
A Robust Turbo Codec Design for Satellite 

Communications  

 
Dr. V Sambasiva Rao 

Professor, 

ECE Department 

PES University, India 

Ranjitha S 
M.Tech Student,   

ECE Department 

PES University, India 

                       
 

Abstract— Satellite communication systems require forward 

error correction techniques for their correct functioning. 

Satellite communications necessitate an efficient error control 

technique which can provide high reliability, low coding 

redundancy, and high coding gain. Coding technique is needed 

to send or receive information from ground station with 

minimal or no error. In this paper, turbo coding, a very 

dominant and robust error correcting coding scheme is 

presented. The reformed Viterbi algorithm called SOVA (Soft 

Output Viterbi Algorithm) which is used at the decoder is also 

presented. Efficiently designing the turbo codec based on 

CCSDS defined standards and parameters has been the focus of 

this paper.  

  

 The modern satellite communication systems also 

demand low power and lesser area design techniques. 

Optimization of area reduces the delay and henceforth increases 

the device speed which is a critical parameter while designing 

satellites and employing the error control techniques in 

spacecraft. Implementing the turbo codec on FPGA Virtex 5 by 

optimizing the logic design and minimizing the area 

requirements for the codec design has been thereby addressed in 

this paper.  

 

Keywords— Forward error Correction, Coding Gain, Turbo 

Encoder, SOVA Decoder, Satellite Communications, FPGA. 
 

I. INTRODUCTION 

 Turbo codes from past few years have consistently 

shown to hold the ability to achieve near Shannon-limit error 

correction performance with noticeably very reasonable 

encoding and decoding complexity when compared to other 

typical error controlling codes which were conventionally 

employed in satellite communications [1][5].Consultative 

Committee for Space Data Systems (CCSDS) has therefore 

adopted turbo codes as the new standard for telemetry 

channel coding based on its outstanding performance [6]. 

Turbo codecs are being widely employed in satellite 

communications at present since they achieve high gain with 

much lesser complexity compared to other primitive codes 

like convolutional codes [8].Turbo codes are not derived 

from completely new concepts but have been developed by 

modification of existing concepts like convolutional coding 

and Viterbi decoding. The outstanding properties of this 

coding technique has thereby paved way to wider research on 

turbo codecs and hence in this paper a conducive work on 

simplifying the turbo codec design and optimizing the 

algorithm for satellite communications has been addressed. 

Turbo codes in order to be suitable for satellite systems have 

to be capable of being implementable on hardware with the 

design holding low processing power and minimized physical 

area requirements but at the same time codec should be able 

to provide high throughput and high coding to make it robust. 

Therefore maintaining the trade-off between performance of 

the codec and the area requirement is the key part. 

  

 Algorithmic implementations are mostly suitable on 

reconfigurable hardware for satellite communications. 

Among various reconfigurable hardware available, FPGAs 

take the prime place. FPGAs are being extensively used for 

rapid prototyping and likewise for implementation of various 

satellite applications without conceding power, area and 

speed performance with significantly reduced time-to-market 

and low cost factors [2]. Therefore this paper focuses on 

implementing the turbo codec design on FPGA. This paper 

presents the design and simulation result of the turbo codec 

and also discusses the technique employed in implementing 

the constituent encoder and decoder on the FPGA by 

optimizing the design and minimizing the area. 

  

 The turbo encoder and decoder are designed on 

MATLAB-Simulink R2015a using system blocks. The 

deterministic interleaving technique standardised by CCSDS 

was employed for this design. Simulation is carried out using 

Xilinx ISE simulator tool and codec has been implemented 

on FPGA Virtex 5. Design is written using Verilog HDL. 

 

II. TURBO ENCODER 

 A turbo encoder is constructed by parallel 

concatenation of two identical convolutional codes of special 

type, such as, recursive systematic convolutional encoders 

(RSC) [3][5].  Each RSC is termed as component encoder. 

Both the component encoders are disjointed by an interleaver. 

Using turbo encoder with interleaver is to predominantly 

reduce the low-weight code words. One of the two encoders 

may possibly perhaps intermittently produce a low-weight 

code output, but the probability that both of the component 

encoders in chorus generate a low-weighted output is 

extremely trivial. 

  

 Each component encoder is designed to accept only 

one bit of input message stream at a given instant of time and 

thereby will produce encoded output bits which are to be 

transmitted over the defined channel. In this run-through, for 

one input bit the encoder produces more than one output bit 

and these extra bits in output configuration makes the 

transmitted data more protected against the noise in the 

channel. These extra bits encompassed with information bits 
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are called redundant bits, which are used to detect and correct 

the errors in the received bits arrangement [5]. The code rate 

of each RSC encoder is ½.The RSC encoding process 

therefore will twofold the number of input bits at the output 

for a code rate of ½. For instance, 8-bit input stream will be 

converted into a 16-bit output stream.  
  

 The two constituent encoders are actually encoding 

the same information bits stream, both in a different order. 

For each input binary information word, at the output the 

systematic output is obtained as it is, followed by the parity 

check bit from the 1st RSC encoder, which is then followed 

by the parity check bit from the 2nd RSC encoder. All these 

symbols are then multiplexed in order to form the following 

turbo-coded sequence: {..., x-Ϸ1-Ϸ2, x- Ϸ1-Ϸ2, x-Ϸ1-Ϸ2...} 

where x is the systematic output bit, Ϸ1 is the parity bit from 

1st RSC encoder, Ϸ2 is the parity bit from 2nd RSC encoder. 

Code rate consequently becomes 1/3 instead of ½. 
 

 Here, the turbo encoder uses two RSC encoders each 

of short constraint length in order to avoid excessive 

decoding complexity. Important design parameters 

considered:  

1.Type of component codes= Recursive systematic 

convolutional codes 

2. Code type= Systematic parallel concatenation turbo code 

3. Number of RSC encoders used=2 

4. Interleaver type= Algorithmic 

5. Code rate=1/3 

6. Constraint length=3 

(CCSDS has recommended constraint lengths of 3, 5, and 7 

for turbo codecs but to simplify the design for hardware 

implementation constraint length of 3 is considered) 

 

 
Fig.1  Turbo Encoder Structure 

 

 In Fig.1 the 1st RSC encoder outputs two sequences 

one is the systematic output c1 and the other is the recursive 

convolutional encoded output sequence c2 and the 2nd RSC 

encoder discards its systematic outputs and will only output 

the recursive convolutional encoded output sequence c3. 
 

A. Recursive Systematic Convolutional (RSC) encoder 
  

 The RSC encoder is realized from the common 

conformist non-recursive non- systematic convolutional 

encoder by doing a simple operation of providing a feedback 

from output to input i.e., feeding back one of its encoded 

outputs again back to its input. The conventional encoder can 

be transformed into an RSC encoder by feeding back the first 

output to the input. The generator matrix of the encoder then 

becomes G = [1, 𝑔1/𝑔2] where g1, g2 are the generator 

polynomials used to specify the hardware connections.  Here 

g1= [111] and g2 = [101]. A “1” denotes a connection and a 

“0” denotes no connection [3]. 

 
Fig.2  RSC encoder obtained from the conventional convolution encoder 

with code rate r = 1/2 and K = 3 

 

B. State Diagram Representation   

 Fig.3 shows the state diagram representation of a 

component encoder. The state diagram exemplifies each of 

the state information of the encoder. The state information of 

a recursive convolutional encoder is stored in the shift 

registers.  
 

 

Fig.3  State diagram representation of the encoder 

C. Interleaver Design 

 The important goal for using the interleaver is to 

deliver randomness to the input sequences and also to 

increase the code weights. The reason for interleaving is to 

shield the data from burst errors [3][8]. This can be described 

by looking at the interleaving step as a progressive 

permutation of information bits. Specifically for satellite 

application, interleaver using memories are avoided to save 

look-up table space, simple algorithmic interleaver is 

employed. Flowchart for the interleaver design is given 

below in fig.4. 

 

 Here in this work, as given fig.4 flow chart, length 

of each input frame or sequence is choosen as N=8. 

Prime number 3 is chosen=>p=3.  

Original sequence order q= {0, 1, 2, 3, 4, 5, 6, 7}. Using 

equation (p*q) modN=> the interleaved sequence bit 

positions is given by (3*q) mod8 => q*= {0, 3, 6, 1, 4, 7, 2, 

5}. 
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Fig.4 Deterministic interleaving flow chart  

 

III. TURBO DECODER  
 

 
Fig.5 Turbo decoder structure 

 

 In general, turbo decoder will contain two 

component decoders as discussed in earlier sections as given 

in fig.5. The data stored in the flip flops of a component 

decoder can be regarded as decoder state, with state changes 

defined via a state machine which starts from state 0. The 

state machine inputs a bit and outputs the parity bit together 

with input bit at each time step. After input bit followed by 

parity bits are sent through a channel, they ultimately arrive 

at the turbo decoder as received values possibly altered 

during transmission across the channel. The received bits 

maybe be altered by the channel noise, and hence the 

received values may not match their transmitted counterparts. 

The turbo decoder attempts to reconstruct transmitted bits 

through a series of decoding steps, a typical turbo decoder 

consists of two identical component decoders, D1 and D2, 

interleaver/de-interleaver blocks, and an output decision 

block. 

A. SOVA decoding algorithm 

 Soft Decision Viterbi Decoding (SOVA) is a 

decoding method akin to the Viterbi algorithm [4][7]. There 

are two main differences between the conventional Viterbi 

algorithm and the SOVA [2][7]. 

 

• Firstly, the path metrics are transformed to use a “priori 

information” when determining the path through the trellis 

that is most likely. 

• Secondly, the soft output has reliability information about 

the decoded output. This reliability information is the “a 

posteriori log-likelihood ratios”.  

 

 The turbo decoder is built on this modified Viterbi 

algorithm that incorporates soft-input and soft-output values 

beside the channel reliability values to improve decoding 

performance. From conventional SOVA algorithm one major 

change made is elimination of unlikely paths to save area 

during implantation. 
 

B. SOVA Hardware Architecture 

 

Fig.6 Constituent decoder architecture 

• The Branch metric unit (BMU) calculates the branch 
metrics along each of the trellis stage 

• The Add-Compare-Select unit (ACSU) will take the 
previous path metric from memory and add the branch 
metric to it calculated by BMU, results in new path 
metric which is stored in the survivor memory unit. 
ACSU then compares all the path metrics along each of 
the trellis stage by using a threshold value 

 One major design strategy followed is elimination of 
unlikely paths. Trellis paths which are not likely to lead to 
decoded output sequence is eliminated and paths thus 
preserved are the survival paths thus incredibly saving the 
memory space 

 TBU will calculate the path with highest metric and store 
it in SMU  

 TBU will use the control signal to check if the path is 
valid and if yes, then the decoded bits are obtained based 
on the sign of likelihood ratio 

 If the sign is detected as positive the bit is decoded as “1”, 
v hi9i9i9iand if it is negative the bit is decoded as “0”. 

 The proposed architecture uses relatively less memory 
since at every instant unlikely and least probabilistic paths are 
eliminated and also only the current metrics are stored and 
previous path metrics at each stage is automatically updated 
once the present metrics are calculated, this saves the use of 
numerous registers and simplifies the design and saves 
memory space. 

C. Trellis Diagram Representation 

Trellis is like a tree with remerging structured branches. A 

trellis diagram of a component encoder is acquired from its 

state diagram as given in fig.7. In the trellis diagram, each 

node signifies a distinct state at a given instant of time and 

designates an imaginable pattern of recently received bits [2]. 

The shifts which take place between the states are specified 
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by the branches that are regarded as with the corresponding 

output.  The solid lines in the trellis diagram denote sequence 

when input bit “0” and the dotted lines denote sequence when 

an input bit “1” [2][4][8]. 

 

Fig.7 Trellis diagram for SOVA component decoder 

IV. IMPLEMENTATION RESULTS 

. The device utilization summary of synthesis report 

shows that the area utilized by both the decoder architecture 

is relatively very less, thus making it an efficient architecture. 

The implementation summary shown in table 1 and table 2 

reports efficient utilization of area on the device, in 

comparison with previously reported architectures. Efficient 

area utilization in-turn resulting in optimized design of the 

turbo codec has been one of the major highlights of this work. 

A. Implementation Result of Turbo Encoder 
 

 
Fig.8  Simulink model of turbo encoder showing the encoded bits  

 

 Bernoulli Binary Generator – This block is used for 

generating the input bit stream. In this work, 8 bits 

stream is used as the input the Encoder. 

 Constant Block – This block has a value of 8.This block 

specifies the input word length. 

 Subsystem 1 and Subsystem 2 – This block is used for 

generating the signals like new code word and valid 

output, which will indicate the validity of the input signal 

like the input codeword and address for interleaver. 

 Direct Lookup Table – This is the lookup table which 

contains the address of the interleaver. This address is 

used by the interleaver for mixing of the input bits. The 

second direct lookup table is used to store the default 

sequence to the interleaver. The sequence is calculated 

using CCSDS algorithm as specified in the previous 

section  

 Switch 1 and Switch 2 – These switches are used for 

letting the input pass or stop w.r.t the signal generated by 

the subsystem 1 and 2. 

 Turbo Encoder – This block takes the input generated i.e, 

input bit stream and the input interleaver address and 

produces the encoded signal. This block uses the concept 

of tail biting; tail bits are used to move coder to known 

state (state of all zeros). 

 Display – This block is used for displaying the output 

produced by the turbo encoder. 

 

 
 

Fig.9  Waveform output for turbo encoder design 

 

TABLE I: DEVICE UTILIZATION SUMMARY OF THE TURBO 
ENCODER 

 

B. Implementation Result of Turbo Decoder 

 
Fig.10 Simulink model of turbo decoder showing the decoded bits 

 

 Bernoulli Binary Generator – This block is used for 

generating the input bit stream. Have used 24 bits stream 

as the input the Encoder. 

 Constant Block – Constant1 block has been assigned a 

value of 8.This block specifies the input word length. 

Constant2 and Constant3 block is used to feed the input 

to the direct look up table. 

 Subsystem 1 - This block is used for dividing the signals 

into small input bit streams, which are then input to the 

subsystem 

 Subsystem 2 – This block is used for collecting the 

divided input bits and adding noise to the input bit 

streams. 

 Direct Lookup Table 1 – This is the lookup table which 

contains the 24 bits long input bit stream. This is used as 

the input to the decoder for decoding. 

 Direct Lookup Table 2 – This is the lookup table which 

contains the address of the deinterleaver. This address is 

used by the interleaver for demuxing of the input bits. 
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 Turbo Decoder – This is the block which takes the input 

bit stream and the estimated deinterleaver address and 

produces the decoded signal. 

 Display – This block is used for displaying the output 

produced by the turbo encoder. 
 

 
Fig.11 Waveform output of component decoder design 

 

TABLE II: DEVICE UTILIZATION SUMMARY OF TURBO 
  DECODER 

 

C. BER PERFORMANCE ANALYSIS RESULT 
 

 
Fig.12 BER curve for the turbo codec 

 

 A comprehensive comparison was performed 

between the uncoded BPSK schemes, convolutionally coded 

BPSK scheme, Turbo coded BPSK scheme as shown in 

fig.12-+. From the simulations it was clearly observed that 

the turbo codes outperformed the convolutional codes. At 

BER of 10−4, a reading of Eb/No= 4.894 dB was obtained 

for turbo codes. A coding gain of 3.456 dB was achieved for 

the turbo codes architecture. 
 

V     CONCLUSION 

 A turbo encoder and decoder, codec pair are 

designed on MATLAB-Simulink. The deterministic 

interleaving technique standardised by CCSDS was employed 

for this design. The turbo encoder was designed at code rate 

1/3 and constraint length used for the component encoders 

was K=3.  

  

 

 

 The turbo encoder and decoder was simulated using 

Xilinx ISE Simulator tool. The turbo encoder and decoder 

designs were henceforth synthesised and implemented 

successfully on FPGA Virtex 5. The encoded bits and 

decoded bits were successfully obtained and observed on 

LEDs of the FPGA Virtex 5 board. The design was optimized 

to reduce the area by simplifying the complex operations and 

minimizing the logic blocks. Efficient area utilization resulted 

in lesser processing delay. Area optimization is one of the 

major design issues while designing satellites as smaller 

components badge for better system adaptation and 

henceforth endure cost effectiveness. The turbo codec 

performance was evaluated on Matlab 2015, At BER of 

10−4, a reading of Eb/No= 4.894 dB was obtained for turbo 

codes. A coding gain of 3.456 dB was achieved for the turbo 

codes. 
   

 In satellite communications, the other critical design 

issue is the amount of power consumption, turbo decoding 

involves huge amount of complex processing which have a 

major impact on power consumption. Therefore in the future, 

work can be done to minimize the power by performing a low 

power design of the turbo codec along with optimizing the 

area requirements so as to create a more robust design of the 

turbo codec, which can be efficiently used for satellite 

communications. 
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