low dimen-

sional subspace leads to good layer descriptions on real im-

ages.

Finally, note that in this paper we model layers with 2D

parametric motion. In such model, an object (e.g., human

body) with non-rigid or articulate motion will be segmented

into multiple layers. To be able to segment such object as

one single layer, we need to increase the complexity of the

layer model and combine other cues in addition to motion

cues, which is still not a well-defined task, and is part of our

future work.
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