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Abstract Tracking in low frame rate (LFR) videos is one of

the most important problems in the tracking literature. Most

existing approaches treat LFR video tracking as an abrupt

motion tracking problem. However, in LFR video tracking

applications, LFR not only causes abrupt motions, but also

large appearance changes of objects because the objects’

poses and the illumination may undergo large changes from

one frame to the next. This adds extra difficulties to LFR

video tracking. In this paper, we propose a robust and general

tracking system for LFR videos. The tracking system con-

sists of four major parts: dominant color-spatial based object

representation, bin-ratio based similarity measure, annealed
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particle swarm optimization (PSO) based searching, and an

integral image based parameter calculation. The first two

parts are combined to provide a good solution to the appear-

ance changes, and the abrupt motion is effectively captured

by the annealed PSO based searching. Moreover, an integral

image of model parameters is constructed, which provides a

look-up table for parameters calculation. This greatly reduces

the computational load. Experimental results demonstrate

that the proposed tracking system can effectively tackle the

difficulties caused by LFR.

Keywords Low frame rate · Tracking · Dominant color ·

Bin-ratio matching metric · Particle swarm optimization

1 Introduction

Tracking in LFR videos has received more and more attention

because of its wide applications in micro embedded systems

(e.g. mobile vision systems and car vision systems) and visual

surveillance. There are two major situations in which LFR

videos are produced: (1) LFR videos may be produced when

image frames are missed because of hardware delay in the

image acquisition system or the limitation of transmission

bandwidth; (2) the frame rate of the data streams may be

down-sampled because of limitations in the storage or the

processing power of the CPU. The design of robust tracking

systems for LFR videos is an important and challenging issue

in the tracking literature.

The frame rate for LFR video is usually less than ten

frames per second, resulting in large appearance changes

and abrupt motion between successive image frames. How-

ever, most traditional tracking algorithms are based on the

state continuity hypothesis, in which it is assumed that the

changes in object motion and appearance in successive image
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frames are small. In typical applications of particle filter-

ing to tracking (Isard and Blake 1998), motion prediction

is based on the tracking results in the previous frame. For

the iterative optimization based tracking algorithms, such as

Kanade–Lucas–Tomasi (KLT) (Tomasi and Kanade 1991),

template matching algorithm (Hager and Belhumeur 1998)

and mean shift (Comaniciu et al. 2003), the initialization of

the optimizer is based on the tracking results in the previ-

ous frame. So the above classical tracking algorithms do not

yield satisfactory results when applied to LFR video.

Tracking in LFR videos has been much less investigated

than tracking in full frame rate videos. Porikli and Tuzel

(2005, 2006), extend the mean shift algorithm to a multi-

kernel mean shift algorithm, and apply it to the motion map

which is obtained from background subtraction, in order to

overcome the abrupt motion caused by LFR video. A cas-

cade particle filter which integrates conventional tracking and

detection is proposed by Li et al. (2008) for LFR video track-

ing. In this approach, detectors learned from different ranges

of samples are adopted to detect the moving object. This

approach requires complex detectors and time-consuming

off-line training, and the detectors only work well in face

tracking. In Carrano (2009), the object motion is detected

from background subtraction, and then four features, namely

phase cross correlation, average intensity difference, velocity

difference, and angle difference are combined for match-

ing between consecutive image frames. Zhang et al. (2009)

adopt region based image differencing to estimate the object

motion. The predicted motion is used to guide the particle

propagation in a particle filter. In summary, all of the above

work assumes that the only problem with LFR tracking is

abrupt motion. However, in practice, LFR not only causes

abrupt motion, but also large appearance changes because the

object pose and the illumination may undergo large changes

from one frame to the next. As a result, it is necessary to take

both the abrupt motion and the appearance changes of the

object into consideration. In order to design a robust track-

ing system for LFR videos, we start with the following two

requirements: (1) robust appearance modeling, to deal with

the changes in object pose and illumination; (2) effective

searching methods, to capture the abrupt motion of the object.

Below, we will investigate the related work on appearance

modeling and motion searching.

1.1 Related Work

1.1.1 Appearance Model

The appearance model of the object is a basic issue to be

considered in tracking algorithms. An image patch model

(Hager and Belhumeur 1998), which takes the set of pix-

els in the target region as the model representation, is a

direct way to model the target, but it loses the discrimina-

tive information that is contained in the pixel values. The

color histogram Comaniciu et al. (2003), Nummiaro et al.

(2003) provides global statistical information about the tar-

get region which is robust to noise, but it has two major

problems: (1) the histogram is very sensitive to illumina-

tion changes; (2) the relative positions of the pixels in the

image are ignored. A consequence of (2) is that trackers

based on color histograms are prone to lose track if the object

is near to other objects with a similar appearance. In Isard

and Blake (1998), curves or splines are used to represent the

apparent boundary of the object, and the Condensation algo-

rithm is developed for contour-based tracking. Due to the

simplistic representation, which is confined to the apparent

boundary, the algorithm is sensitive to image noise, leading

to tracking failures in cluttered backgrounds. Stauffer and

Grimson (1999) employ a Gaussian mixture model (GMM)

to represent and recover the appearance changes in consec-

utive frames. Jepson et al. (2003) develop a more elaborate

Gaussian mixture model which consists of three components

S, W, L , where the S component models temporally stable

images, the W component models the two-frame variations,

and the L component models data outliers, for example those

caused by occlusion. An online EM algorithm is employed to

explicitly model appearance changes during tracking. Later,

Zhou et al. (2004) replace the component L with a compo-

nent F , which is a fixed template of the target, to prevent the

tracker from drifting away from the target. This appearance

based adaptive model is embedded into a particle filter to

achieve robust visual tracking. Wang et al. (2007) present an

adaptive appearance model based on a mixture of Gaussians

model in a joint spatial-color space, referred to as SMOG.

SMOG captures rich spatial layout and color information.

However, these GMM based appearance models consider

each pixel independently and with the same level of con-

fidence, which is not reasonable in practice. In Porikli et al.

(2006), the object to be tracked is represented by a covari-

ance descriptor which enables efficient fusion of different

types of features and modalities. Another category of appear-

ance models is based on subspace learning. For example, in

Black and Jepson (2004), a view-based eigenbasis represen-

tation of the object is learned off-line, and applied to form

a tracking algorithm which matches successive views of the

object. However, it is very difficult to collect training samples

that cover all possible viewing conditions. Therefore, this

algorithm is only feasible under those conditions for which

training data has been obtained. Later, some researchers

update the object subspace in the tracking process to cap-

ture the changes of the appearance. The pioneering work

on applying the incremental subspace learning to tracking

is by Lim et al. (2004), where they extend the Sequential

Karhunen–Loeve (SKL) (Levy and Lindenbaum 2000) algo-

rithm to effectively learn the variations of both appearance

and illumination in an incremental way.
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However, the aforementioned appearance models ignore

the background information and do not perform well when

the background is noisy and cluttered. In order to deal with

these cases, a set of discriminative based appearance models

are proposed (Collins et al. 2005; Lin et al. 2004; Avidan

2004; Avidan 2007; Grabner et al. 2006; Grabner et al. 2008;

Saffari et al. 2010; Babenko et al. 2011). For example, Collins

et al. (2005) firstly note the importance of background infor-

mation for object tracking, and formulate tracking as a binary

classification problem between the tracked object and its sur-

rounding background. In Lin et al. (2004), a two-class Fisher

discriminant analysis (FDA) based model is proposed to learn

a discriminative subspace to separate the object from the

background. In Avidan (2007), an ensemble of online weak

classifiers are combined into a strong classifier. A proba-

bility map is constructed by the classifier to represent the

probabilities of the pixels belonging to the object or the back-

ground. Grabner et al. (2006) adopt online boosting to select

discriminative local tracking features. Each selected feature

corresponds to a weak classifier that separates the object from

the background. Saffari et al. (2010) introduce a novel on-line

random forest algorithm for feature selection that allows for

on-line building of decision trees. In Babenko et al. (2011),

Babenko et al. use multiple instance learning instead of tradi-

tional supervised learning to learn the weak classifiers. This

strategy is more robust to the drifting problem.

Overall, the complex appearance models (such as the sub-

space model, the Gaussian mixture model and learning based

appearance models) do not adapt well to the large appearance

changes, while the simple models (such as color histogram)

are not robust and discriminative enough. Since there are

large appearance changes of the object in LFR video, it is

necessary to find a balance between adaptability and robust-

ness.

1.1.2 Searching Method

Most of the existing tracking algorithms can be formulated

as optimization processes, which are typically tackled using

either deterministic searching methods (Kass et al. 1988;

Hager and Belhumeur 1998; Comaniciu et al. 2003) or sto-

chastic searching methods (Isard and Blake 1998; Nummiaro

et al. 2003; Bray et al. 2007). Deterministic searching meth-

ods usually involve a gradient descent search to minimize a

cost function. The snakes model introduced by Kass et al.

(1988) is a good example. The aim is to obtain a tight con-

tour enclosing the object by minimizing an energy function.

In Hager and Belhumeur (1998), the cost function is defined

as the sum of squared differences between the observation

candidate and a fixed template. Then the motion parameters

are found by minimizing the cost function through a gra-

dient descent search. Mean shift, which firstly appeared in

Fukunaga and Hostetler (1975) as an approach for estimating

the gradient of a density function, is applied by Comaniciu

et al. (2003) to visual tracking, in which the cost function

between two color histograms is minimized through the mean

shift iterations. In general, deterministic searching methods

are usually computationally efficient but they easily become

trapped in local minima. In contrast, stochastic searching

methods have a higher probability of reaching the global

optimum of the cost function. For example, in Isard and

Blake (1998), Nummiaro et al. (2003), object tracking is

viewed as an online Bayesian inference problem, which is

solved by randomly generating a large number of particles

to find the maximum of the posterior distribution. Bray et al.

(2007) use the stochastic meta-descent strategy to adapt the

step size of the gradient descent search, and thus avoid local

minima of the optimization process, when applied to articu-

lated structure tracking. Leung and Gong (2007) incorporate

random subsampling into mean shift tracking to boost its effi-

ciency and robustness for low-resolution video sequences.

Compared with the deterministic counterparts, stochastic

searching methods are usually more robust, but they incur

a large computational load, especially if the state space has

a high dimension.

As stated in Sect. 1, both the deterministic searching meth-

ods and stochastic searching methods are based on the state

continuity hypothesis in tracking applications. For this rea-

son, they do not yield satisfactory results in case of LFR

video.

1.2 Our Work

In view of the forgoing discussions, we analyze the track-

ing problem in case of LFR video from the following three

aspects: (1) object representation, (2) matching criterion, (3)

searching method, and design a robust and general track-

ing system for LFR video. Although our tracking system is

designed with the LFR video in mind, it can handle the sim-

ilar tracking problems in the normal video arising from fast

moving objects or camera motion. The main contributions of

our work are:

1. The object is represented by the dominant color-spatial

distribution of the object region. This representation can

extract the dominant color modes of the object region,

and simultaneously remove the noisy image pixels. In

addition, the spatial distribution of the dominant color

mode is utilized to improve the discriminative ability of

the representation.

2. A bin-ratio based similarity measure is used to evaluate

the difference between the dominant color of the object

template and the dominant color of the candidate region.

This measure is robust under (1) illumination changes,

(2) partial occlusion, (3) contamination by background

pixels.
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Fig. 1 The flow chart of the proposed tracking system

3. In order to handle the abrupt motions caused by LFR

video, we propose an annealed particle swarm opti-

mization (PSO) method. Inspired by the social behavior

of bird flocking, the particles in this searching method

cooperate and communicate with each other, and the

shared information guides the evolution of the particles.

This mechanism realizes robust searching for the abrupt

motions.

4. Each particle specifies a candidate image region. The

fitness value of a particle is evaluated during the PSO iter-

ation process, using the similarity between the candidate

image region and the object template. Many candidate

image regions may overlap, and the image pixels inside

the overlapping region will be used in many separate cal-

culations of the similarity between the candidate image

region and the object template. This involves a large and

unnecessary computational load. In order to avoid the

unnecessary computation, we calculate a integral image

of model parameters which establishes a parameter-

particle look-up table. In this way, each pixel inside the

candidate region needs to be calculated only once. As a

result, the computational complexity is greatly reduced.

An overview of the proposed tracking system for LFR

video is systematically presented in Fig. 1. There are four

major components in the proposed tracking system: (1) dom-

inant color-spatial based object representation, (2) bin-ratio

based similarity measure, (3) integral image of model para-

meters, (4) annealed PSO based searching process. We will

give a detailed description of each component in the follow-

ing sections.

The rest of the paper is organized as follows. The dominant

color-spatial based object representation is described in Sect.

2. The bin-ratio based similarity measure is introduced in

Sect. 3. The annealed PSO searching method and integral

image of model parameters are presented in Sects. 4 and 5

respectively. Experimental results are shown in Sects. 6 and

7 is devoted to conclusion.

2 Dominant Color-Spatial Based Object

Representation

In our work, the major color modes inside the object region

are firstly obtained by a dominant-set based clustering algo-

rithm, and then the spatial distribution of each color mode is

extracted to enhance the discriminative ability of the color

model.

2.1 Dominant-Set Based Clustering Algorithm

Suppose given an undirected edge-weighted graph G =

(V, E, A), where V is the vertex set, E is set of weighted

edges that link different vertices, and A is a symmetric simi-

larity matrix in which ai j represents the similarities between

vertex i and vertex j . The aim of dominant-set clustering

is to cluster the vertices in V according to the similarity

matrix A. Concepts and algorithms for dominant-set clus-

tering are briefly introduced hereinafter for the convenience

of the reader.

2.1.1 Concept of Dominant Set

A dominant set, as defined by Pavan and Pelillo (2003), is

a combinatorial concept in graph theory that generalizes the

notion of a maximal complete subgraph to edge-weighted

graphs. The characteristics of dominant-set clustering rest

with the definition of dominant sets.

Specifically, let S ⊆ V be a nonempty subset of vertices.

For any vertex i ∈ S, the average weighted degree of i relative

to S is defined as

DS(i) =
1

|S|

∑

j∈S

ai j (1)

where |S| is the number of vertices in S. For a vertex j /∈ S,

the similarity φS(i, j) between vertices i and j relative to S

is defined as φS(i, j) = ai j − DS(i). Then, the weight wS(i)

of i ∈ S relative to S is defined as

wS(i) =

{

1, if |S| = 1
∑

j∈S\{i} φS\{i}( j, i)wS\{i}( j), otherwise

(2)

Intuitively, wS(i) measures the relative similarity between

vertex i and the vertices of S\{i} with respect to the overall

similarity among the vertices in S\{i}. Based on the definition

of wS(i), the total weight of S is defined as
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W (S) =
∑

i∈S

wS(i) (3)

The set S is defined as a dominant set if it satisfies the fol-

lowing conditions (Pavan and Pelillo 2003): (1) ∀T ⊂ S,

W (T ) > 0; (2) ∀i ∈ S, wS(i) > 0; and (3) ∀i /∈ S,

wS(i) < 0. Condition (1) indicates that vertices in each sub-

set of S are closely and firmly united. Condition (2) indicates

that S has large attraction to each vertex in S. Condition (3)

indicates that S has no large attraction to any vertex outside

S. Conditions (1) and (2) describe the internal homogeneity

of S. Condition (3) describes the external heterogeneity of S.

The definition of a dominant set simultaneously emphasizes

internal homogeneity and external inhomogeneity, and thus

is considered to be a general definition of “cluster”.

2.1.2 Clustering Algorithm

Pavan and Pelillo (2003) establish an intriguing connection

between the dominant set and a quadratic optimization prob-

lem as follows:

maximize g(z) = zT Az

subject to z ∈ � (4)

where z is the indictor vector of samples in the clustering

process that satisfies

� =

{

z ∈ R
n : zi ≥ 0 and

n
∑

i=1

zi = 1

}

.

A is the similarity matrix of the input samples, and g(·) is the

objective function which defines the cohesiveness of a cluster

in a natural way. Let z∗ denote a strict local solution of (4), and

let σ(z∗) be the vertex support set of z∗: σ(z∗) = {i |z∗
i > 0}.

It has been proved in Pavan and Pelillo (2003) that the vertex

support set σ(z∗) corresponds to a dominant set in the graph

represented by A. This allows us to formulate the pairwise

clustering problem as the problem of finding a vector z∗ that

solves (4). The value g(z∗) at the local maximum indicates

the “cohesiveness” of the dominant-set cluster specified by

z∗.

Pavan and Pelillo (2003) use the following iterative equa-

tion to solve (4)

zi (t + 1) = zi (t)
(Az(t))i

z(t)T Az(t)
, i = 1, . . . , n (5)

where t indexes the number of iterations. Meanwhile, the

authors prove Pavan and Pelillo (2003) that the trajectory z(t)

generated by Eq. (5) converges to a strict local maximizer of

program (4).

Table 1 Dominant-set clustering algorithm

Input: the similarity matrix A

1. Initialize Ak , k = 1 with A

2. Calculate the local solution of (4) by (5): z∗
k and g(z∗

k )

3. Get the dominant set: Sk = σ(z∗
k )

4. Split out Sk from Ak and get a smaller similarity matrix Ak+1

5. If Ak+1 is not a null matrix, Ak ← Ak+1 and k = k + 1, then go

to step 2; else exit

Output: ∪k
l=1{Sl , z∗

l , g(z∗
l )}

Based on the above discussion, dominant set clustering

can be conducted in a bipartition way. To cluster the samples,

a dominant set of the weighted graph is found by Eqs. (4) and

(5) and then removed from the graph. This process is iterated

until the graph is empty. Each dominant set defines a clus-

ter. Table 1 contains the algorithm for the clustering process.

Therefore, dominant-set clustering has two advantages: (1)

In contrast with many traditional clustering algorithms (k-

means and mean shift), it can automatically determine the

number of the clusters; (2) the computational demand is low

compared with that of other graph-theoretic clustering algo-

rithms that rely on an eigen analysis of A.

2.1.3 Fast Assignment Algorithm

To group any new samples obtained after the clustering

process has taken place, Pavan and Pelillo (2005) propose

a fast assignment algorithm which does not need to conduct

a new dominant-set clustering. Let S ⊂ V be a subset of

vertices which is dominant in the original graph G and let

i be a new data vertex. As stated in Sect. 2.1.1, the sign of

wS∪{i}(i) provides an indication as to whether i is tightly or

loosely coupled with the vertices in S. However, if only the

sign of wS∪{i}(i) is considered, then the same point can be

assigned to more than one class. This ambiguity is removed

as follows. The degree of participation of i in S ∪{i} is given

by the ratio between wS∪{i}(i) and W (S ∪ {i}). Since com-

puting the exact value of the ratio wS∪{i}(i)/W (S ∪ {i}) is

computationally expensive, a simple approximation formu-

las is provided in Pavan and Pelillo (2005).

wS∪{i}(i)

W (S ∪ {i})
≈

|S| − 1

|S| + 1

(

αT z∗
S

g(z∗
S)

− 1

)

(6)

where α is an affinity vector containing the similarities

between the new sample i and the original n samples, and z∗
S

is the solution of problem (4) to obtain the dominant set S.

The new sample i is assigned to the cluster with the largest

value of wS∪{i}(i)/W (S ∪ {i}). The detail of the fast assign-

ment algorithm is shown in Table 2.
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Table 2 Dominant-set fast assignment algorithm

Input: Affinity vector α ∈ R
n , ∪k

l=1{Sl , z∗
l , g(z∗

l )}

1. Compute bl =
|Sl |−1
|Sl |+1

(
αT z∗

l

g(z∗
l )

− 1), l ∈ {1, . . . , k}

2. l∗ = argmaxl bl

3. If bl∗ > 0, assign α to the cluster Sl∗ ; else l∗ = 0,α is consider as

an outlier

Output: l∗

2.2 Dominant Color Mode Extraction

Given a image region, we first convert the RGB color space

to the rgI space using the following formulas:

r = R/(R + G + B), g = G/(R + G + B),

I = (R + G + B)/3

Then we define the pixel-pairwise graph, where the weight

ai j on the edge connecting node i and node j is calculated

by:1

ai j = c exp(−||fi − f j ||
2) (7)

where fi = (r, g, I ) is the intensity value of pixel i in the

rgI color space, and c is the normalization factor. Then, we

apply the dominant set based clustering algorithm to the con-

structed pixel-pairwise graph, and obtain the dominant color

modes {Sl , zl}
k
l=1. In tracking applications, if all the pixels

are clustered by a dominant set based clustering algorithm,

then there will be many small clusters. Therefore the cluster-

ing is stopped if the number of the remaining pixels (vertices)

is less than 5 % of the total pixel number inside the object

region. This criterion has two advantages: (1) the outliers can

be effectively filtered out; (2) the number of dominant colors

is not strongly affected by the size of the object.

2.3 Spatial Layout of the Dominant Color

The above dominant color based representation captures the

color distribution in the image region of interest. However,

the spatial layout of pixels falling into the same color mode is

ignored. In order to overcome this problem, the spatial mean

μl and the variance �l of the lth color mode are extracted as

follows.

μl =

∑

i piδ(L(i) − l)
∑

i δ(L(i) − l)
(8)

�l =

∑

i (pi − μl)(pi − μl)
T δ(L(i) − l)

∑

i δ(L(i) − l)
(9)

1 Here, the component I is normalized as I/255.

where pi is the coordinate of the pixel i relative to the center

position of the image region, and L(i) is a label function to

assign the pixel i to a given cluster. δ(·) is the Kronecker

function such that δ(L(i) − l) = 1 if L(i) = l and δ(L(i) −

l) = 0 otherwise.

As a result, the image region of interest can be represented

by {ωl ,μl ,�l}
k
l=1, where ωl is the weight of the lth dominant

color mode and is calculated as follows:

ωl =

∑

i δ(L(i) − l)
∑k

l=1

∑

i δ(L(i) − l)
(10)

3 Similarity Measure for Matching

3.1 Bin-Ratio Based Color Distance Measure

3.1.1 Motivation

Let uO = {uO
l }k

l=1 be a k-bin color histogram that rep-

resents the color distribution of the pixels in the object

template. The candidate histogram uC = {uC
l }k

l=1 is calcu-

lated as follows: first, the pixels inside the candidate image

patch are assigned to the bins of the object histogram uO

using the fast assignment algorithm in Table 2, and then

uC is obtained according to the results of the assignment.

Traditionally, the similarity between uO = {uO
l }k

l=1 and

uC = {uC
l }k

l=1 is evaluated by the Bhattacharyya measure

Comaniciu et al. (2003): ρ(uO , uC ) =
∑k

l=1

√

uO
l uC

l , or the

histogram intersection measure Swain and Ballard (1991):

Q(uO , uC ) =
∑k

l=1 min(uO
l , uC

l ). However, these measures

are sensitive to illumination changes and image clutter. In

tracking applications, as the object region is often represented

by a rectangle, the histograms are often corrupted by back-

ground clutter that is irrelevant to the object. For example, as

shown in Fig. 2, a large portion of pixels represented with blue

Fig. 2 An example of background clutter problem (u1: histogram

without background pixels, u2: histogram with background pixels, u3:

uniformly distributed histogram)
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are background, which fall into the fourth bin of histogram.

We can see that u1 and u2 look very different after normal-

ization, which means pixels from the background introduce

noise into the histogram which may cause inaccurate match-

ing.

To validate the above claim, we test the above two mea-

sures on this example. By introducing a uniformly distributed

histogram u3 for reference, the following results are obtained:

ρ(u1, u2) = 0.24 < ρ(u1, u3) = 0.25, Q(u1, u2) = 0.6 <

Q(u1, u3) = 0.65. Both ρ(·, ·) and Q(·, ·) are similarity

measures which means they can not find a correct match

among u1, u2 and u3 in this case.

3.1.2 Proposed Distance Measure

To overcome these drawbacks, we introduce a bin-ratio based

color distance measure, which was firstly proposed for cate-

gory and scene classification in our previous work Xie et al.

(2010). For a k-bin histogram u = {ul}
k
l=1, a k∗k ratio matrix

Br is defined using the ratios of paired bin values. Each ele-

ment in the matrix has the form (ui/u j ) which measures the

ratio of bin i and j . The ratio matrix is shown as follows:

Br =

(

ui

u j

)

i, j

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

u1
u1

u2
u1

· · ·
uk

u1

u1
u2

u2
u2

· · ·
uk

u2

· · · · · · · · · · · ·

u1
uk

u2
uk

· · ·
uk

uk

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(11)

With the definition of the ratio matrix, we compare the

vth bin between two histograms uO and uC using the dis-

tance measure Mv , which is defined as the sum of squared

difference between the vth rows of the corresponding ratio

matrices of uO and uC :
∑k

l=1

(

uO
l

uO
v

−
uC

l

uC
v

)2

. The ratio matrix

Br suffers from the instability problem when its entries are

close to zero. To avoid this problem, we include the nor-

malization part 1
uO

v
+ 1

uC
v

and define the following distance

measure,

Mv(u
O , uC ) =

k
∑

l=1

((

uO
l

uO
v

−
uC

l

uC
v

)

/

(

1

uO
v

+
1

uC
v

)

)2

=

k
∑

l=1

(

uO
l uC

v − uO
v uC

l

uO
v + uC

v

)2

(12)

As shown in Eq. (12), the numerator uO
l uC

v − uO
v uC

l can still

represent the difference of ratios. The denominator uO
v +uC

v is

similar to the normalization part in the X 2 distance Puzicha

et al. (1997), included to make the distance measure more

stable. Based on the L2 normalization
∑k

l=1 u2
l = 1, the

above distance measure can be simplified as follows.

Mv(u
O , uC ) =

k
∑

l=1

(

uO
l uC

v − uO
v uC

l

uO
v + uC

v

)2

=

∑k
l=1((u

C
v uO

l )2 + (uO
v uC

l )2 − 2uO
v uC

v uO
l uC

l )

(uO
v + uC

v )2

=
(uC

v )2
∑k

l=1(u
O
l )2 + (uO

v )2
∑k

l=1(u
C
l )2 − 2uO

v uC
v

∑k
l=1(u

O
l uC

l )

(uO
v + uC

v )2

=
(uC

v )2 + (uO
v )2 − 2uO

v uC
v

∑k
l=1(u

O
l uC

l )

(uO
v + uC

v )2

=
(uC

v + uO
v )2 − uO

v uC
v (2 +

∑k
l=1 2uO

l uC
l )

(uO
v + uC

v )2

=
(uC

v + uO
v )2 − uO

v uC
v

∑k
l=1((u

O
l )2 + (uC

l )2 + 2uO
l uC

l )

(uO
v + uC

v )2

=
(uC

v + uO
v )2 − uO

v uC
v

∑k
l=1(u

O
l + uC

l )2

(uO
v + uC

v )2

= 1 −
uO

v uC
v

(uO
v + uC

v )2
||uO + uC ||22

where ||uO + uC ||2 is the L2 norm of uO + uC and can be

obtained before the distance calculation. Therefore, this dis-

tance measure has a linear computational complexity in the

bin number, as do the Bhattacharyya distance and histogram

intersection distance.

The bin-ratio distance between color histograms uO and

uC is formulated as follows:

�c(u
O , uC ) =

k
∑

v=1

Mv(u
O , uC )

=

k
∑

v=1

(

1 −
uO

v uC
v

(uO
v + uC

v )2
||uO + uC ||22

)

(13)

The above bin-ratio distance measure is robust under 1) illu-

mination changes, 2) partial occlusion, 3) contamination by

background pixels. For the example in Fig. 2, the result

of the bin-ratio distance measure is �c(u1, u2) = 1.4 <

�c(u1, u3) = 1.5 which is correct. These claims are further

supported by experiments on both synthetic data and real data

as reported in Sect. 6.

3.2 Spatial Distance Measure

As stated in Sect. 1.1.1, the spatial layout information is not

included in the color based distance measure. Therefore, we

extract the spatial layout information of each dominant color

mode, and introduce a spatial distance measure to enhance

the robustness of the color based distance measure.
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For the object image and a candidate region, the spa-

tial mean and the covariance matrix of each color mode are

computed as in Eqs. (8) and (9) accordingly: {μO
l ,�O

l }k
l=1,

{μC
l ,�C

l }k
l=1. Together with the weight of the correspond-

ing color mode, the spatial distance measure �s(u
O , uC ) is

defined as follows:

�s(u
O , uC ) =

k
∑

l=1

ωl exp

{

−
1

2
(μO

l − μC
l )T (�O

l

+�C
l )−1(μO

l − μC
l )

}

(14)

where the weight ωl is calculated using the target template

as in (10), and updated in the parameter updating process.

As a result, the dominant color-spatial based similarity

measure can be defined as follows.

�cs(u
O , uC ) = exp

{

1

2σ 2
1

(1 − �s(u
O , uC ))

}

∗ exp

{

−
1

2σ 2
2

�c(u
O , uC )

}

(15)

where σ 2
1 , σ 2

2 are the parameters which balance the influence

of spatial distance and bin-ratio distance.

3.3 Parameter Updating

In most tracking applications, the tracker must deal with

changes in the appearance of the object, so it is necessary

to design an updating scheme for the parameters employed

in the appearance model.

The updating process is described in detail as follows.

1. Suppose the tracking result for the current frame has

been obtained. Based on the label information and the

positions of the pixels inside the image region obtained

by tracking results, the parameters {ωl ,μl ,�l}
k
l=1 of the

object model are updated as in Eqs. (8), (9) and (10).

2. There may be outlier pixels left inside the image region

obtained by tracking results when applying the dominant-

set fast assignment algorithm to the image region. If the

number of the outlier pixels exceeds 1/6 of the total

number of pixels inside the tracked image region and

their cohesiveness value evaluated by g(·) exceeds the

cohesiveness value of the smallest cluster in the target

template, then these pixels are grouped as a new clus-

ter which is added to the object model; otherwise these

pixels are filtered out as noise.

In this way, the parameter updating process makes a trade-

off between robustness and adaptation. As a result, it not

only effectively captures the variations of the target, but also

reliably prevents drifting during tracking.

4 Swarm Intelligence Based Searching Method

The abrupt motions in LFR image sequences cause sample

impoverishment when they are tracked using a particle filter.

We first investigate the reason for this sample impoverish-

ment and then propose a swarm intelligence based searching

method: annealed particle swarm optimization, which can

overcome the sample impoverishment problem both in the-

ory and practice.

4.1 Sample Impoverishment Problem of Particle Filter

The particle filter is an on-line Bayesian inference process

for estimating an unknown state st at time t from sequential

observations o1:t perturbed by noise. The Bayesian inference

process is based on

p(st |o1:t ) ∝ p(ot |st )p(st |o1:t−1) (16)

where the prior p(st |o1:t−1) is the propagation of the previous

posterior density along the temporal axis,

p(st |o1:t−1) =

∫

p(st |st−1)p(st−1|o1:t−1)dst−1 (17)

When the state transition distribution p(st |st−1) and obser-

vation distribution p(ot |st ) are non-Gaussian, the above

integration is intractable and one has to resort to numeri-

cal approximations such as particle filters. The basic idea of

particle filter is to use a number of particles {si
t }

N
i=1, sampled

from the state space, to approximate the posterior distribu-

tion by p(st |o1:t ) = 1
N

∑N
i=1 δ(st − si

t ), where δ(·) is the

Dirac function. Since it is usually impossible to sample from

the true posterior, an easy-to-implement distribution, the so-

called proposal distribution denoted by q(·) is employed,

hence si
t ∼ q(st |s

i
t−1, o1:t ), (i = 1, . . . , N ), and each parti-

cle’s weight is set to

ηi
t ∝

p(ot |s
i
t )p(si

t |s
i
t−1)

q(st |s
i
t−1, o1:t )

. (18)

Finally, the posterior probability distribution is approximated

by p(st |o1:t ) =
∑N

i=1 ηi
t δ(st − si

t ).

The proposal distribution q(·) is critically important for

a successful particle filter because it concerns putting the

sampling particles in the useful areas where the posterior is

significant. In tracking applications, the state transition distri-

bution p(st |st−1) is usually taken as the proposal distribution

because of its simplicity. To cope with unpredictable motion,
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Fig. 3 Sample impoverishment problem

most state transition models use a naive random walk around

the previous system state. As shown in Fig. 3, when the object

undergoes abrupt motion, the performance of the particle fil-

ter is very poor because most particles have low weights,

thereby leading to the well-known sample impoverishment

problem.

As proved in Doucet et al. (2000), it is shown that the ‘opti-

mal’ importance proposal distribution is p(st |s
i
t−1, ot ) in the

sense of minimizing the variance of the importance weights.

However, in practice, it is impossible to use p(st |s
i
t−1, ot ) as

the proposal distribution in the non-linear and non-Gaussian

cases, because it is difficult to sample from p(st |s
i
t−1, ot )

and to evaluate p(ot |s
i
t−1) =

∫

p(ot |st ) p(st |s
i
t−1)dst . So

the question is, how to incorporate the current observation ot

into the transition distribution p(st |st−1) to form an effective

proposal distribution at a reasonable computation cost?

4.2 Annealed Particle Swarm Optimization

In this part, we propose an annealed particle swarm optimiza-

tion (APSO) algorithm to effectively search for the object

motion parameters. From the particle filtering point of view,

the searching process in APSO is an approximation to the

optimal importance sampling.

4.2.1 Iteration Process

Particle swarm optimization Kennedy and Eberhart (1995), is

a population-based stochastic optimization technique, which

is inspired by the social behavior of birds flocking. In detail, a

PSO algorithm is initialized with a group of random particles

{si,0}N
i=1 (N is the number of particles). Each particle si,0 has

a corresponding fitness value f (si,0) and a relevant velocity

vi,0, which is a function of the best state found by that particle

(pi , for individual best), and of the best state found so far

among all particles (g, for global best). Given these two best

values, the particle updates its velocity and state with the

following equations in the nth iteration,

vi,n+1 = ξnvi,n + ϕ1ρ1(p
i − si,n) + ϕ2ρ2(g − si,n) (19)

si,n+1 = si,n + vi,n+1 (20)

where ξn is the inertial weight, the ϕ1, ϕ2 are acceleration

constants, and ρ1, ρ2 ∈ (0, 1) are uniformly distributed ran-

dom numbers. The inertial weight ξn is usually a monoton-

ically decreasing function of the iteration number n. For

example, given a user-specified maximum weight ξmax , a

minimum weight ξmin and the initialization of ξ0 = ξmax ,

one way to update ξn is as follows:

ξn+1 = ξn − dξ, dξ = (ξmax − ξmin)/nmax (21)

where nmax is the maximum iteration number.

In order to reduce the number of parameters in the above

PSO iteration process, we propose an annealed Gaussian ver-

sion of PSO algorithm (APSO), in which the iteration process

is modified as follows:

vi,n+1 = |r1|(p
i − si,n) + |r2|(g − si,n) + ǫ (22)

si,n+1 = si,n + vi,n+1 (23)

where |r1| and |r2| are the absolute values of the independent

samples from the Gaussian probability distribution N (0, 1),

and ǫ is a zero-mean Gaussian perturbation noise which pre-

vents the particles from becoming trapped in local optima.

The covariance matrix of ǫ is changed in an adaptive simu-

lated annealing way Ingber (1993):

�ǫ = �e−cn (24)

where � is the covariance matrix of the predefined transition

distribution, c is an annealing constant, and n is the iteration

number. The elements in �ǫ decrease rapidly as the iteration

number n increases which enables a fast convergence rate.

Then the fitness value of each particle is evaluated using

the observation model p(oi,n+1|si,n+1) as follows.

f (si,n+1) = p(oi,n+1|si,n+1) (25)

Here, the observation model p(oi,n+1|si,n+1) reflects the sim-

ilarity between the candidate image observation oi,n+1 and

the target model which is defined in Eq. (15).

After the fitness value of each particle f (si,n+1) is evalu-

ated, the individual best and the global best of particles are

updated in the following equations:

pi =

{

si,n+1, if f (si,n+1) > f (pi )

pi , else
(26)

g = arg max
pi

f (pi ) (27)

In analogy with the foraging behavior of the bird flocks, here

the optimal state of f (·) corresponds to food, and the particles

in state space correspond to birds.
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As a result, the particles interact locally with one another

and with their environment in analogy with the ‘cognitive’

and ‘social’ aspects of animal populations, and eventually

cluster in the regions where the local optima of f (·) are

located. In Eq. (22), the three terms on the right hand side

represent cognitive effect, social effect and noise part respec-

tively, where cognitive effect refers to the evolution of the

particle according to its own observations, and social effect

refers to the evolution of the particle according to the coop-

eration between all particles.

4.2.2 Approximation to Optimal Importance Sampling

When applied to the tracking applications, the sequential

information should be incorporated into the annealed PSO

algorithm. In particular, the initial particles in the annealed

PSO algorithm are firstly sampled from the transition distri-

bution as follows:

s
i,0
t ∼ N (pi

t−1,�) (28)

In our tracking process, resampling is not needed because the

individual best of the particle set {pi
t−1}

N
i=1 converged at time

t − 1 provides a compact sample set for time propagation,

and then the annealed PSO iterations are carried out until

convergence.

From the particle filtering point of view, the above process

is a two-stage sampling strategy to generate samples that

approximate to samples from the ‘optimal’ proposal distrib-

ution p(st |s
i
t−1, ot ): first, in the coarse importance sampling

stage, the particles are sampled from the state transition

distribution as in (28) to enhance their diversity. In the

fine importance sampling stage, the particles evolve through

APSO iterations, and are updated according to the newest

observations. In fact, this is essentially a latent multi-layer

importance sampling process with an implicit proposal dis-

tribution. Let st ∈ R
d be a d-dimensional state. Let’s focus

on one APSO iteration in Eqs. (22) and (23). The distribution

of the lth element in the vector |r1|(p
i
t − s

i,n
t ) is as follows:

|r1|(pi
t − s

i,n
t )l ,

∼

{

2N (0, (pi
t − s

i,n
t )

2

l ) [0,+∞), if (pi
t − s

i,n
t )l ≥ 0

2N (0, (pi
t − s

i,n
t )

2

l ) (−∞, 0), otherwise

where l = 1, . . . , d. As shown in Fig. 4, the distribution is

defined on half domain of a Gaussian distribution but with

two times the usual Gaussian amplitude. Therefore, the dis-

tribution of |r1|(p
i
t − s

i,n
t ) is |r1|(p

i
t − s

i,n
t ) ∼ R1, where R1

is defined on half domain of a d-dimensional Gaussian dis-

tribution with a doubled amplitude as follows.
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Fig. 4 Pdf for a Gaussian distribution: N (0, 1) (red) and for a Gaussian

distribution conditioned to have support in [0,+∞): 2N (0, 1) (blue)

2N (0,� p), � p =

⎛

⎜

⎜

⎝

(pi
t − s

i,n
t )

2

1 0

. . .

0 (pi
t − s

i,n
t )

2

d

⎞

⎟

⎟

⎠

Similarly, |r2|(gt − s
i,n
t ) is distributed on the half domain of

the following distribution R2

2N (0,�g), �g =

⎛

⎜

⎜

⎝

(gt − s
i,n
t )

2

1 0

. . .

0 (gt − s
i,n
t )

2

d

⎞

⎟

⎟

⎠

Together with ǫ ∼ R3 = N (0,�ǫ), the implicit proposal

distribution behind an APSO iteration is R = R1 ∗ R2 ∗

R3
2 with a s

i,n
t translation. Here ∗ stands for the convolution

operator.

In this way, the PSO iterations can naturally take the cur-

rent observation ot into consideration, since {pi
t }

N
i=1 and gt

are updated to their observations. Therefore, with coarse

importance sampling from the state transition distribution

p(st |p
i
t−1), the hierarchical sampling process can approxi-

mate to the optimal sampling from p(st |s
i
t−1, ot ).

As shown in Fig. 5, when the transition distribution is sit-

uated in the tail of the observation likelihood, the particles

directly drawn from this distribution do not cover a significant

region of the likelihood, and thus the importance weights of

most particles are low, leading to unfavorable performance.

In contrast, through hierarchial sampling process in our algo-

rithm, the particles are moved towards the region where the

likelihood of observation has larger values, and are finally

2 Since the analytical form of R is not available, we called it latent

sampling process.
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Fig. 5 Sampling results after PSO iterations

relocated to the dominant modes of the likelihood, demon-

strating the effectiveness of our sampling strategy.

4.3 Differences to Previous Work

Image observations have been utilized for particle guidance

in previous work Sullivan and Rittscher (2001), Choo and

Fleet (2001). In Sullivan and Rittscher (2001), a momen-

tum based on the differences between consecutive frames

is used to determine the search mechanism and the size of

the particle set. Motion prediction based on the differences

between consecutive frames is unreliable, especially in the

LFR video. Besides, the tracking framework in Sullivan and

Rittscher (2001) is a particle filter which is not effective in

dealing with the abrupt motion in LFR videos. In Choo and

Fleet (2001), Choo and Fleet propose a hybrid Monte Carlo

technique. Multiple Markov chains are employed to rapidly

explore the state space using posterior gradients. The target

posterior is approximated by a linear mixture of transition

densities and measurement density. However, it is impossi-

ble to define a proper transition density, because the object

motion is unpredictable in the LFR video, thus leading to an

inefficient sampling in the LFR video tracking.

5 Integral Image of Model Parameters

When evaluating the the fitness value of each particle in the

APSO iteration process, we need to calculate the parameters

of the candidate image region to obtain the similarity measure

in Eq. (15). As shown in Fig. 6, the candidate image regions

corresponding to the particles may have many overlapped

areas, and the image pixels inside the overlapping region

will be used repeatedly in calculations. This involves large

and unnecessary computational load.

5.1 Integral Image Calculation

The motivation is to avoid the unnecessary computation. The

idea is to: first, estimate the maximal coverage region of the

particle set, and then calculate the label and position features

for each pixel. Finally, construct the integral image of these

features. The details are described as follows.

Fig. 6 An illustration example

• Estimate the maximal coverage region 
 of the particle

set, that is a region which includes all the possible parti-

cles. To determine this set, we require prior information

about the object motion. However, in LFR video, it is

difficult to estimate the abrupt motion. In our work, we

introduce a variable κmax
t which is the absolute value of

the maximum velocity in a second up to time t . The max-

imal coverage region 
 for time t + 1 is set to the image

area corresponding to [gt − 1.2κmax
t , gt + 1.2κmax

t ],

where gt is the tracking result of the object state at time

t . Here, the maximal coverage region is heuristically

selected by utilizing the motion information in the pre-

vious tracking process, and thus provides a reasonable

bound on the movement of the particles and a certain

capability to take account of their acceleration.

• Label each pixel in 
 using the fast assignment algo-

rithm in Table 2, and then construct a 5D feature for

each pixel qi = {δ(L(i) − l), (pi )x , (pi )y, (pi )
2
x , (pi )

2
y},

where δ(L(i) − l) is the Kronecker function such that

δ(L(i) − l) = 1 if L(i) = l and δ(L(i) − l) = 0 other-

wise. (pi )x , (pi )y are, respectively, the x and y coordinate

values of the pixel i .

• Construct the integral image of the 5D feature for each

color mode. For example, given a position pi , the cor-

responding value of the integral image for the lth color

mode is

H l
i =

∑

pk∈
,pk≤pi ,L(k)=l

qk

• Calculate the parameters of the candidate image region.

Suppose the corresponding image region of a given par-

ticle is D, as shown in in Fig. 7(b). Similar to Viola and

Jones (2004), the integral image of this region for the lth

color mode can be easily obtained by four table lookup

operations H l
4 + H l

1 − H l
2 − H l

3. As a result, the para-

meters of this particle can be obtained from Eqs. (8), (9)

and (10).

A similar idea is used in previous work Wang et al. (2007).

Our method is different from Wang et al. (2007) in that: (1) In
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Fig. 7 a Solid line: Particle set, dashed line: the coverage region. b An

illustration of calculation the rectangle integral image

Wang et al. (2007), the particle filtering framework is used

and thus it is easy to obtain the coverage region 
 of par-

ticle set after the particle generation process. The particles

change in the iterations of particle swarm optimization and

thus it is more difficult to estimate the coverage region 


of all possible particles. (2) Pixels inside 
 are labeled by

a nearest neighbor classifier in Wang et al. (2007). In our

work, labelling is realized by the dominant-set fast assign-

ment algorithm.

5.2 Computational Complexity Analysis

In summary, the features of each pixel need to be calcu-

lated only once even though the APSO algorithm is iterative.

The complexity is analyzed as follows: In the APSO based

searching process, there are two parameters which affect the

computational complexity: the number of particles N and the

iteration number M . Let Y be the computational complex-

ity for evaluating one particle without the integral image, let

y be the computational complexity for evaluating one parti-

cle with the integral image, and let C be the computational

complexity for building the integral image. The total com-

putational complexity without the integral image is N MY .

While with the integral image built in this section, the compu-

tational complexity is N My + C . In more detail, y includes

the cost of a set of table lookup operations and the direct

computation in Eq. (15), and satisfies y � Y . The value of C

depends on the experimental data, and we have C/Y < 10 in

our experiments. Assuming C/Y = 10 and ignoring y, the

integral image strategy can achieve N MY
N My+C

= N M
10

times

speed up. The relationships among Y, y, C are validated in

our experiments.

6 Experimental Results

In this section, we first carry out two experiments with syn-

thetic data to analyze and validate the claimed advantages of

the bin-ratio based distance measure and the annealed par-

ticle swarm optimization based searching method. Then we

test the proposed tracking system in the following aspects on

real data: different object representations, different similarity

measures, different searching methods, different frame rates

and average running time. All the experiments are conducted

with Matlab on a platform with Pentium IV 3.2GHz CPU

and 512M memory. The initial object positions are manually

labeled.

6.1 Synthetic Analysis of Bin-Ratio Based Distance

Measure

To validate the claimed advantages of the bin-ratio based

distance measure, we compare it with the histogram inter-

section measure (Swain and Ballard 1991) in the presence of

illumination changes and image clutters.

6.1.1 Robustness to Illumination Changes

In this part, we assume that the target region is represented

by a 20 × 20 patch in which the pixel values are drawn

from a uniform distribution over {0, 1, . . . , 255}. The cor-

responding histogram u1 is obtained by uniformly grouping

the pixels into 16 bins.3 When the illumination changes, we

assume that the intensities of a ratio ς ∈ [0, 100 %] of pixels

within the patch change by a factor m in the range [1/5, 5]

(the intensities of pixels are set to 255 if their values are

bigger than 255 after illumination changes), and the cor-

responding histogram is u2. For comparison, we generate

another histogram u3 in a similar way to u1, for reference.

For the bin-ratio based distance, since it is a distance mea-

sure, �c(u1, u2) < �c(u1, u3) indicates the robustness to

illumination changes. While the histogram intersection dis-

tance Q(·, ·) is a similarity measure, Q(u1, u2) > Q(u1, u3)

shows its robustness to illumination changes. We repeat this

process for 10,000 times and calculate the frequency that

these inequalities are correct for various m and ς . The exper-

imental results are reported in Table 3.

The results in Table 3 are analyzed in two aspects as fol-

lows.

1. Let us first focus on ς . Both measures have poor per-

formance when ς > 50 %. The reason is that: when

the intensities of more than 50 % pixels increase or

decrease by the same factor (simulating for the illumi-

nation changes), and then these pixel values shift to the

bins of hight intensity value or low intensity value. As a

result, the corresponding histogram u2 is very different

from the uniform histogram u1. In addition, u1 and u3 are

both generated in the same way, and they are all nearly

3 Since the patch is generated by a uniform distribution, the dominant

set clustering can not achieve better performance than uniform binning.
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Table 3 The accuracies of

different measures with different

values of ς and m

ς Method m = 1
5

m = 1
4

m = 1
3

m = 1
2

m = 2 m = 3 m = 4 m = 5

ς = 10 % �c(·, ·) 0.982 0.988 0.987 0.984 0.983 0.983 0.977 0.968

Q(·, ·) 0.996 0.999 0.999 0.999 0.998 0.994 0.99 0.983

ς = 20 % �c(·, ·) 0.844 0.887 0.956 0.967 0.88 0.758 0.633 0.508

Q(·, ·) 0.675 0.801 0.898 0.957 0.817 0.547 0.353 0.256

ς = 30 % �c(·, ·) 0.337 0.457 0.656 0.817 0.549 0.202 0.106 0.062

Q(·, ·) 0.081 0.15 0.402 0.728 0.318 0.05 0.017 0.005

ς = 40 % �c(·, ·) 0.034 0.07 0.207 0.504 0.181 0.025 0.007 0.002

Q(·, ·) 0.002 0.008 0.05 0.334 0.06 0 0 0

ς = 50 % �c(·, ·) 0.001 0.005 0.022 0.155 0.034 0.001 0 0

Q(·, ·) 0 0 0.002 0.089 0.007 0 0 0

ς = 60 % �c(·, ·) 0 0 0 0.023 0.003 0 0 0

Q(·, ·) 0 0 0 0.016 0 0 0 0

ς = 70 % �c(·, ·) 0 0 0 0 0 0 0 0

Q(·, ·) 0 0 0 0 0 0 0 0

ς = 80 % �c(·, ·) 0 0 0 0 0 0 0 0

Q(·, ·) 0 0 0 0 0 0 0 0

ς = 90 % �c(·, ·) 0 0 0 0 0 0 0 0

Q(·, ·) 0 0 0 0 0 0 0 0

Better performance values are given in bold

uniform distributions. Therefore, finding a correct match

among u1, u2 and u3 is really a challenging task. If u3

is generated from a Gaussian distributed patch, then the

performance of two measures will significantly improve

and �c(·, ·) still outperforms Q(·, ·) in most cases.

2. �c(·, ·) performs better than Q(·, ·) in most cases except

ς = 10 %. In this case, only 10 % of pixels are affected

by illumination changes, and the bins of the histogram

are influenced only slightly after normalization. There-

fore the histogram intersection distance Q(·, ·) changes

only slightly. However, when ς > 20 %, more pixels are

contaminated which cause the imbalance between differ-

ent bins and the bin-ratios can deal the imbalance more

better.

6.1.2 Robustness to Image Clutter

In this part, we assume the target is randomly corrupted by

image clutter, e.g. background noise and partial occlusion.

As before, u1 represents the histogram of the target. The

image clutter is simulated as follows. We randomly select a

ratio ς ∈ [0, 100 %] pixels within the patch and replace the

intensity values of these pixels by a certain value m ∗ 255.

The resulting histogram u2 represents the target under image

clutter.

The parameters in this experiment are set as follows:

ς ∈ [0, 100 %] is the proportion of bins influenced by the

image clutter, and m is sampled uniformly from [0, 1]. In

this experiment, u3 is generated from a Gaussian distributed

patch with mean 128 and standard deviation 32.4 The exper-

iment is run for 10,000 times, and the proportion of distance

comparisons that correctly match u1 and u2 is recorded. The

experimental results are reported in Table 4.

The results in Table 4 are analyzed as follows. First,

�c(·, ·) outperforms Q(·, ·) in all cases. This shows that the

bin-ratio used for evaluation is more robust to the image clut-

ter. Second, we find that both �c(·, ·) and Q(·, ·) have a poor

performance when ς > 50 %. This reasonable because more

than 50 % pixels are background or occluded which causes

incorrect matching.

6.2 Synthetic Analysis of Annealed Particle Swarm

Optimization

In this part, APSO is tested on a popular non-linear state

estimation problem, which is described as a benchmark in

many papers (Merwe et al. 2000). Consider the following

nonlinear state transition model given by

st = 1 + sin(̟π(t − 1)) + φ1st−1 + γt−1, st ∈ R (29)

where γt−1 is a Gamma Ga(3, 2) random variable modeling

the process noise, and ̟ = 4e − 2 and φ1 = 0.5 are scalar

parameters. A non-stationary observation model is as follows

4 Pixels are replaced to simulate image clutter which is more challeng-

ing than scaling by a factor in case of illumination changes. For this

reason the entries of u3 are not uniform in size. For more detail, please

refer to analysis in Sect. 6.1.1.
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Table 4 The accuracies of

different measures with different

values of ς and m

ς Method m = 0 m = 1
7

m = 2
7

m = 3
7

m = 4
7

m = 5
7

m = 6
7

m = 1

ς =10 % �c(·, ·) 1 1 1 1 1 1 1 1

Q(·, ·) 1 1 1 1 1 1 1 1

ς = 20 % �c(·, ·) 1 1 1 1 1 1 1 1

Q(·, ·) 1 1 1 1 1 1 1 1

ς = 30 % �c(·, ·) 1 1 1 1 1 1 1 1

Q(·, ·) 0.936 0.941 0.946 0.924 0.937 0.945 0.928 0.941

ς = 40 % �c(·, ·) 0.999 0.999 1 1 1 1 1 1

Q(·, ·) 0.003 0.001 0.005 0 0.001 0.003 0.002 0.001

ς = 50 % �c(·, ·) 0.387 0.387 0.372 0.372 0.381 0.358 0.398 0.326

Q(·, ·) 0 0 0 0 0 0 0 0

ς = 60 % �c(·, ·) 0.001 0.001 0.001 0 0 0 0 0

Q(·, ·) 0 0 0 0 0 0 0 0

ς = 70 % �c(·, ·) 0 0 0 0 0 0 0 0

Q(·, ·) 0 0 0 0 0 0 0 0

ς = 80 % �c(·, ·) 0 0 0 0 0 0 0 0

Q(·, ·) 0 0 0 0 0 0 0 0

ς = 90 % �c(·, ·) 0 0 0 0 0 0 0 0

Q(·, ·) 0 0 0 0 0 0 0 0

ot =

{

φ2x2
t + nt , t ≤ 30

φ3xt − 2 + nt , t > 30
(30)

where φ2 = 0.2, φ3 = 0.5, and the observation noise nt is

drawn from a Gaussian distribution N (0, 0.00001). Given

only the noisy observation ot , several filters are used to

estimate the underlying state sequence st for t = 1 . . . 60.

Here, we compare APSO with conventional particle filter

(Arulampalam et al. 2002), extended Kalman based particle

filter (Freitas et al. 2000), unscented particle filter (Merwe

et al. 2000), auxiliary particle filter (Pitt and Shephard 1999),

and conventional particle swarm optimization Kennedy and

Eberhart (1995).5 For each algorithm, a proposal distrib-

ution is chosen as shown in Table 5. The parameters in

APSO and PSO are set as follows: � = 0.8, c = 2,

ϕ1 = ϕ2 = 1, ξmax = 0.8, ξmin = 0.1, T = 20. Figure

8 gives an illustration of the estimates generated from a sin-

gle run of the different filters. Compared with other nonlinear

filters, APSO is more robust to the outliers, when the observa-

tion is severely contaminated by the noise. Since the result of

a single run is a random variable, the experiment is repeated

100 times with re-initialization to generate statistical aver-

ages. Table 5 summarizes the performance of all the different

filters in the following aspects: the means, variances of the

mean-square-error (MSE) of the state estimates and the aver-

age execution time for one run. It is obvious that the average

accuracy of APSO is better than generic PF, EKPF, APF and

5 We call these filters APSO, PF, EKPF, UPF, APF, PSO respectively

for short in the following parts.

Table 5 Experimental results of state estimation

Algorithm Proposal MSE mean MSE var Time(s)

PF p(xt |xt−1) 0.42225 0.045589 3.6939

EKPF N (x̄t , P̄t ) 0.31129 0.015167 13.014

UPF N (x̄t , P̄t ) 0.06977 0.024894 26.2815

APF p(xt |xt−1) 0.55196 0.037047 7.1835

PSO p(xt |xt−1) 0.13019 0.044086 10.2087

APSO p(xt |xt−1) 0.060502 0.06852 6.8005

comparable to that of UPF. However, the real-time perfor-

mance of our algorithm is much better than UPF as Table

5 shows. Meanwhile, we can see that APSO can achieve a

much faster convergence rate than conventional PSO. This

is because the velocity part employed in Eq. (19) carries lit-

tle information, while the annealing part in APSO iterations

enhances the diversity of the particle set and its adaptive

effect enables a fast convergence rate. In summary, the total

performance of APSO prevails over that of other nonlinear

filters.

In order to further evaluate the sampling effectiveness of

the hierarchical sampling process in APSO, we consider a

special case of the state space model as follows:

st = f (st−1) + γt−1, γt−1 ∼ N (0, 10) (31)

ot =
st

20
+ nt , nt ∼ N (0, 1) (32)

where f (st−1) =
st−1

2
+

25st−1

1+s2
t−1

+8 cos(1.2(t−1)). As proved

in Doucet et al. (2000), when applying Bayesian filtering
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Fig. 8 An illustration of a single run of different filters. a True data. b PF. c EKPF. d UPF. e APF. f APSO

methods to the above nonlinear Gaussian filtering problem,

there is an analytic form of the optimal proposal distribution,

which is formulated as follows.

p(st |st−1, ot ) = N

(

40

41
f (st−1) +

20

41
ot ,

400

41

)

(33)

Based on the optimal proposal distribution, we conduct an

experiment to test the sampling effectiveness of the above

mentioned nonlinear filters. In each nonlinear filter, after the

importance sampling process, we obtain a set of samples

{si
t }

N
i=1 (N = 100), and the effectiveness of the sampling is

evaluated by calculating the log-likelihood of the samples on

the optimal proposal distribution in the following way.

E({si
t }

N
i=1) = log

(

N
∏

i=1

N (si
t ,

40

41
f (st−1) +

20

41
ot ,

400

41
)

)

(34)

where N (si
t ,

40
41

f (st−1) + 20
41

ot ,
400
41

) is the value of si
t on the

proposal distribution in Eq. (33). If all the sample points are

located on the mode of this distribution, the value of E(·) is

−89.4. Values close to −89.9 demonstrates that the samples

are close to the mode of the proposal distribution. The average

value of E(·) for each nonlinear filter is shown in Table 6,

Table 6 Sampling effectiveness of all the nonlinear filters

PF EKPF UPF APF APSO

Ē(·) −206 −150.6 −122.6 −189.7 −112.8

which shows that APSO is the most effective in sampling

among all the nonlinear filters.

6.3 Tracking Applications

6.3.1 Description of Testing Videos

The proposed tracking system is tested with 9 video seq-

uences and their original frame rate is 15. Most of them are

from public datasets, and have public groundtruth. Detailed

information on the video sequences, including the frame rate

number, derivation, total length and whether groundtruth is

available, are shown in Table 7. For sequence 6 and sequence

8, the object in these two sequences has large motion, so they

are not down sampled in the frame rate.

6.3.2 Different Object Representations

To show the influence of the object representation on the

tracking performance, we conduct experimental compar-

isons of the dominant color-spatial based representation,
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Table 7 Dataset description

Data Frame rate Derivation Length Groundtruth

Sequence 1 5 http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.htm 210 Yes

Sequence 2 3 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ 310 Yes

Sequence 3 3 http://whluo.net/category/code_software/ 238 No

Sequence 4 5 http://staff.science.uva.nl/~smeulder/research.html 392 No

Sequence 5 3 http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.htm 250 Yes

Sequence 6 15 http://vision.stanford.edu/~birch/headtracker/ 31 No

Sequence 7 1 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ 900 Yes

Sequence 8 15 http://cv.snu.ac.kr/research/~vtd/ 71 Yes

Sequence 9 1–5 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ 200 Yes

(a) color histogram based representation

(b) 4x4 block color histogram based representation

(c) dominant color-spatial based representation

Fig. 9 Tracking performances of sequence 1 for frame #1,34,70,100,127,154,205. a Color histogram based representation. b 4×4 block color

histogram based representation. c Dominant color-spatial based representation

the color histogram based representation, 4×4 block color

histogram based representation, the subspace based repre-

sentation (Ross et al. 2008), and the region covariance based

representation (Hu et al. 2012).6

As shown in Fig. 9, for the color histogram based object

representation, the tracking window starts to move away from

the object position at frame 70 when the background is clut-

tered and the illumination changes. The track is completely

lost when the object is partially occluded by the car. For the

4×4 block color histogram based representation, it deals with

the background clutter and illumination changes better than

the color histogram based object representation, but the track

still fails under partial occlusion. The reason is twofold: (1)

the color histogram is sensitive to background distractions

6 The original source code can be found at http://whluo.net/

code-for-tracker-based-on-riemannian-subspace-learning/.
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Fig. 10 The RMSE curve of tracking results of sequence 1
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Table 8 Quantitative results

(RMSE: root mean square error,

STR: successful tracking rate)

Method Average RMSE STR (%)

Sequence 1 Color histogram based representation 58.7649 31.7

4×4 block color histogram based representation 39.5608 58.6

Dominant color-spatial based representation 8.1202 100

Sequence 5 Histogram intersection based measure 18.0977 74

Mutual information based measure 15.5154 98

Bin-ratio based measure 6.1326 100

Sequence 7 Particle filter 19.5267 81.7

Annealed particle filter 6.0856 100

Annealed PSO 4.9474 100

Sequence 8 MIL tracker 49.4837 15.5

SSOB tracker 15.2096 84.5

Tuzel’s tracker 14.054 97.1

Our tracker 8.3869 100

and illumination changes; (2) the color histogram and the

4×4 block color histogram are not robust enough to the par-

tial occlusion. Because the relative positions of the object

pixels are ignored in the color histogram, even divided into

4×4 block, it contains very little information about the spa-

tial layout of the dominant colors. In contrast, the dominant

color-spatial based representation overcomes the above two

limitations by using the dominant color modes and extract-

ing their spatial information. As a result, the object is tracked

successfully throughout the video sequence As shown in Fig.

10 and Table 8, the tracking accuracy is also quantitatively

analyzed by calculating the root mean square error (RMSE)

between the tracking results and the groundtruth and suc-

cessful tracking rate (STR). When the overlap area of the

tracking results and the groundtruth is less than 30 % of

the area of the groundtruth, we consider this is a failure to

track. STR is successful tracking rate throughout the whole

sequence. We can see the average RMSE for the color his-

togram representation is 58.7649 pixel distance, the average

RMSE for the 4×4 block color histogram representation is

39.5068 pixel distance and the average RMSE for our repre-

sentation is 8.1202 pixel distance. Correspondingly, the STR

for the three different appearance models are 31.7, 58.6, 100

%.

The comparison between dominant color-spatial based

representation and subspace based representation is illus-

trated in Fig. 11, from which we can see that the subspace

model drifts away from the object when the object turns

around at frame 251 and loses the object completely at frame

341 when the object bows. The reason is the large appearance

changes and variations in the object’s pose caused by the low

frame rate. Thus the correspondence of pixels between the

object and the subspace is not accurate, leading to the track-

ing failure. The dominant color-spatial based representation

finds a good balance between adaptability and robustness,

and thus can adapt well to these appearance changes. As

a result, it can successfully track the object throughout the

sequence.

Furthermore, the comparison between dominant color-

spatial based representation and the region covariance based

representation is shown in Fig. 12. The tracker based on the

region covariance features fails when the man bows down to

reach the ground at frame 176. The reason is that the region

covariance feature is calculated based on the coordinates,

intensity values and intensity derivatives of the image pixels.

When the man suddenly bows down in the LFR video, there

is a sudden change in the covariance feature. The appearance

model employed in our work simply captures the dominant

colors. This ensures a larger tolerance to the pose changes,

and thus a better tracking performance.

6.3.3 Different Measures

In this part, an experimental comparison among the bin-ratio

based measure, the histogram intersection based measure

Swain and Ballard (1991) and the mutual information based

measure7 is carried out.

As shown in Fig. 13, sequence 4 undergoes three kinds of

illumination changes. The top row and the middle row show

the similar tracking results using the histogram intersection

based measure and the mutual information based measure.

It is clear that the trackers gradually drift away from the

true position, because the match between the object and the

template is not accurate after the illumination changes. In

contrast, the proposed measure is not directly based on the

number of pixels contributing to a particular color bin. The

use of bin-ratios reduces the influence of the illumination

changes. Therefore, the bin-ratio based measure achieves sat-

7 http://en.wikipedia.org/wiki/Mutual_information
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(a) subspace based representation

(b) dominant color-spatial based representation

Fig. 11 Tracking performances of sequence 2 for frame #161,201,251,341,376,396,446. a Subspace based representation. b Dominant color-spatial

based representation

(a) region covariance based representation

(b) dominant color-spatial based representation

Fig. 12 Tracking performances of sequence 3 for frame #1,46,76,126,176,191,221. a Region covariance based representation. b Dominant color-

spatial based representation

(a) Histogram intersection based measure

(b) Mutual information based measure

(c) Bin-ratio based measure

Fig. 13 Tracking performances of sequence 4 for frame #262,280,289,340,355,370,391. a Histogram intersection based measure. b Mutual

information based measure. c Bin-ratio based measure

123



Int J Comput Vis

(a) Histogram intersection based measure

(b) Mutual information based measure

(c) Bin-ratio based similarity

Fig. 14 Tracking performances of sequence 5 for frame #2,37,87,122,172,237,242. a Histogram intersection based measure. b Mutual information

based measure. c Bin-ratio based similarity

isfactory tracking results in sequence 3 (see the bottom row

of Fig. 13).

We also test these three measures on a video sequence

with partial occlusion. As shown in Fig. 14, for the his-

togram intersection based measure and the mutual infor-

mation based measure, the occluded pixels are discarded,

since these pixels can not provide positive information

for matching, leading to inaccurate localization. While in

the proposed similarity measure in Eq. (13), the similar-

ity between corresponding color bins is a summation of

the ratios of all the color bins. This alleviates the influence

of the occlusion, and achieves a more accurate localiza-

tion. In addition, the RMSE between the tracking results

and the groundtruth is calculated and presented in Fig. 15

and the STR is presented in Table 8. From these quantita-

tive results, we find that bin-ratio measure achieves the best

performance.

6.3.4 Different Searching Methods

To provide experimental validation of the analysis in Sect.

4, we compare the APSO based searching method with the

particle filtering based searching method and the annealed

particle filtering based searching method Deutscher et al.

(2000). To make the comparison more convincing, the

annealing is only applied to the diffusion variance. The para-

meters employed in the three searching methods are set as

follows: (1) For sequence 6, the number of particles used in

the particle filter is 600, and the number of particles used

in APSO and annealed particle filter is 60 with 10 annealed
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Fig. 15 The RMSE curve of tracking results of sequence 5

iterations. (2) For sequence 7, the number of particles used

in the particle filter is 200, and the number of particles used

in APSO and annealed particle filter is 20 with 10 annealed

iterations. All the searching methods are initialized with the

same diffusion variances that correspond to the searching

region in the state space.

As shown in Fig. 16, the particle filtering based searching

method fails to track the rapid motion of the object, because

it can not catch the rapid motion of the object. More particles

and an enlargement of the searching region may improve its

performance, but this will lead to a high computational cost

for searching and involves more noise. The annealed parti-
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(a) particle filter

(b) annealed particle filter

(c) annealed PSO

Fig. 16 Tracking performances of sequence 6 for frame #1,6,11,16,22,28,31. a Particle filter. b Annealed particle filter. c Annealed PSO

(a) particle filter

(b) annealed particle filter

(c) annealed PSO

Fig. 17 Tracking performances of sequence 7 for frame #401, 521, 686, 851, 986, 1151, 1286. a Particle filter. b Annealed particle filter. c Annealed

PSO

cle filter can achieve a better performance than the particle

filter, because the annealed iterations can enlarge the search-

ing space. However, there is no guidance information for the

evolution of particles in the annealed particle filter. In the

APSO based searching method, the particles evolve accord-

ing to individual and environmental information in the search

space, and thus never lose track of the object even under

abrupt motion. Meanwhile, the random perturbations of the

particles ensure that the search does not become trapped in

local optima and the annealing factor enables a much faster

convergence rate.

Figure 17 shows some key frames of the tracking results

in sequence 7, from which we can also find that APSO and

the annealed particle filter achieve similar tracking results,

because the motion generated by LFR in this sequence is not

very large. The particle filter fails to track the man when he

suddenly turns around, which validates the analysis of the

sample impoverishment problem in Sect. 4.1. Furthermore,

123



Int J Comput Vis

400 500 600 700 800 900 1000 1100 1200 1300
0

10

20

30

40

50

60

70

80

The frame number of sequence 7

R
M

S
E

particle filter:               19.5267

annealed particle filter: 6.0856

annealed PSO:             4.9474

Fig. 18 The RMSE curve of tracking results of sequence 7

we have conducted a quantitative evaluation of these two

searching methods, and have a comparison in MSE between

the tracking results and the groundtruth. Figure 18 shows

the RMSE curve of the tracking results for sequence 7. The

average RMSE for the particle filter is 19.5267 pixel distance

and the average RMSE for APSO is 4.9474 pixel distance.

6.3.5 Comparison with State-of-the-Art Trackers

To make the experiments more convincing, we conduct a

comparison experiment between our algorithm and three

state-of- the-art discriminative tracking algorithms (Grab-

ner et al. 2008; Babenko et al. 2011; Tuzel et al. 2008).

Specifically, these three competing trackers are referred as

semi-supervised on-line boosting (SSOB) (Grabner et al.

2008), multiple instance learning (MIL) (Babenko et al.

2011),8 and Tuzel’s tracker Tuzel et al. (2008). All the algo-

rithms use the same searching region in the tracking process,

and a greedy exhaustive search strategy is adopted by SSOB

and MIL.

The eighth sequence contains a running buck, with a clut-

tered background. As shown in Fig. 19, we can see that MIL

fails to track the object at frame 12 and can not recover the

track in the remaining part of the sequence. The reason is

that the Harr feature is not discriminative enough when the

appearance of the object changes. The SSOB tracker loses

track of the object at frame 24 when some water splashes

over the buck and blurs the image. However, the tracker

is recovered because SSOB has a detection component. If

the detection component is intrigued, it can help relocalize

the object. According to the STR results in Table 8, both

Tuzel’s tracker and our tracker can successfully track the

8 The source codes are downloaded from the authors’ webpage.

object throughout most of the sequence with the same search-

ing region. We also present quantitative evaluations of these

three tracking algorithms. As shown in Fig. 20, the RMSE

of the two points (left top and right bottom) in the bound-

ing box is calculated between the tracking results and the

groundtruth. From the RMSE curve, we can see that our

tracker outperforms the MIL tracker, the SSOB tracker and

Tuzel’s tracker in accuracy.

6.3.6 Performance with Different Parameters

The effect of the frame rate and the number of dominant

colors on performance are key issues of the proposed tracking

system. In this part, we will investigate the the sensitivity of

the tracking system to the changes in the frame rate and the

number of dominant colors.

(1) Different Frame Rates Figure 21 shows the tracking

results of sequence 9 with frame rate 1–5. It is not easy to find

which frame rate has the best tracking performance from Fig.

21, so we calculate the RMSE between the tracking results

and the groundtruth of sequence 9 with different frame rates.

As shown in Fig. 22, from left to right, the results are corre-

sponding to frame rate 1, 2, 3, 4, 5 respectively. From Fig.

22, we can see that the average RMSE is 3.3402, 3.1354,

2.8757, 2.9571, 2.8978 for frame rate 1, 2, 3, 4, 5, which

means that the tracking performance is similar under differ-

ent frame rates. The reason is that the PSO based searching

framework can handle the abrupt motion well even when the

frame rate is decreased to 1.

(2) Different Number of Dominant Colors Figure 23

shows the RMSE curves of tracking results on sequence 9

when the number of dominant colors is 6–10. We can see

that the tracking performance is similar when the number

of dominant colors is 6–8, and these results are better than

the results in case of 9 and 10 dominant colors. The reason

is that there are about 6–8 dominant colors inside the target

region. If we set the dominant colors to 9 or 10, the extra

color modes will be noise. The average RMSE in case of 9

and 10 dominant colors are 5.2564 and 5.4917 respectively,

which are tolerable in tracking applications. The reason is

that: since the dominant set become smaller in the dominant

set clustering process, the pixel number within the last two

dominant colors are very small which takes a little effect on

the proposed similarity measure. In summary, the proposed

algorithm is not very sensitive when the number of dominant

colors changes.

6.3.7 Average Running Time

To validate the efficiency of our tracking system, the follow-

ing two aspects of tracking time are analyzed: the comparison

of average running time for the proposed tracker with the inte-

gral image in Sect. 5 and the proposed tracker without the
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(a) MIL based tracker

(b) SSOB based tracker

(c) Tuzel’s tracker

(d) our tracker

Fig. 19 Tracking performances of sequence 8 for frame #3,12,24,33,40,58,71. a MIL based tracker. b SSOB based tracker. c Tuzel’s tracker. d

Our tracker
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Fig. 20 The RMSE curve of tracking results of sequence 8

integral image in Sect. 5, and also the comparison of average

running time under different frame rates. For the first compar-

ison, we take tracking results on sequence 6 as an example.

The average running time of the proposed tracker with the

integral image is 0.2578 seconds per frame, while the aver-

age running time of the proposed tracker without the integral

image is 12.65 seconds per frame. The result demonstrates

that the use of the integral image can achieve about 50 times

speed-up. The reason is analyzed as follows: the number of

particles and iterations N , M are set to 60, 10 respectively,

and the average C/Y is about 8. Taking the y into consider-

ation, the analysis in Sect. 5.2 is consistent with the above

experimental result. Table 9 shows the average running time

of sequence 7 under different frame rates. Without any opti-

mization, the average running time gradually increases when

the frame rate decreases. The reason is that when the frame

rate decreases, the motion of the object between frames is

larger, so the maximal coverage region 
 employed in Sect.

5 is larger and thus more time is needed to calculate the inte-

gral image of the region. The analysis of the average running

time strictly supports the content described in Sect. 5.

Moreover, we will investigate the computational complex-

ity when the number of color modes changes. When the size

of the histogram changes from 6 to 10, the corresponding

average running times are 0.2197, 0.2284, 0.2355, 0.2432,

0.2498 (see Table 10). The average running time shows only

a slow increase. The reason is as follows. There are two major

steps in the integral image calculation process: (1) Construc-

tion of a 5D feature for each pixel; (2) Calculation of the

integral image of the 5D feature for each color mode. The

computational complexity of the first step remains the same

when the histogram size grows. While both computational

complexity and memory grow linearly according to the his-

togram size. Fortunately, the main computational complexity

arises from the constructing of a 5D feature for each pixel,

so the average running time varies little when the number of

color mode changes.
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(a) Frame rate 1: #502, 547, 592, 637, 682, 742, 787

(b) Frame rate 2: #502, 558, 600, 635, 698, 740, 796

(c) Frame rate 3: #502, 567, 592, 622, 667, 722, 797

(d) Frame rate 4: #502, 566, 590, 630, 678, 718, 798

(e) Frame rate 5: #502, 538, 586, 616, 676, 745, 796

Fig. 21 Tracking performances of sequence 9 with frame rate 1–5

6.3.8 Summary

We summarize the reasons why our tracking system achieves

satisfactory results in the following cases:

• For changes in illumination: (1) we employ the normal-

ized rgI color space , which is more robust to illumination

changes than the original RGB color space; (2) the pro-

posed similarity measure does not depend directly on the

number of pixels in a particular color bin, but on the bin-

ratio. These factors reduce the influence of illumination

changes.

• For changes in the state of objects (including position,

shape, size): (1) the dominant color based appearance

model provides global statistical information about the

target region, so the model is robust against shape/size

changes; (2) the APSO based framework searches the

state space associated with each target effectively.

• For the changes in the local background: the spatial lay-

out information of the dominant colors are used in the

appearance model to enhance its ability to distinguish

the target from the background.

7 Conclusion

This paper has proposed a tracking system for LFR videos.

This system includes a new appearance model and a new

search method. In the appearance model, the object is repre-

sented by the dominant color-spatial modes and a bin-ratio

based similarity measure is used for matching. The space

of object motions is searched by the annealed PSO based

method, and the model parameters are obtained from a

look-up table which is constructed using an integral image.

Experimental results demonstrate the effectiveness of the

tracking system.
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Fig. 22 The RMSE curve of the tracking results with frame rate 1–5
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Fig. 23 The RMSE curve of the tracking results with 6–10 dominant colors
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Table 9 Average running time under different frame rates

Frame rate number Average running time

(seconds per frame)

5 0.2197

4 0.2218

3 0.2316

2 0.2411

1 0.2695

Table 10 Average running time under different number of color mode

Number of color mode Average running time

(seconds per frame)

6 0.2197

7 0.2284

8 0.2355

9 0.2432

10 0.2498
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