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ABSTRACT With the expected increase in data traffic (e.g., video) and in the user devices generating new

traffic (e.g., device-to-device communication, Internet of Things, etc.), the evolution of next-generation

mobile networks (e.g., 5G networks) has gone towards heterogeneous deployments where multiple small

cells coexist in the same area covered by a macro base station. To reduce the capital expenses in the network,

a wireless mesh can be used, which is made of millimeter-wave links that route the data traffic of the mobile

users inside the backhaul network. Such an increase in the number of deployed base stations inevitably

increases the power consumption; hence, the operating expenses and the CO2 consumption also increase.

To achieve greener mobile communications, sleep-mode strategies have been considered in order to switch

off the unused network components. However, the switching on/off should be made according to the traffic

demanded by the users and with the aim of guaranteeing the demanded service at any time. Given that the

traffic demand and networking traffic fluctuate over time at each location, we propose a robust mixed integer

linear problem that jointly solves the user association, the backhaul routing paths in the wireless mesh and the

switching off of the unused links with the aim of minimizing the power consumption. The robust strategy

is based on the Ŵ-robust approach and is able to guarantee the user demand while taking into account its

intrinsic variability. A thorough evaluation has been performed in order to analyze the impact of the robust

strategy on the network performance.

INDEX TERMS 5G, energy efficiency, green networks, mesh backhaul, millimeter wave, robust optimiza-

tion, routing, switching off, user association.

I. INTRODUCTION

The use of mobile and wireless communications has been

growing in the last decades, making it easier to develop

several new services including the Internet of Things (IoT),

e-health, smart cities, autonomous driving, etc. Currently,

our society is continuously and increasingly making use of

such technologies for everyday life activities, including both

work and entertainment related. The trend for many years

now has been an increase in the traffic demand of mobile

users, which has shaped the evolution from 2G to 4G systems

and has paved the way to the definition of a disruptive new

technology; the fifth-generation (5G) paradigm will bring

millimeter-wave (mmWave) communications, heterogeneous

technologies and new devices [1] that contribute to an enor-
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mous growth in the data traffic that must be handled. For

example, CISCO foresees that the number of devices con-

nected to IP networks will be more than three times the

global population by 2022 [2]. This increase is mainly due

to the wide spread of the IoT in industry and the consequent

increase in machine to machine (M2M) communications,

as well as an increase in consumer video use: nearly 79%

of the world’s mobile data traffic is expected to be video

by 2022 [2].

As these massive volumes of data need to be transferred

throughout the network among a growing number of greedy

users, the whole infrastructure should be reconsidered. A

denser deployment of base stations (BSs) is expected in 5G

networks, where several small cells (SCs) will be installed

under the coverage of a macro eNodeB (eNB) in order to

meet the increasing demand [3]. With this new paradigm,

heterogeneous networks (HetNets) are expected to achieve
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energy efficient communications [4], as the SCs can be placed

in strategic areas (e.g., hotspots) to enhance the network

performance. While the energy consumption is expected to

increase with the number of BSs [5], it becomes necessary

to study new solutions that contribute to reducing both the

capital (CAPEX) and operating expenses (OPEX). In this

context, the SCs should communicate with each other and

with the eNB through a mmWave mesh backhaul network

instead of fixed optical links, as suggested in the 5GMiEdge

project [6]. In fact, mmWave links are identified as one

of the key enablers of 5G because of their very high data

rates, effectiveness at handling interference and their wide

bandwidth [7].

To further reduce the OPEX, a key challenge is deter-

mining which network nodes have to be used (according

on the network traffic) and which can be switched off, thus

decreasing the overall power consumption [4]. However,

sleep-mode techniques should take into account the effects of

traffic load-dependent factors on the energy consumption [8].

A mixed integer linear program (MILP) was proposed in [9]

that minimizes the energy consumption of a meshed 5G

network by switching off the unused resources (e.g., SCs,

BSs, and mmWave links) and arranging the user associations

and the routing paths in the backhaul (BH) network according

to the traffic patterns, thus adapting the network topology to

the user needs. More recently, the model has been improved,

the network energy efficiency (EE) has been evaluated at dif-

ferent times of the day [10], and several heuristic algorithms

have been considered that can provide a faster resolution of

the given problem.

It is well known that the user distribution and traffic

demand vary for a given location depending on the time of

day and the day of the week [11]. Thus, the traditional trend

of dimensioning the network resources based on the peak

traffic may lead to the underutilization of the infrastructure,

to unnecessary OPEX for the network operator and to unnec-

essary CO2 emissions for our planet. On the other hand,

deploying a less dense infrastructure than the user require-

ments may lead to congestion, especially in peak hours.

The nondeterministic nature of wireless networks makes the

dimensioning of network resources increasingly more chal-

lenging; some clear examples of uncertain parameters are the

wireless channel conditions, the users’ fluctuating bit rate

requirements and users’ movements [12]. Such fluctuations

make the dimensioning of the network resources increasingly

more challenging; not only should the EE of future commu-

nications be optimized, but also a valid topology guarantee-

ing that the user equipments (UEs) are given the demanded

services should be provided. Since the UEs demand cannot

be exactly predicted, a robust strategy [13] should be applied

when optimizing the power consumption in a 5G network.

The variability in the input data (e.g., user demand) may

lead to infeasible solutions in the MILP proposed in [9] and

in [10]. That is, higher demand from one or more users

may make the current topology unable to satisfy all the user

demands.

This work provides a robust formulation for the joint opti-

mization of the user association, backhaul routing and on/off

strategies, aiming to reduce the total power consumption in a

5G network while guaranteeing that the user needs are met.

To this end, the robust approach from [13] is applied to the

MILP presented in [10], and the solution is then protected

against variability in the demand of a given number of users.

The main contributions of this article are as follows:

1) identifying the budget of uncertainty and the uncer-

tainty set in our problem according to the Ŵ-robust

approach in [13];

2) providing a mathematical model for the robust counter-

part of the MILP presented in [10];

3) developing a robust MILP for the abovementioned

problem;

4) providing a thorough evaluation of the power saving,

network performance and impact of the robustness

level in our model.

Section II summarizes the main contributions of the

switching on/off strategies and optimization approaches on

the EE for 5G networks and provides the background of our

research. The problem formulation is described in Section III.

First, t he 5G system model underlying the optimization

problem is described in Section III-A; then, the MILP for the

nominal case (i.e., when demand fluctuations are not taken

into account) is presented in Section III-B, which is based on

the formulation in [10]. Section IV presents the uncertainty

sets needed for the robust formulation that is described in

Section IV-C; then, the robust counterpart for the robust

MILP is detailed in Section IV-D. The evaluation assessment

is detailed in Section V; the results of the nominal case are

first presented and then used as a reference for the evaluation

of the robust model in Section V-B. The final remarks and

open issues are discussed in Section VI.

II. RELATED WORK

In the last decade, HetNets have been foreseen as the potential

solution to achieve EE in 5G networks and beyond [4]. In a

HetNet, eNBs are deployed in order to guarantee a minimum

coverage for a large area, and several relays (e.g., SCs) are

deployed in the same area for coverage extension, throughput

enhancement, load balancing, etc., thus achieving overall

lower energy consumption for the network. In this context,

the authors in [4] investigate the optimal energy efficient

deployment strategies for the SCs in 5G HetNets. Another

crucial factor for the EE in HetNets is the user association

problem. The high EE potential of a cognitive algorithm is

studied in [14]; however, a tree topology is considered in

the BH, and there are corresponding problems related to

the centralized topologies (e.g., unreliability in case of link

failure, bottlenecks in case of highly loaded links, inflexibility

to adapt to changing demands, etc.). A meshed topology is

thus introduced in [15], where the benefits of load balancing

on the spectral efficiency and on the EE are shown.
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Although EE has been largely studied in the literature,

the authors in [16] argue that none of the previous works

have taken the EE as the objective function; thus, the authors

consider an EE maximization algorithm that jointly assigns

optimal flows onBH links, minimizes the power consumption

in the access network (AN) and BH, and maximizes the

AN throughput. In addition, the work in [9] considers the

possibility of switching off the unused network components,

thus further minimizing the power consumed in a HetNet.

However, themeshed topology used in [16] and [9] with a sin-

gle aggregator (e.g., themacro eNBwith a fixed connection to

the core network) may represent a bottleneck. This issue was

solved in [10], which improves the system model of [9] and

proposes a fast online solution policy. Such a policymakes the

implementation possible in realistic deployments, where an

SDN controller triggers the switching on/off of the network

components based on the results from the optimization policy.

This paper also focuses on a meshed HetNet where multiple

BSs may act as aggregators and route the data towards the

core network; different from the previous works, the users’

demand is allowed to deviate from the nominal value and the

proposed robust MILP still guarantees feasible solutions to

the optimal user association, backhaul routing and switching

off in 5G HetNets.

Sleep-mode techniques have been widely proposed and

analyzed in the literature [8] and have been found to

be a promising solution for green networking; they may

take advantage of changing traffic patterns to switch off

the lightly loaded BSs. However, the authors in [8] argue

that simplifying assumptions, such as ignoring the effects

of traffic load-dependent factors on energy consumption,

introduce inaccuracies, thus affecting the benefits of the

sleep-mode technique. The authors conclude that major ben-

efits are obtained in areas with a very dense deployment

of BSs and where the average traffic is low but has a high

deviation. Additionally, better EE can be obtained when turn-

ing off those BSs with larger fixed proportions of energy

consumption; that is, a model where the macro eNBs may be

switched off as in [10] can bring further benefits. Moreover,

highly connected networks with high randomness seem to

save more power by using sleep modes more efficiently [4].

More recently, the impacts of different paradigms for 5G net-

works, such as the mmWave network and ultradense HetNets,

on the EE of radio access networks are discussed in [17].

The access network selection problem is studied in [18],

where multi-radio terminals are considered and their down-

load rate is maximized for a given amount of download

time. The download rate is subject to uncertainty due to the

possibility of selecting different access networks. An integer

linear program (ILP) for the energy efficient planning of

wireless networks is presented in [12], where the total power

consumed in the network and the total number of unsatisfied

users are minimized. The authors also propose applying cut-

ting planes to reduce the complexity of the model. Similarly,

the authors in [19] present a robust optimization approach

to energy savings in wireless local area networks (WLANs),

which also incorporates user mobility under the Ŵ-robust

optimization paradigm presented in [13]. They argue that

while the capacity of the wireless link can be assumed to

be stable over long time periods, there are deviations from

the average at specific time intervals. Multiband robust opti-

mization (MRO) is used in [20] to model the user mobility

uncertainty in a WLAN, while the channel fluctuations are

modeled through the Ŵ-robust approach. The MRO forms a

more accurate model of the user mobility and, thus, achieves

stronger overall energy saving.

The approach followed in this work is in line with the Ŵ-

robust approach of the abovementioned publications. Similar

to our work, the authors applied robust optimization in order

to deal with the uncertainty in the users’ demand. However,

their focus is limited to the access links only, disregarding

the complexity of a joint optimization of the AN and BH

links in heterogeneous 5G networks. The present work covers

this gap by applying Ŵ-robust optimization in order to deal

with the uncertainty in the data rates demanded by the users.

The uncertainty affects not only the access links of the 5G

network but also the wireless BH meshed network formed by

the SCs where the data have to flow—and thus be routed—

before being finally delivered to the user through the AN link

of one of the available BSs. This is the first attempt to provide

a robust energy saving solution in a 5G HetNet that copes

with user demand fluctuations; to the best of the authors’

knowledge, none of the works in the literature has addressed

this issue before.

III. USER ASSOCIATION, BACKHAUL ROUTING AND

SWITCHING OFF MODEL FOR A 5G NETWORK

A. SYSTEM MODEL

The focus of our study is a 5G network composed of a setB of

BSs, which can be either eNBs or SCs. The SCs are located

inside the area of each eNB and are interconnected to each

other and with the eNB through a set of line-of-sight (LOS)

mmWave BH links, denoted as LBH . Each eNB and a given

number of SCs per eNB play the role of the aggregators for

the eNB area traffic since they have a fixed fiber connection

to the core network. The set of aggregators for each eNB’s

area traffic is indicated by A, where A ⊆ B. Fig. 1 depicts

the system model for the case with three eNBs, where each

eNB and four SCs are the aggregators.

We consider a set U of 5G UEs that wants to download

data from the core network, thus focusing on the downlink

case as in [10]. Each traffic flow has to be routed from the

core network through the aggregators over some specific BH

links in the mesh in order to reach the UE. Each UE must be

connected with only one BS using one access link from the

set LAN of available microwave links. A specific guaranteed

bit rate (GBR) demand for each UE is considered, which is

based on its service [21] and is denoted by du. Depending on

the radio conditions and the user demand, a given number of

physical resource blocks (PRBs) will be required to satisfy

the demand of each UE for the access link. The maximum
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FIGURE 1. System model.

transmitted power of each BS is divided equally among the

available PRBs at the BS (i.e., flat slow fading channels are

assumed).

The proposedmodel provides 1) the set of UE associations,

2) the routing path for each UE’s traffic flow in the BH mesh,

and 3) the set of BSs and of BH links that may be switched

off since they do not carry the users’ traffic. For this, a MILP

was formulated in [10] that was aimed at minimizing the

power consumed in the network when providing the services

demanded by a given number of users. The model is summa-

rized in Section III-B. To easily introduce the reader to the

robust approach presented in Section IV, a variable demand

from each user will be considered and the proposed robust

model will again be able to provide the set of UE associations,

routing paths and ON/OFF settings under variable users’

demand.

Without loss of generality and for the sake of simplicity,

we assume that the fiber links from the core network to the

aggregators are characterized by very high capacities (i.e.,

bottlenecks are avoided on those fiber links) and negligible

power consumption (i.e., the power consumed by the fiber

links has no impact on the total power consumption) [10].

B. MILP FORMULATION FOR THE NOMINAL CASE

The minimization of the power consumed in the proposed

scenario was formulated as aMILP in [10] and is summarized

in this section. Given the GBR demand du for each user u

∈ U , the objective is to minimize the total power of all the

active BSs in the network, which is given by

argmin
xu(i,j),s

AN
i ,sBH(i,j)

∑

i∈B

pi(x
u
(i,j), s

AN
i , sBH(i,j)),

s.t. a) xu(i,j) ∈ {0, 1}, ∀u ∈ U ,

∀(i, j) ∈ LBH ∪ LAN

b) sANi , sBH(i,j) ∈ {0, 1}, ∀i ∈ B,

∀(i, j) ∈ LBH

c)
∑

u∈U

∑

(i,j)∈LAN

xu(i,j)c(i,j) ≤ cimax ,

∀ i ∈ B

d) Power constraints

e) Switch ON/OFF constraints

f ) Path conservation constraints (1)

pi(x
u
(i,j), s

AN
i , sBH(i,j)) is the power of a BS i considering its

access and BH links (in the following, we will refer to it as

pi); x
u
(i,j) is a binary variable that indicates whether the link

(i,j) is used (1) or not (0) by user u (i.e., an access link is

characterized by xu(i,u)); and s
AN
i and sBH(i,j) are binary variables

that indicate whether the BS i or BH link (i,j), respectively,

is switched on (1) or off (0).

Equation (1c) is the capacity constraint, where cimax is the

number of PRBs that are available at BS i, and c(i,j) is the

number of PRBs that user j needs for association with BS i.

c(i,j) =

⌈

du

se(i,j)

⌉

, ∀(i, j) ∈ LAN (2)

se(i,j) is the spectrum efficiency of the access link (i, j) and is

calculated as in [10].

se(i,j) = BWPRB log2(1 + SINR(i,j)), (3)

where BWPRB is the bandwidth (BW) of a PRB.

Regarding the power constraints in (1d), the power pi of

BS i can be computed as the sum of the power consumed

on the microwave links that are used by each UE u once it

associates with i [22] plus the power consumed by each BH

link that is activated from BS i to the mesh.

pi = NTXAN
i ( sANi pAN0i + 1AN

p pANouti )

+
∑

(i,j)∈LBH

NTXBH
(i,j)

(

sBH(i,j)p
BH
0(i,j)

+ 1BH
p pBHout(i,j)

)

,

∀i ∈ B (4)

NTXAN
i and NTXBH

(i,j) represent the numbers of transceiver

chains of BS i and the BH link (i,j), respectively; 1p is

the factor for the load-dependent power consumption whose

value can change for different types of antennas [22].

The output transmitted power of BS i is calculated as

pANouti =
pANmaxi

cimax

∑

u∈U

∑

(i,j)∈LAN

(xu(i,j) c(i,j)), ∀i ∈ B (5)

and, similarly, the output transmitted power pBHout(i,j) of the BH

transceiver of link (i,j) can be computed in (6), as shown at

the bottom of the next page since it spreads over two columns.

Please recall that linear interpolation is applied in order to

keep the model linear (e.g., here, the number of breakpoints

is nbkp).

The load on each BH link is evaluated as

loadBH(i,j) =

∑

u∈U x
u
(i,j)d

u

BW (i,j)
, ∀(i, j) ∈ LBH. (7)
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Moreover, pBHout(i,j) cannot exceed the maximum transmis-

sion power pBHmax(i,j) that is allowed on a BH link

0 ≤ pBHout(i,j) ≤ pBHmax(i,j) . (8)

The switch ON/OFF constraints (1e) allow a BS i or a

BH link (i,j) to be on if and only if there is traffic of at least

one user on that AN or BH link, respectively. As mentioned in

[10], the linearized switching ON/OFF of BS i in the access

is given by






















∑

u∈U

∑

(i,j)∈LAN

xu(i,j) + BIG yANi ≥ 1

sANi + BIG yANi ≥ 1
∑

u∈U

∑

(i,j)∈LAN

xu(i,j)≤BIG (1 − yANi )

∀ i ∈ B, (9)

and the linearized switching ON/OFF of BH link (i,j) is

written as


















∑

u∈U
xu(i,j) + BIG yBH(i,j) ≥ 1

sBH(i,j) + BIG yBH(i,j) ≥ 1
∑

u∈U
xu(i,j) ≤ BIG (1 − yBH(i,j))

∀ (i, j) ∈ LBH, (10)

where BIG is a large positive number, and yANi and yBH(i,j) are

binary variables needed for the linear transformation of the

constraint.

According to our assumption of considering the downlink

(i.e., the traffic flow from the core network towards a UE),

the path conservation constraints (1f) must ensure that the

traffic entering a node must exit it unless the node is the

source of the traffic or its destination.

∑

(i,j)∈L

xu(i,j) −
∑

(j,i)∈L

xu(j,i) =











1, if i = source,

−1, if i = u (sink),

0, otherwise,

(11)

∀u ∈ U , ∀i and j ∈ B ∪ U , and where L = LBH ∪ LAN.

Moreover, the traffic flow of one user cannot be split on

multiple routes when exiting a node, that is,
∑

(i,j)∈LBH∪LAN

xu(i,j) ≤ 1, ∀u ∈ U , ∀i ∈ B. (12)

Finally, a UE u cannot connect to more than one BS at a

time; thus,
∑

(i,j)∈LAN

xu(i,j) = 1, ∀u ∈ U . (13)

TABLE 1. Notation used in the MILP.

The input parameters and the output variables of our MILP

are summarized in Table 1.

IV. ROBUST APPROACH

Themotivation behind this work is understanding the impacts

of variable traffic demands on the distribution of resources

and on the energy consumed in a 5G network. To this end,

we will consider that our MILP in (1) is affected by uncer-

tainty in the GBR demand parameter du. As the demanded

GBR from user u travels in the mesh network through some

BH links and is then delivered to user u through one of the

available access links of a given BS i, the uncertainty will

affect the following: 1) the PRB allocation in the access

link (2) and thus the capacity constraint (1.c) and the output

transmitted power of BS i (5); and 2) the bandwidth required

on the BH links, which in turn directly affects the load (7)

and, consequently, the output transmitted power on those BH

links (6).

A robust optimization approach is then required in order

to alleviate the side effects of data uncertainty. We apply

the Ŵ-robust optimization approach presented in [13] to the

pBHout(i,j) = α(i,j) ·















































sl1 · loadBH(i,j), if loadBH(i,j) ≤ bkp1

sl1 · bkp1 + sl2 (load
BH
(i,j) − bkp1), if bkp1 ≤ loadBH(i,j) ≤ bkp2

sl1 · bkp1 + sl2 (bkp2 − bkp1) + sl3 (load
BH
(i,j) − bkp2), if bkp2 ≤ loadBH(i,j) ≤ bkp3

...

sl1 bkp1 +

nbkp
∑

n=2

sln (bkpn − bkpn−1) + slnbkp+1 (load
BH
(i,j) − bkpnbkp), if loadBH(i,j) ≥ bkpnbkp

∀(i, j) ∈ LBH (6)
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formulation in (1), where du is defined as a random variable.

As the GBR demand of a user u remains constant over the

used links (i, j), in our formulation, we have

du = du(i,j) ∀(i, j) ∈ LBH ∪ LAN (14)

For the uncertain matrix D = (du), which represents the

amount of data demanded by UE u, we can assume that

each coefficient du has a nominal value d̄u and a potential

symmetric maximum deviation d̂u ≥0, and thus, it lies in

the interval [d̄u − d̂u, d̄u + d̂u]. A crucial issue in robust

optimization is how the robust uncertainty set is defined.

According to our approach, the uncertainty budget will affect

1) the PRB allocation in the access link and 2) the bandwidth

required on each BH link, which in turn impacts the power

required at both the access and the backhaul networks.

A. UNCERTAINTY SET FOR THE ACCESS LINKS

We assume that at most Ŵi coefficients in row i are allowed

to deviate from their nominal value, meaning that in the

worst case only Ŵi users connected with BS i will demand

at most d̄u + d̂u resources, instead of the nominal d̄u [13].

As Ŵi represents the budget of uncertainty for BS i, all the

values for which the sum of the relative deviations from their

nominal values is at most Ŵi represent the robust uncertainty

set for our formulation. More formally, a scaled variation φu

of parameter du from its nominal value is defined as

|φu| ≤ 1, ∀ (i, j) ∈ LAN

φu =
du − d̄u

d̂u
,

∑

(i,j)∈LAN

|φu| ≤ Ŵi, ∀i ∈ B (15)

B. UNCERTAINTY SET FOR THE BACKHAUL LINKS

As the traffic demanded by the users may also flow in the

mesh network, we assume that at most 4(i,j) coefficients in

each BH link (i, j) are allowed to deviate from their nominal

value. We define the budget of uncertainty 4(i,j) for which

∑

u∈U

|σ u(i,j)| ≤ 4(i,j),

|σ u| ≤ 1, ∀ (i, j) ∈ LBH

σ u =
du − d̄u

d̂u
. (16)

meaning that in the worst case only 4(i,j) UEs whose GBR

demand is traveling on BH link (i, j) will demand at most

d̄u + d̂u resources, instead of the nominal d̄u.

Note that since it is not known for which user the variability

effectively occurs (i.e., which user effectively demands a

different amount of data compared to the nominal value),

the budget of uncertainty on the AN links and the budget

of uncertainty on the BH links are independently defined.

That is, we protect against a maximum deviation that may

occur for any of the users associated with a given BS i, and at

the same time, we protect against a maximum deviation that

may occur for any of the users whose traffic is flowing on a

given BH link (i, j). Under these conditions, the protection is

guaranteed when taking into account, independently at each

BS and on each BH link, those users whose demand variabil-

ity has the worst effect on the total power consumption.

C. ROBUST FORMULATION

Once the uncertainty of the traffic demand parameter is set,

it will directly affect equations (2) and (7), where now, du

is a random variable instead of a deterministic value; conse-

quently, equations (1c), (5) and (6) need to be updated.

According to the capacity constraint (1c), the number of

PRBs used at each BS cannot exceed the maximum number

cimax of PRBs that are available at BS i. In the robust formu-

lation, this can be rewritten as

(

∑

u∈U

∑

(i,j)∈LAN

xu(i,j)

⌈

d̄u

se(i,j)

⌉

+ max
U ′⊆U ,|U ′|≤Ŵi

∑

u∈U ′

∑

(i,j)∈LAN

xu(i,j)

⌈

d̂u

se(i,j)

⌉

)

≤ cimax , ∀ i ∈ B. (17)

Moreover, the power constraint in the access links is also

affected by the uncertainty of the traffic demand. Thus, (5)

can be rewritten as

pANouti =
pANmaxi

cimax

(

∑

u∈U

∑

(i,j)∈LAN

xu(i,j)

⌈

d̄u

se(i,j)

⌉

+ max
U ′⊆U ,|U ′|≤Ŵi

∑

u∈U ′

∑

(i,j)∈LAN

xu(i,j)

⌈

d̂u

se(i,j)

⌉

)

, ∀i ∈ B.

(18)

Similarly, the load on each BH link (7) should be reformu-

lated as

loadBH(i,j) =

(

∑

u∈U

xu(i,j)d̄
u + max

U ′⊆U ,|U ′|≤4

∑

u∈U ′

xu(i,j)d̂
u

)

·
1

BW (i,j)
, ∀(i, j) ∈ LBH , (19)

which in turn affects (6) and (4).

The new robust problem formulated in this section is not

linear any more due to the max functions in (17), (18), and

(19). Section IV-D shows how the problem can be trans-

formed into a MILP.

D. ROBUST COUNTERPART OF THE MILP

In this section, by exploiting LP duality [13], the max func-

tions in (17), (18), and (19) are transformed into linear func-

tions. To this end, two dual variables are needed for each

robust uncertainty set (i.e., one on the access links LAN and

one on the backhaul linksLBH ). This section provides the full

description of the robust counterpart of the model presented

in [10] and summarized in Section III-B.
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The robust counterpart of the MILP in (1) is given by

argmin
xu(i,j),s

AN
i ,sBH(i,j)

∑

i∈B

Pi(x
u
(i,j), s

AN
i , sBH(i,j)),

s.t. a) xu(i,j) ∈ {0, 1}, ∀u ∈ U ,

∀(i, j) ∈ LBH ∪ LAN

b) sANi , sBH(i,j) ∈ {0, 1}, ∀i ∈ B,

∀(i, j) ∈ LBH

c) Robust capacity constraint

d) Robust power constraints

e) Switch ON/OFF constraints

f ) Path conservation constraints (20)

Two dual variables µi and ν(i,j) need to be defined for each

access link (i, j) such that

µi + ν(i,j) ≥ xu(i,j)

⌈

d̂u

se(i,j)

⌉

, ∀ (i, j) ∈ LAN ,

µi ≥ 0, ν(i,j) ≥ 0. (21)

Thus, the robust capacity constraint in (20c) is obtained

by linearizing (17) as
(

∑

u∈U

∑

(i,j)∈LAN

(

xu(i,j)

⌈

d̄u

se(i,j)

⌉

+ ν(i,j)

)

+ Ŵiµi

)

≤ cimax ∀ i ∈ B (22)

Regarding the robust power constraints in (20d),

the power Pi of BS i can be computed as the sum of the power

consumed on the microwave links that are used by each UE u

once it associates with BS i plus the power consumed by each

BH link that is activated from BS i to the mesh, that is,

Pi = NTXAN
i ( sANi pAN0i + 1AN

p PANouti )

+
∑

(i,j)∈LBH

NTXBH
(i,j)

(

sBH(i,j)p
BH
0(i,j)

+ 1BH
p PBHout(i,j)

)

,

∀i ∈ B (23)

where PANouti is obtained by linearizing (18), that is,

PANouti =
pANmaxi

cimax

(

∑

u∈U

∑

(i,j)∈LAN

xu(i,j)

⌈

d̄u

se(i,j)

⌉

+ Ŵiµi +
∑

u∈U

∑

(i,j)∈LAN

ν(i,j)

)

, ∀i ∈ B. (24)

Two other dual variables λ(i,j) and κu(i,j) need to be intro-

duced on the backhaul links such that

λ(i,j) + κu(i,j) ≥ xu(i,j)d̂
u, ∀ (i, j) ∈ LBH , ∀ u ∈ U

λ(i,j) ≥ 0, κu(i,j) ≥ 0. (25)

Then, the parameter loadBH(i,j) in (19) can be written as

LBH(i,j) =

(

∑

u∈U x
u
(i,j)d̄

u + 4(i,j)λ(i,j) +
∑

u∈U κu(i,j)

)

BW (i,j)

∀(i, j) ∈ LBH (26)

TABLE 2. Notation of the robust counterpart MILP.

and PBHout(i,j) can be obtained by substituting load
BH
(i,j) with L

BH
(i,j)

in (6).

Finally, the switch ON/OFF constraints (20e) and the

path conservation constraints (20f) remain unchanged and

are given by 9-10 and by 11-13, respectively.

The notation for the robust counterpart is summarized

in Table 2. The robust MILP guarantees a feasible optimal

solution for a given amount of allowed variability of the user

demand du; the allowed variability is defined through the

budget of uncertainty Ŵi of the access link of each BS i,

the dual variables µi and ν(i,j) defined in (21), the budget of

uncertainty4(i,j) for each BH link (i,j), and the dual variables

λ(i,j) and κu(i,j) defined in (25). The objective is to minimize

the total power Pi of all the active BSs in the network. The

solution provides the set of access links through which the

users associate with the network, the set of active BH links

through which the users’ traffic flows in the mesh, and the set

of BSs and BH links that are turned off in order to save power

while they are not in use.

V. EVALUATION

Our model has been tested using a scenario with 17 BSs,

which are composed of 1 eNB and 16 small cells, as depicted

in Fig. 2; the SCs are grouped in two clusters inside the

coverage area of the eNB (500 m radius),1 according to

the specifications by 3GPP [23]. The 16 SCs are randomly

1We have considered the same scenario used in [10].
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FIGURE 2. Simulation scenario with a single eNB sector and two clusters
of SCs as in [10]. The eNB and one SC in each cluster act as the traffic
aggregators.

TABLE 3. Values used for the evaluation [10], [23].

dropped in the eNB sector. We have considered 5 random

drops (called random scenarios) in order to calculate the

statistics. Only three BSs have a fixed connection with the

core network (as depicted in Fig. 2). In each random sce-

nario, two SCs are randomly selected to have this fixed/high

capacity/zero-power link, together with the eNB. In each

random scenario, the number of available mmWave links

for the meshed backhaul network among the small cells and

between an SC and the eNB may vary from 100 to 130. The

BH links operate at 60 GHz with a channel BW of 200 MHz;

the other parameters used in the evaluation are summarized

in Table 3.

As in [10], eight different user densities (i.e., minimum

of 13 UEs and maximum of 62 UEs) have been considered

in the evaluation, which correspond to different times of the

day (i.e., frommidnight to 7 am [24]). The users are randomly

dropped inside the coverage area of the eNB, and according

FIGURE 3. Average total power consumption (green bars) with the 95% CI
(in black) and average execution time (blue asterisks) based on the time
of day in the nonrobust case.

to their locations and the signal quality from the different BSs

in the scenario, several microwave access links are eventually

available for association. Each user has a predefined demand

(i.e., bits per second that the UE requests from the core

network), thus requiring a given number of PRBs. According

to the LTE specification [25], we assume that the number of

available PRBs at each BS is 100 when the subcarrier spacing

is 15 kHz and the transmission bandwidth is 20 MHz.

Unless stated, the values presented in this section refer

to the average over the 5 random scenarios at each time

of the day. We will first present our results for the nom-

inal case (i.e., when Ŵ and 4 are set to zero), meaning

that the demand fluctuations are not taken into account.

Those results are taken as a reference for later comparison in

Section V-B, where the impact of an increasing variation of

the users’ demand on the energy efficiency of the network is

studied.

A. RESULTS IN THE NONROBUST CASE

When setting Ŵ and 4 to zero, the robust problem will be

equivalent to the original problem presented in [10]. That is,

since the users’ demand du is considered to be known and

set to a fixed value (i.e., the nominal value d̄u for each user

u), the Robust MILP in (20) is then equivalent to the original

MILP in (1).

Figure 3 presents the total power consumed in the network

every hour frommidnight to 7 am. The average is represented

in green. It goes from 323Wwhen the lowest number of users

are using the network (i.e., at 2 am) up to 3764 W for the

scenario with the highest user density (i.e., at 7 am). The 95%

confidence intervals (CIs) are shown in black and display a

high variability among the five random scenarios. There may

be an increase of up to 81% with respect to the mean (4 am),

while it appears to more stable in higher density scenarios

(up to 47% at 7 am). We can conclude that the higher the UE

density is, the lower the CI (i.e., the SC distribution has an

impact on the results).
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FIGURE 4. AN (green bars) versus BH (gray bars) power normalized to the
total power consumption based on the time of day for the nonrobust
case. The error bars for the access network are depicted in black.

The red line in Fig. 3 represents the reference power con-

sumption when all the BSs in the network are switched on and

the output transmitted power components Pout , which depend

on the users density, are set to zero; we refer to this condition

as ‘‘Zero Load’’. The red line thus represents the minimum

power that would be consumed during the day in our scenario

if the switching off strategy was not applied. Notice that the

power consumption is actually higher once the output trans-

mitted power components are also taken into account. As an

example, the reference ‘‘Zero Load’’ power consumption is

5492.16W, and it would increase to 6713.70W at 7 am when

considering the corresponding user demand and load at that

hour of the day; that is, Pout is 1221.54 W at 7 am, and it

varies at each time of the day depending on the user density.

This also explains why the CI at 7 am intersects the reference

line.

The blue asterisks in Fig. 3 represent the average execution

time; again, it increases with the user density (i.e., from

0.3 seconds up to 2.9 seconds). The 95%CIs for the execution

times for the five random scenarios are always lower than

40%. Thus, for the simulated scenarios, we can conclude that,

in the nonrobust case, the optimal solution can be found in

real time.

The total power consumption is the sum of the power

consumed on the access links established from each BS to

each UE in the network (i.e., AN power) plus the power

consumed by each BH link that is activated from each BS to

themesh (i.e., BH power), as in (23). The AN and BH powers,

which are normalized to the total power consumption, are

represented in Fig. 4 with green and gray bars, respectively.

In general, most of the power is consumed in the access,

independent of the user density. In the two scenarios with

the highest user densities, most of the power is consumed in

the AN links (i.e., 75% at midnight and 62% at 7 am); the

same trend exists in the three scenarios with lower densities

FIGURE 5. Average number of PRBs left unused in the network (blue
bars) with the 95% CI (in black) and the average number of BSs that are
switched ON (gray stars) in the nonrobust case.

(i.e., 76% at 2 am, 62% at 3 am and 60% at 4 am). The

95% CIs for the AN power normalized to the total power

consumption stay from 0.2 to 0.4, showing relatively high

variability in the 5 random scenarios that have been used in

the evaluation. This result is expected since the SCs random

drop has an impact on the number of PRBs that are required

to satisfy the UE demand and, hence, the Pout . This high

variability confirms the representativeness of the 5 random

scenarios, which turn out to be quite heterogeneous.

When the number of BSs that are switched on in the

AN links increases (represented by the gray stars in Fig. 5),

the number of unused PRBs decreases (represented by the

blue bars). The total number of available PRBs in our scenario

is 1700 (i.e., 17 BSs, each one with 100 PRBs). Higher

density scenarios (i.e., midnight and 7 am) need more BSs

to serve the users and are thus switched on in the AN links

(5.0 and 6.4, respectively), which also correspond to fewer

PRBs left unused (1234.6 and 1108.2, respectively). It is

worth noting that, according to the 95% CIs, at least 940

PRBs remain unused in all the evaluated scenarios, which is

more than half of the available PRBs per BS.

The utilization of the BSs in the network is not uniform,

as depicted in Fig. 6. The average number of PRBs that are

used based on the time of day is shown in different subplots

for different BSs. The eNB (Fig. 6(a)) can be switched off

unless there is a high user density in the network (i.e., mid-

night and 7 am). Similarly, there are BSs that are barely used

(e.g., SC8, SC11 and SC14) and that can be switched off

most of the time (Fig. 6(b)), while the PRBs utilization is

almost constant and low for others (e.g., from 8 to 20% for

SC2, SC4, SC12 and SC15, as depicted in Fig. 6(c)). On the

other hand, some BSs are constantly used (e.g., from 16 to

60% of PRBs utilization for SC3, SC5, SC9 and SC10), while

others can be highly utilized at given hours or barely used and

switched off during the day (Fig. 6(e)-(f)). It is worth noting

that, on average, all the BSs need to be switched on in order

to satisfy the user demand at 7 am.
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FIGURE 6. Average number of PRBs that are used at each BS based on the time of day in the nonrobust case.

B. IMPACT OF INCREASING THE ROBUSTNESS ON THE

ENERGY EFFICIENCY OF THE NETWORK

This section is devoted to analyzing how the optimal solu-

tion changes when the user demand is assumed to be vari-

able, according to the theory shown in Section IV. The user

demand du that was used in the evaluation in Section V-

A is now set as the nominal value of the GBR demand for

each user u (d̄u). Several simulations have been run con-

sidering three different values for the maximum deviation

d̂u of the GBR demand of each user u (i.e., 0.1, 0.2 and

0.4) and considering two different values for the budgets of

uncertainty (i.e., Ŵi and 4(i,j) are both set to 1 or both set to

5). As described in Sec. IV, the budget of uncertainty sets

the maximum number of users for which the user demand is

allowed to simultaneously deviate from the nominal value.

Thus, six robustness scenarios are depicted with increas-

ing levels of variability: three where Ŵi and 4(i,j) are set

to 1 and d̂u is set to 0.1 (rob-scen-Ŵ1-dev0.1), 0.2 (rob-scen-

Ŵ1-dev0.2) or 0.4 (rob-scen-Ŵ1-dev0.4); and three others

where Ŵi and 4(i,j) are set to 5 and d̂u is set to 0.1 (rob-

scen-Ŵ5-dev0.1), 0.2 (rob-scen-Ŵ5-dev0.2) or 0.4 (rob-scen-

Ŵ5-dev0.4). For instance, in the robustness scenario with

Ŵi and 4(i,j) set to 1 and the maximum deviation d̂u set

to 0.2 (i.e., rob-scen-Ŵ1-dev0.2), only one user demand is

allowed to deviate from the nominal value on each BS and

on each BH link, with a maximum deviation of 20% from

the nominal user demand. The six robustness scenarios are

compared with respect to the nonrobust scenario summarized

in Section V-A.

Regarding the total power consumption in the robustness

scenarios, two values can be shown. First, we have the

expected power consumption, which is the average power

that will be needed since the deviations from the nominal

users demand are symmetric. Second, the risk-adjusted power

represents the maximum potential consumption when the

total allowed increase in the user demand actually occurs

(i.e., worst-case scenario). It is important to stress, however,

that in both cases, an increase in the power consumption is

expected when there is higher variability in the uncertainty set

(i.e., in comparison with the results in Sec. V-A). The reason

for this expectation is due to the spare resources that need to

be left unallocated at each BS and link (even if they will not

be used) in order to guarantee that they can be used in case

that the maximum variability allowed in the uncertainty set

actually occurs. Please recall here that Ŵ-Robustness theory

is based on the assumption that it is highly unlikely that all

the user demands vary at their maximum deviation for all the

users at the same time. Thus, those spare resources may cause

more BSs to be switched on in order to guarantee a feasible

solution, even in the event of an increase in the demanded

rate.

Fig. 7 depicts the total risk-adjusted power consumed in the

network for each robustness scenario, which is normalized

with respect to the power consumed in the nonrobust scenario

(represented in black). Comparing the results with a given set

of Ŵi and 4(i,j), we observe that the average normalized risk-

adjusted power consumption increases when the maximum

deviation grows; similarly, when we set a given maximum
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FIGURE 7. Average risk-adjusted power consumption for different Ŵ

based on the time of day, which is normalized to the power in the
nonrobust case.

FIGURE 8. Average expected power consumption (green bars) plus the
extra power needed in the worst-case scenario (gray bars, risk-adjusted
power consumption), which is normalized to the nonrobust case for
rob-scen-Ŵ5-dev0.4.

deviation, the average normalized risk-adjusted power con-

sumption increases as the budget of uncertainty increases.

In the most conservative of the six robustness scenarios

(i.e., rob-scen-Ŵ5-dev0.4, which is represented with blue

asterisks), the increase in the risk-adjusted power consump-

tion remains from 45% to 75% (at midnight and 1 am,

respectively).

However, it is worth noting that this increase only occurs in

the worst case, while on average, less power is actually con-

sumed in the robustness scenarios. For instance, the expected

power consumption in the rob-scen-Ŵ5-dev0.4 is depicted

in Fig. 8 and represented with green bars. On average,

it increases from 25% to 48% compared to the nonrobust case

(again represented with black triangles). The extra amount

FIGURE 9. Average execution time for different Ŵ.

FIGURE 10. Average number of PRBs employed in the network versus the
average number of BSs that are switched ON. The extra resources
comparison of the nonrobust case and the rob-scen-Ŵ5-dev0.4 is
depicted.

of power depicted in gray in Fig. 8 will be consumed in the

unlikely event that all the allowed deviations occur simulta-

neously; also recall that the power consumption may be less

than expected, as the deviations are symmetric [13]).

As a conclusion, a less risky solution (i.e., one that takes

into account a higher variability in the user demand) will

result in higher power consumption, which is needed in order

to protect the feasibility of the solution (i.e., leaving extra

resources free in case they are needed for the extra demand).

The execution time for each robustness scenario is depicted

in Fig. 9 and increases as the budget of uncertainty increases.

In general, the execution time is more than an order of mag-

nitude longer at midnight and at 7 am (i.e., when the user

density is higher). Especially critical is the most conservative

of the six robustness scenarios (i.e., the one represented with

blue asterisks), as the time to find the optimal solution may

be up to two days. Of course, the proposed algorithm cannot
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FIGURE 11. Average number of PRBs that are used at each BS based on the time of day for rob-scen-Ŵ5-dev0.4.

be implemented in real scenarios, but it can be used as a

comparison threshold for any heuristic approach that will be

developed in the future.

Again, when the number of BSs that are switched on in the

AN links increases, more PRBs are utilized. As an example,

Fig. 10 shows the results in the most conservative robustness

scenario (i.e., with Ŵ and 4 equal to 5 and dev = 0.4). The

extra amounts needed in the robust case and the nonrobust

case are depicted in light-blue and dark blue, respectively.

Additionally, as a reference, the number of BSs that are

switched on in the robust case is represented by light-blue tri-

angles, and that for the nonrobust case is represented by gray

stars. The two scenarios (nonrobust and robust case) present

the same trend, where higher density scenarios require more

PRBs and more BSs to serve the users. Additionally, more

PRBs are used on average in the robustness scenario than the

nonrobust scenario (i.e., from an increase of 12.6 PRBs on

average at 1 am to 175.6 at midnight).

Again, the utilization of the BSs in the network is not

uniform, as depicted in Fig. 11, which shows the number of

PRBs that are used at each BS based on the time of day in the

most conservative of the robustness scenarios (i.e., rob-scen-

Ŵ5-dev0.4). As stated before, there are more PRBs allocated

than in Fig. 6 as they may be used in case the deviation

effectively occurs. For instance, the eNB (i.e., subplot (a))

can now be switched off only at 2 am when the user density

is very low. Again, there are BSs that are barely used most of

the time (e.g., SC8 and SC14) and that can be switched off

(i.e., subplot (b)). There are others whose PRBs utilization

is almost constant and low (e.g., from 7 to 20% for SC4,

SC12 and SC15 and from 12 to 32% for SC2). It is worth

noting that, on average, all the BSs need to be switched on at

midnight and 7 am when the user demand is higher; however,

even in this case, the power consumed by the whole network

is reduced when the robust optimization approach is used.

VI. CONCLUSION

A robust MILP has been proposed for the joint optimization

of the user association, backhaul routing and on/off strategies,

with the objective of reducing the total power consumed in

a 5G network while guaranteeing that the user needs are

met. Because the user demand fluctuates over time and is

mostly difficult to predict, the model takes into account this

variability in order to protect the solution against a given

number of simultaneously happening fluctuations. The vari-

ability not only affects the access links of the 5G network,

thus requiring extra resources (i.e., PRBs) at the BS, but

also impacts the BH link, where extra bandwidth should be

allocated in case the demand increases with respect to the

nominal value. The robust solution provides an association

pattern and BH routing that may require extra resources to

be left unallocated and available in the case of an increase

in the user demand, thus turning on more network resources

(e.g., more active BSs are expected). As expected, when

accounting for higher deviations, the obtained solution is less

risky and, thus, more energy consuming. However, since the

Ŵ-robust approach from [13] considers symmetrical devia-

tions from the nominal value, it has been shown that the
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increase in the expected power consumption is smaller than

in the risk-adjusted power consumption, which represents the

worst-case scenario where all the deviations occur.

Regarding the execution time, a less risky solution requires

more time for the algorithm to be solved. It has been shown

that the proposed algorithm cannot be implemented in real

scenarios since in some occasions, it may take more than two

days to find the optimal solution. A hybrid solution is needed

for realistic implementations, where a heuristic algorithm can

provide a faster solution for those scenarios where the real

optimum takes too long. The solution proposed in this paper

should help to tune the parameters in the heuristic algorithm

and should be used as a comparison threshold for such a

heuristic hybrid approach.
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