
A Robust Turbo Codec Design for Satellite

Communications

Dr. V Sambasiva Rao

Professor,

ECE Department

PES University, India

Ranjitha S
M.Tech Student,

ECE Department

PES University, India

Abstract— Satellite communication systems require forward

error correction techniques for their correct functioning.

Satellite communications necessitate an efficient error control

technique which can provide high reliability, low coding

redundancy, and high coding gain. Coding technique is needed

to send or receive information from ground station with

minimal or no error. In this paper, turbo coding, a very

dominant and robust error correcting coding scheme is

presented. The reformed Viterbi algorithm called SOVA (Soft

Output Viterbi Algorithm) which is used at the decoder is also

presented. Efficiently designing the turbo codec based on

CCSDS defined standards and parameters has been the focus of

this paper.

 The modern satellite communication systems also

demand low power and lesser area design techniques.

Optimization of area reduces the delay and henceforth increases

the device speed which is a critical parameter while designing

satellites and employing the error control techniques in

spacecraft. Implementing the turbo codec on FPGA Virtex 5 by

optimizing the logic design and minimizing the area

requirements for the codec design has been thereby addressed in

this paper.

Keywords— Forward error Correction, Coding Gain, Turbo

Encoder, SOVA Decoder, Satellite Communications, FPGA.

I. INTRODUCTION

 Turbo codes from past few years have consistently

shown to hold the ability to achieve near Shannon-limit error

correction performance with noticeably very reasonable

encoding and decoding complexity when compared to other

typical error controlling codes which were conventionally

employed in satellite communications [1][5].Consultative

Committee for Space Data Systems (CCSDS) has therefore

adopted turbo codes as the new standard for telemetry

channel coding based on its outstanding performance [6].

Turbo codecs are being widely employed in satellite

communications at present since they achieve high gain with

much lesser complexity compared to other primitive codes

like convolutional codes [8].Turbo codes are not derived

from completely new concepts but have been developed by

modification of existing concepts like convolutional coding

and Viterbi decoding. The outstanding properties of this

coding technique has thereby paved way to wider research on

turbo codecs and hence in this paper a conducive work on

simplifying the turbo codec design and optimizing the

algorithm for satellite communications has been addressed.

Turbo codes in order to be suitable for satellite systems have

to be capable of being implementable on hardware with the

design holding low processing power and minimized physical

area requirements but at the same time codec should be able

to provide high throughput and high coding to make it robust.

Therefore maintaining the trade-off between performance of

the codec and the area requirement is the key part.

 Algorithmic implementations are mostly suitable on

reconfigurable hardware for satellite communications.

Among various reconfigurable hardware available, FPGAs

take the prime place. FPGAs are being extensively used for

rapid prototyping and likewise for implementation of various

satellite applications without conceding power, area and

speed performance with significantly reduced time-to-market

and low cost factors [2]. Therefore this paper focuses on

implementing the turbo codec design on FPGA. This paper

presents the design and simulation result of the turbo codec

and also discusses the technique employed in implementing

the constituent encoder and decoder on the FPGA by

optimizing the design and minimizing the area.

 The turbo encoder and decoder are designed on

MATLAB-Simulink R2015a using system blocks. The

deterministic interleaving technique standardised by CCSDS

was employed for this design. Simulation is carried out using

Xilinx ISE simulator tool and codec has been implemented

on FPGA Virtex 5. Design is written using Verilog HDL.

II. TURBO ENCODER

 A turbo encoder is constructed by parallel

concatenation of two identical convolutional codes of special

type, such as, recursive systematic convolutional encoders

(RSC) [3][5]. Each RSC is termed as component encoder.

Both the component encoders are disjointed by an interleaver.

Using turbo encoder with interleaver is to predominantly

reduce the low-weight code words. One of the two encoders

may possibly perhaps intermittently produce a low-weight

code output, but the probability that both of the component

encoders in chorus generate a low-weighted output is

extremely trivial.

 Each component encoder is designed to accept only

one bit of input message stream at a given instant of time and

thereby will produce encoded output bits which are to be

transmitted over the defined channel. In this run-through, for

one input bit the encoder produces more than one output bit

and these extra bits in output configuration makes the

transmitted data more protected against the noise in the

channel. These extra bits encompassed with information bits

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120033

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 167

are called redundant bits, which are used to detect and correct

the errors in the received bits arrangement [5]. The code rate

of each RSC encoder is ½.The RSC encoding process

therefore will twofold the number of input bits at the output

for a code rate of ½. For instance, 8-bit input stream will be

converted into a 16-bit output stream.

 The two constituent encoders are actually encoding

the same information bits stream, both in a different order.

For each input binary information word, at the output the

systematic output is obtained as it is, followed by the parity

check bit from the 1st RSC encoder, which is then followed

by the parity check bit from the 2nd RSC encoder. All these

symbols are then multiplexed in order to form the following

turbo-coded sequence: {..., x-Ϸ1-Ϸ2, x- Ϸ1-Ϸ2, x-Ϸ1-Ϸ2...}

where x is the systematic output bit, Ϸ1 is the parity bit from

1st RSC encoder, Ϸ2 is the parity bit from 2nd RSC encoder.

Code rate consequently becomes 1/3 instead of ½.

 Here, the turbo encoder uses two RSC encoders each

of short constraint length in order to avoid excessive

decoding complexity. Important design parameters

considered:

1.Type of component codes= Recursive systematic

convolutional codes

2. Code type= Systematic parallel concatenation turbo code

3. Number of RSC encoders used=2

4. Interleaver type= Algorithmic

5. Code rate=1/3

6. Constraint length=3

(CCSDS has recommended constraint lengths of 3, 5, and 7

for turbo codecs but to simplify the design for hardware

implementation constraint length of 3 is considered)

Fig.1 Turbo Encoder Structure

 In Fig.1 the 1st RSC encoder outputs two sequences

one is the systematic output c1 and the other is the recursive

convolutional encoded output sequence c2 and the 2nd RSC

encoder discards its systematic outputs and will only output

the recursive convolutional encoded output sequence c3.

A. Recursive Systematic Convolutional (RSC) encoder

 The RSC encoder is realized from the common

conformist non-recursive non- systematic convolutional

encoder by doing a simple operation of providing a feedback

from output to input i.e., feeding back one of its encoded

outputs again back to its input. The conventional encoder can

be transformed into an RSC encoder by feeding back the first

output to the input. The generator matrix of the encoder then

becomes G = [1, 𝑔1/𝑔2] where g1, g2 are the generator

polynomials used to specify the hardware connections. Here

g1= [111] and g2 = [101]. A “1” denotes a connection and a

“0” denotes no connection [3].

Fig.2 RSC encoder obtained from the conventional convolution encoder

with code rate r = 1/2 and K = 3

B. State Diagram Representation

 Fig.3 shows the state diagram representation of a

component encoder. The state diagram exemplifies each of

the state information of the encoder. The state information of

a recursive convolutional encoder is stored in the shift

registers.

Fig.3 State diagram representation of the encoder

C. Interleaver Design

 The important goal for using the interleaver is to

deliver randomness to the input sequences and also to

increase the code weights. The reason for interleaving is to

shield the data from burst errors [3][8]. This can be described

by looking at the interleaving step as a progressive

permutation of information bits. Specifically for satellite

application, interleaver using memories are avoided to save

look-up table space, simple algorithmic interleaver is

employed. Flowchart for the interleaver design is given

below in fig.4.

 Here in this work, as given fig.4 flow chart, length

of each input frame or sequence is choosen as N=8.

Prime number 3 is chosen=>p=3.

Original sequence order q= {0, 1, 2, 3, 4, 5, 6, 7}. Using

equation (p*q) modN=> the interleaved sequence bit

positions is given by (3*q) mod8 => q*= {0, 3, 6, 1, 4, 7, 2,

5}.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120033

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 168

Fig.4 Deterministic interleaving flow chart

III. TURBO DECODER

Fig.5 Turbo decoder structure

 In general, turbo decoder will contain two

component decoders as discussed in earlier sections as given

in fig.5. The data stored in the flip flops of a component

decoder can be regarded as decoder state, with state changes

defined via a state machine which starts from state 0. The

state machine inputs a bit and outputs the parity bit together

with input bit at each time step. After input bit followed by

parity bits are sent through a channel, they ultimately arrive

at the turbo decoder as received values possibly altered

during transmission across the channel. The received bits

maybe be altered by the channel noise, and hence the

received values may not match their transmitted counterparts.

The turbo decoder attempts to reconstruct transmitted bits

through a series of decoding steps, a typical turbo decoder

consists of two identical component decoders, D1 and D2,

interleaver/de-interleaver blocks, and an output decision

block.

A. SOVA decoding algorithm

 Soft Decision Viterbi Decoding (SOVA) is a

decoding method akin to the Viterbi algorithm [4][7]. There

are two main differences between the conventional Viterbi

algorithm and the SOVA [2][7].

• Firstly, the path metrics are transformed to use a “priori

information” when determining the path through the trellis

that is most likely.

• Secondly, the soft output has reliability information about

the decoded output. This reliability information is the “a

posteriori log-likelihood ratios”.

 The turbo decoder is built on this modified Viterbi

algorithm that incorporates soft-input and soft-output values

beside the channel reliability values to improve decoding

performance. From conventional SOVA algorithm one major

change made is elimination of unlikely paths to save area

during implantation.

B. SOVA Hardware Architecture

Fig.6 Constituent decoder architecture

• The Branch metric unit (BMU) calculates the branch
metrics along each of the trellis stage

• The Add-Compare-Select unit (ACSU) will take the
previous path metric from memory and add the branch
metric to it calculated by BMU, results in new path
metric which is stored in the survivor memory unit.
ACSU then compares all the path metrics along each of
the trellis stage by using a threshold value

 One major design strategy followed is elimination of
unlikely paths. Trellis paths which are not likely to lead to
decoded output sequence is eliminated and paths thus
preserved are the survival paths thus incredibly saving the
memory space

 TBU will calculate the path with highest metric and store
it in SMU

 TBU will use the control signal to check if the path is
valid and if yes, then the decoded bits are obtained based
on the sign of likelihood ratio

 If the sign is detected as positive the bit is decoded as “1”,
v hi9i9i9iand if it is negative the bit is decoded as “0”.

 The proposed architecture uses relatively less memory
since at every instant unlikely and least probabilistic paths are
eliminated and also only the current metrics are stored and
previous path metrics at each stage is automatically updated
once the present metrics are calculated, this saves the use of
numerous registers and simplifies the design and saves
memory space.

C. Trellis Diagram Representation

Trellis is like a tree with remerging structured branches. A

trellis diagram of a component encoder is acquired from its

state diagram as given in fig.7. In the trellis diagram, each

node signifies a distinct state at a given instant of time and

designates an imaginable pattern of recently received bits [2].

The shifts which take place between the states are specified

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120033

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 169

by the branches that are regarded as with the corresponding

output. The solid lines in the trellis diagram denote sequence

when input bit “0” and the dotted lines denote sequence when

an input bit “1” [2][4][8].

Fig.7 Trellis diagram for SOVA component decoder

IV. IMPLEMENTATION RESULTS

. The device utilization summary of synthesis report

shows that the area utilized by both the decoder architecture

is relatively very less, thus making it an efficient architecture.

The implementation summary shown in table 1 and table 2

reports efficient utilization of area on the device, in

comparison with previously reported architectures. Efficient

area utilization in-turn resulting in optimized design of the

turbo codec has been one of the major highlights of this work.

A. Implementation Result of Turbo Encoder

Fig.8 Simulink model of turbo encoder showing the encoded bits

 Bernoulli Binary Generator – This block is used for

generating the input bit stream. In this work, 8 bits

stream is used as the input the Encoder.

 Constant Block – This block has a value of 8.This block

specifies the input word length.

 Subsystem 1 and Subsystem 2 – This block is used for

generating the signals like new code word and valid

output, which will indicate the validity of the input signal

like the input codeword and address for interleaver.

 Direct Lookup Table – This is the lookup table which

contains the address of the interleaver. This address is

used by the interleaver for mixing of the input bits. The

second direct lookup table is used to store the default

sequence to the interleaver. The sequence is calculated

using CCSDS algorithm as specified in the previous

section

 Switch 1 and Switch 2 – These switches are used for

letting the input pass or stop w.r.t the signal generated by

the subsystem 1 and 2.

 Turbo Encoder – This block takes the input generated i.e,

input bit stream and the input interleaver address and

produces the encoded signal. This block uses the concept

of tail biting; tail bits are used to move coder to known

state (state of all zeros).

 Display – This block is used for displaying the output

produced by the turbo encoder.

Fig.9 Waveform output for turbo encoder design

TABLE I: DEVICE UTILIZATION SUMMARY OF THE TURBO
ENCODER

B. Implementation Result of Turbo Decoder

Fig.10 Simulink model of turbo decoder showing the decoded bits

 Bernoulli Binary Generator – This block is used for

generating the input bit stream. Have used 24 bits stream

as the input the Encoder.

 Constant Block – Constant1 block has been assigned a

value of 8.This block specifies the input word length.

Constant2 and Constant3 block is used to feed the input

to the direct look up table.

 Subsystem 1 - This block is used for dividing the signals

into small input bit streams, which are then input to the

subsystem

 Subsystem 2 – This block is used for collecting the

divided input bits and adding noise to the input bit

streams.

 Direct Lookup Table 1 – This is the lookup table which

contains the 24 bits long input bit stream. This is used as

the input to the decoder for decoding.

 Direct Lookup Table 2 – This is the lookup table which

contains the address of the deinterleaver. This address is

used by the interleaver for demuxing of the input bits.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120033

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 170

 Turbo Decoder – This is the block which takes the input

bit stream and the estimated deinterleaver address and

produces the decoded signal.

 Display – This block is used for displaying the output

produced by the turbo encoder.

Fig.11 Waveform output of component decoder design

TABLE II: DEVICE UTILIZATION SUMMARY OF TURBO
 DECODER

C. BER PERFORMANCE ANALYSIS RESULT

Fig.12 BER curve for the turbo codec

 A comprehensive comparison was performed

between the uncoded BPSK schemes, convolutionally coded

BPSK scheme, Turbo coded BPSK scheme as shown in

fig.12-+. From the simulations it was clearly observed that

the turbo codes outperformed the convolutional codes. At

BER of 10−4, a reading of Eb/No= 4.894 dB was obtained

for turbo codes. A coding gain of 3.456 dB was achieved for

the turbo codes architecture.

V CONCLUSION

 A turbo encoder and decoder, codec pair are

designed on MATLAB-Simulink. The deterministic

interleaving technique standardised by CCSDS was employed

for this design. The turbo encoder was designed at code rate

1/3 and constraint length used for the component encoders

was K=3.

 The turbo encoder and decoder was simulated using

Xilinx ISE Simulator tool. The turbo encoder and decoder

designs were henceforth synthesised and implemented

successfully on FPGA Virtex 5. The encoded bits and

decoded bits were successfully obtained and observed on

LEDs of the FPGA Virtex 5 board. The design was optimized

to reduce the area by simplifying the complex operations and

minimizing the logic blocks. Efficient area utilization resulted

in lesser processing delay. Area optimization is one of the

major design issues while designing satellites as smaller

components badge for better system adaptation and

henceforth endure cost effectiveness. The turbo codec

performance was evaluated on Matlab 2015, At BER of

10−4, a reading of Eb/No= 4.894 dB was obtained for turbo

codes. A coding gain of 3.456 dB was achieved for the turbo

codes.

 In satellite communications, the other critical design

issue is the amount of power consumption, turbo decoding

involves huge amount of complex processing which have a

major impact on power consumption. Therefore in the future,

work can be done to minimize the power by performing a low

power design of the turbo codec along with optimizing the

area requirements so as to create a more robust design of the

turbo codec, which can be efficiently used for satellite

communications.

ACKNOWLEDGMENT

 We would like to sincerely thank Dr. K N

Balasubramanya Murthy, Vice-Chancellor, PES University

and Dr. T S Chandar, Chairperson of ECE Dept., PES

University for their encouragement, support and for providing

the requisite infrastructure for carrying out this work

successfully.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit

error-correcting coding and decoding: turbo-codes,” Proc. ICC’93,
Geneva, Switzerland, May 1993 pp. 1064-1070

[2] Habib, I. Paker, O. Sawitzki, S., “Design Space Exploration of Hard

Decision Viterbi Decoding: Algorithm and VLSI Implementation”,
IEEE Transaction on very Large Scale Integration (VLSI) Systems,

May 2010, pp. 794-807

[3] Consultative Committee for Space Data Systems, "Recommendation
for Space Data Systems Standards: Telemetry Channel Coding",

CCSDS 101.0-B-5. http://www.ccsds.org.

[4] Shweta Ramteke, Yeshwantrao Chavan Coll. of Eng.,
Wanadongri,India, SandeepKakde, Yogesh Suryawanshi ; Mangesh

Meshram “Performance analysis of Turbo decoder using Soft Output

Viterbi Algorithm”, IEEE Communications and Signal Processing
(ICCSP), 2015 International Conference,April201, pp.1332 - 1336

[5] Turbo Coding: Basic Principles; Schlegel, C.; Perez, L. Trellis and

Turbo Coding: Iterative and Graph-Based Error Control Coding Year:
2015 Pages: 528, DOI: 10.1002/9781119106319.ch8 Referenced in:

Wiley-IEEE Press eBook Chapters

[6] Closing In On the Perfect Code", IEEE Spectrum, March 2010
[7] J. Hagenauer and P. Hoeher “A Viterbi Algorithm with Soft-Decision

Outputs and its Applications”, Proc. Globecom pp. 1680-1686

November 1989.
[8] S. Crozier, J. Lodge, P. Gunand and A. Hunt “Performance of Turbo-

Codes with Relative Prime and Golden Interleaving Strategies” Sixth
International Mobile Satellite Conference (IMSC’99), Ottowa,

Canada,pp.268-275,June,1999.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120033

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 171

