
A Robust Visual Odometry and Precipice Detection
System Using Consumer-grade Monocular Vision

Jason Campbell 1,2 Rahul Sukthankar 1,2 Illah Nourbakhsh 2,3 Aroon Pahwa 2

1 Intel Research Pittsburgh 2 Carnegie Mellon University 3 NASA Ames Research Center

Pittsburgh, PA USA Pittsburgh, PA USA Moffett Field, CA USA

{jasoncam,rahuls,illah}@ri.cmu.edu aroon@cmu.edu

 Abstract – We describe a monocular robot vision system

which accomplishes accurate 3-DOF dead-reckoning, closed-

loop motion control, and precipice and obstacle detection, all in

dynamic environments, using a single, consumer-grade web-

cam and typical laptop computer hardware. Simultaneous

translation and rotation are accurately measured, and the

camera need not be placed at the robot’s center of rotation.

The algorithm is straightforward to implement and robust to

noisy measurements. The software is based on open source

computer vision libraries and is itself open source. It has been

tested in a wide variety of real-world environments and on

several different mobile robot platforms.

 Index Terms - mobile robotics, mobile robot vision, optical

flow, odometry

I. INTRODUCTION

Visual mobile robot navigation has long been a goal of

robotics and computer vision researchers [9]. Whole fields

have developed around the exploitation of one or more

moving cameras, including visual simultaneous localization

and mapping (V-SLAM) [8,21], visual servoing [12],

spacecraft attitude control [14], and structure from motion

(SFM). The past 15 years have also seen a smaller body of

work on what has been termed visual odometry – that is, the

incremental, online estimation of robot motion from a video

sequence shot by an on-robot camera. [1,13,16,17,19,22].

Visual odometry is a distinctly local, low-latency ap-

proach that facilitates closed-loop motion control and obsta-

cle and precipice detection, as well as highly accurate dead-

reckoning. This local focus contrasts with more global ap-

proaches such as V-SLAM or online SFM which empha-

size mapping, progressive reduction of uncertainty, global

frames of reference, and which may include iterative re-

finement steps such as multi-frame bundle adjustment [10].

Historically, visual odometry systems have had diffi-

culty overcoming a number of problems, including numeri-

cal instabilities common in SFM-like projective geometric

techniques [7], sensitivity to the low quality of point corre-

spondences available from automatic tracking algorithms

[2,23], a requirement for omnidirectional views [13,22], or

the inability to disambiguate simultaneous rotation and

translation [11]. A more recent result overcomes these dif-

ficulties in monocular- and stereo-camera cases but achieves

high accuracy only with a calibrated stereo pair [19].

In this paper we describe an algorithm for strictly mo-

nocular visual odometry which achieves good real-world

performance (similar to the calibrated-stereo results shown

in [19]) at substantially lower implementation complexity.

This is made possible by exploiting a variety of straightfor-

ward consensus methods, several reasonable assumptions

for ground-based mobile robots, and the increasingly high

performance of consumer computing hardware. We have

tested this system on three small mobile robot platforms (see

Figs. 1 and 5), and in traditional office environments as well

as in extreme terrain such as ice. Our visual odometry sys-

tem is readily accessible to a wide range of robot builders

because it is based on and is itself open source software.

Visual odometry offers the prospect of substantially re-

duced sensing costs, allowing more reliable navigation

through unstructured areas and safer operation in close

proximity to humans. As the cost of computation falls, an

inexpensive camera can replace a typical sensor suite con-

sisting of dozens of range sensors and a set of encoders and

provide a broader field of view and the ability to perform

range and appearance-based sensing simultaneously. Pas-

sive vision systems also avoid the multi-path interference

problems typical with sonar rangefinders and the high sensi-

tivity to lighting common in low-cost infrared rangefinders.

For kinematically indeterminate robots (e.g., where friction

is low and actuation powerful), visual odometry offers a

low-latency error signal which can be used in a feedback

loop to correct motion. For robots that operate in highly

unstructured indoor environments (e.g., urban search and

rescue) visual odometry can be significantly more practical

and functional than other localization systems because no

radio coverage is required, no beacons need be car-

ried/deployed, static drift is low compared to low-cost iner-

tial measurement units, and high degrees of wheel slip pose

no difficulty.

The remainder of this paper is organized as follows:

Section II describes the hardware used in our experiments.

Section III outlines the visual odometry algorithm itself.

Sections IV through VI describe detailed aspects of the al-

Fig. 1 Two examples of robots using this visual odometry system

Only the uppermost, front camera on each robot is used for visual odometry.

gorithm. Section VII addresses obstacle and precipice de-

tection. Section VIII summarizes the framework within

which we evaluate this and other visual odometry systems.

Section IX describes the closed-loop version of our vision

system. Section X discusses the real-world performance of

our algorithm in a variety of environments and on a variety

of robots, and Section XI explores the implications of robust

visual odometry for the design of new robot systems. Sec-

tion XII concludes and summarizes our findings.

II. HARDWARE CONFIGURATION

We have successfully deployed our visual odometry

system using a variety of cameras, ranging from $5 surplus

webcams to multi-megapixel consumer digicams. The re-

sults we report here are from USB- and IEEE1394- web-

cams operating at VGA resolution (640x480 pixels). These

cameras, fitted with inexpensive 2.1 mm wide-angle lenses,

have unit costs around $100 and achieve peak frame rates of

10 and 30 frames per second (fps), respectively. Each cam-

era affords a horizontal field of view of approximately 90˚.

In the USB case, a proprietary compression algorithm was

required between the camera and camera driver [18] to per-

mit 10 fps VGA operation over a USB 1.1 bus.

Two types of tests were performed, one that passively

interpreted video to compute the robot’s trajectory after-the-

fact (“open loop”), and another that used on-line visual

odometry estimates to actively correct the robot's trajectory

(“closed loop”). The open loop tests were performed at 7.5

fps using uncompressed video recorded by an IEEE1394-

attached webcam. The open loop vision system computa-

tions were run off-line on a 3.2 GHz Intel® Pentium® Xeon™

desktop PC at effective frame rates between 30 and 50 fps.

The closed loop tests were performed using a USB-attached

webcam capable of up to 10 fps, however, the actual frame

rate varied due to CPU load. Using a laptop equipped with

a 1.5 GHz Intel® Pentium® M processor for vision process-

ing, robot control, and a near-real-time graphical user inter-

face displaying the estimated optical flow field and resulting

visual odometry results, rates from 2 to 10 fps were ob-

served.

III. ALGORITHM OVERVIEW

The visual odometry algorithm we present here is an 8-

stage process where all eight stages execute sequentially

after the capture of each video frame. In practice this algo-

rithm can execute as quickly as 15 fps on common laptop

hardware. Our approach relies on two assumptions which

are quite reasonable for many mobile robots: a) the robot

travels predominantly over a ground plane, and b) the cam-

era is mounted rigidly with respect to the robot and ground

plane. The quality of position estimation results varies with

frame rate, robot speed, camera height, and visual environ-

ment. This section presents a brief outline of the eight

stages and the following sections address specific stages in

detail. In this discussion we shall use the notation (u,v) to

represent image coordinates, lowercase (x,y,θ) to represent

incremental coordinates in a robot-centered frame of refer-

ence, and uppercase (X,Y,Θ) to represent global coordinates

in a frame of reference based on the starting position and

orientation of the robot. The eight stages are:

1. Correct camera images for lens distortion. This is ac-

complished using standard computer vision algorithms in-

cluded in the Open Computer Vision Library (OpenCV) [5].

2. Estimate the optical flow field corresponding to re-

cent video frames.

3. Screen flow-field vectors for potential tracking errors

and independently moving objects. Discard such vectors.

4. Divide the optical flow field into “ground” and

“sky”.

5. Project image coordinates (u,v) of flow vectors in the

“sky” region into a robot-centered cylindrical coordinate

frame and determine consensus angular displacement be-

tween the last two camera views. Use this as the estimate θ
of rotational motion.

6. Project image coordinates (u,v) of flow vectors from

the “ground” region on to ground plane coordinates. From

this set of transformed vectors, determine a consensus x-y

feature displacement between the last two camera views and

use this as the estimate (x,y) of translational motion.

7. Sum incremental measurements (x,y,θ) to arrive at a

cumulative estimate (X,Y,Θ) of robot position relative to the

robot’s original starting position.

8. Periodically repopulate the set of active trackpoints

to maintain adequate and uniform coverage across ground

and sky.

IV. ESTIMATING THE OPTICAL FLOW FIELD

Optical flow field estimation remains an open problem

after over 25 years of effort. Dozens of methods have been

proposed, each with its own strengths and weaknesses. In a

1995 survey [2,3], Barron, Fleet, et al. reported the Lucas

Kanade method [15] as being among the most accurate and

most reliable of the methods (then available), when tested

using a variety of simulated and real data series. An im-

proved and more efficient form [4] of the Lucas Kanade

algorithm is available in the open source computer vision

library, OpenCV. We employ this feature tracker to obtain

the point correspondences (equivalently, the optical flow

field vectors) required in subsequent stages of the algorithm.

In selecting features to track, we use a low corner

threshold and specify a large minimum distance between

features. (typically 0.005 and 20 pixels, respectively) This

encourages the detection of features even in low-contrast

parts of the image and provides relatively uniform coverage

across the field of view, at the cost of generating a higher

number of tracking errors. Given that the robust methods

we use to analyze those feature tracks can deal with substan-

tial numbers of outliers, we have found such wider coverage

preferable to minimizing tracking errors.

V. SCREENING TRACKPOINTS FOR QUALITY

Low contrast images, feature-poor environments, oc-

clusions, and spatial aliasing may all cause individual opti-

cal flow vectors to be estimated incorrectly (henceforth,

“patch tracking errors”). Also, dynamic elements in the

environment (e.g., moving people, vehicles) can induce op-

tical flow that may be substantially at odds with the robot’s

ego-motion-induced optical flow. Our visual odometry sys-

tem attempts to mitigate the impact of confusing flow vec-

tors from patch tracking errors and independently moving

objects by identifying and excluding suspect vectors from

the ego-motion estimation process.

Patch-tracking errors tend to show erratic movement

from frame to frame. For instance, at occlusion boundaries,

features being tracked disappear or change due to changing

image content near the discontinuity. Low-contrast features

may simply be difficult to precisely relocalize in a subse-

quent video frame due to spatial sampling irregularities in-

herent to typical low cost image sensors. Specular reflec-

tions may be tracked as features and shortly thereafter dis-

appear due to surface conditions and angles.

Likewise, the optical flow field associated with dy-

namic elements in the environment also tends to show more

erratic motion over time because the flow vectors created by

moving objects are superimposed on to the flow generated

by the robot’s ego-motion. In a special, but very important

case, the optical flow field associated with moving humans

tends to be particularly erratic because human motion is

typically discontinuous and moving human bodies undergo

substantial deformation.

In contrast, the optical flow field due to ego-motion

tends to be smooth because the robot’s motion is largely

smooth. (While there exist a variety of robots that exhibit

discontinuous motion, such as legged mechanisms, a smooth

motion assumption is reasonable for most mobile robots.

Furthermore, a robot which exhibits periodic or known dis-

continuous motion could actually exploit such motion to

better disambiguate the optical flow field.) Thus, for both

tracking errors and independent motion, smoothness can be

employed as a practical heuristic to assess the reliability of

each optical flow track in estimating robot motion. Our

optical flow algorithm exploits this observation by focusing

attention on elements that exhibit smooth motion over a

seven-frame (0.5-3 second) time horizon. However, to ac-

count for cases where the robot’s actual motion is temporar-

ily not smooth (e.g., during travel over a bumpy surface),

we suspend this rule in cases where the majority of vectors

exhibit unsmooth motion over the observation interval.

The criteria used to identify “smooth” flow centers

around the incremental angles between successive flow vec-

tors associated with each tracked image patch over time.

We compute the flow-field direction at the patch in question

across three intervals – seven to three frames back, three to

one frames back and one frame back to the current frame –

and then classify an element as “unsmooth” when the dif-

ference between any of those directions exceeds a threshold

of 30 degrees. Once an element has been classified as

unsmooth, it is ignored for purposes of egomotion estima-

tion within the current cycle.

Over time we also wish to stop tracking consistently

unsmooth elements and instead choose other image patches

which may offer a more reliable indication of robot egomo-

tion. Thus, when a given flow element is classified as

“unsmooth” but the majority of other flow elements are

classified as smooth, a score field associated with the

unsmooth element is incremented by 5. The score fields for

all smooth elements are decremented by 1, but not below

zero. If, over time, a flow element’s unsmoothness-score

field exceeds 10, that element is removed from the list of

image patches to track in future video frames. This allows

problematic patches to be replaced with new image patches

the next time that new tracking features are chosen (i.e., in

Step 8). We have found that the weights 10/5/1 strike a

compromise between shielding the motion estimation proc-

ess from confusing optical flow vectors and accommodating

a limited number of irregularities without prematurely dis-

carding a trackpoint.

VI. ESTIMATING ROBOT MOTION

Given the set of filtered optical flow vectors, the next

task is to derive an estimate of the robot’s incremental mo-

tion during the last pair of frames, and to integrate it over

time to obtain global estimate of robot position. First, we

summarize the derivation of the mapping between image

pixels and points in the world. Next, we decompose incre-

mental motion into a rotation and a translation and estimate

each separately. Finally, we combine the information to

recover the robot’s motion in a world coordinate frame.

These steps are detailed in the following subsections.

A. Mapping Camera Coordinates to the Ground Plane

First, we determine the mapping between the camera

coordinates (u,v) of a tracked feature and its corresponding

point (x,y) on the ground plane. Our physical setup is de-

picted in Fig. 2. The height H of the camera from the

ground plane is manually measured, as is the distance D

from the robot to the intersection of the principal ray with

the ground plane. We can recover the tilt α of the camera

from the expression:

D
H=α)tan((1)

We also employ basic trigonometry to map from v (as-

sumed to be measured from the top of the image) to β (ver-

tical angle between principal point and the observed point):

()

−=β

2
tan2)tan(

VFOV
Vv , (2)

where V is the vertical dimension of the image in pixels

(e.g., 480 rows) and VFOV is the vertical field of view of

the camera. These relations enable us to recover the distance

y from the robot to the observed point:

)tan(β+α
=

H
y , (3)

and the depth z to the observed point from the camera:

)sin(

)cos(

β+α
β

=
H

z . (4)

Fig. 2 Mapping Camera Coordinates to the Ground Plane

image

plane

(at f)

v z

α

β

(x,y)
D

H

VFOV/2

principal ray

from camera

top edge of

camera view

When an optical flow vector generated by a tracked feature

on the ground plane is imaged by the camera, its observed

magnitude (in pixels) is affected by its depth z relative to the

image plane and its orientation β to the camera axis. The

above equations enable us to invert this transform, and to

determine the actual displacement of each observed feature

on the ground plane – and thus derive the incremental mo-

tion of the robot.

B. Estimating Robot Rotation and Translation

Over a short interval, the robot’s motion on the ground

plane can be decomposed into a change in heading (rotation

about a vertical axis) and a displacement (translation). We

recover each separately using different regions of the image.

Such a two-step process is important because, while in prin-

ciple all optical flow vectors can convey information about

camera translation, vectors corresponding to features that

are distant from the camera will exhibit such small amounts

of parallax-induced optical flow that those measurements

would be overwhelmed by tracking noise. In contrast, cam-

era rotation causes all observed feature points, both nearby

and distant, to move through the same angle. This means

that we can derive a robust estimate for heading change by

observing features far from the camera (since those are rela-

tively insensitive to optical flow induced by translation).

Once the effects of any observed heading change are sub-

tracted from the optical flow field, the flow vectors associ-

ated with features near the camera can serve as a good basis

for estimating translational motion. We implement this

strategy by observing that flow vectors near (and above) the

horizon typically correspond to distant objects and we em-

ploy these for rotation estimation. Vectors below the hori-

zon are good candidates for estimating translation. Fig. 3

shows a typical image with filtered flow vectors and its de-

composition into the three zones. We discard vectors in a

“dead zone” near the horizon since the observed location of

the horizon is affected by brief, transient changes in robot

pitch – and this could greatly magnify small errors in trans-

lation estimates based on distant points (which lie near the

horizon). Once again, because further steps in the algorithm

are robust against to outliers, it is not necessary that this

sky/horizon/ground heuristic always hold true. For in-

stance, we have observed good visual odometry perform-

ance even in crowded rooms, where many features above

the horizon are in fact only tens of centimeters or a few me-

ters from the camera.

To estimate rotation, we back-project each flow vector

from the “distant” zone into a vertical cylindrical coordinate

frame centered on the camera using mappings analogous to

those described above. We then simply estimate the

change in heading by taking the median of the observed

angular displacements. Note that one should not naively use

the horizontal displacement of the flow vector as an estimate

for heading change since, particularly for wide-angle lenses,

the mapping from the camera plane to cylindrical coordi-

nates will depend on the position of the observed feature in

the image. However, for certain low-cost, highly-barrel-

distorting wide-angle lenses (such as the ones used in most

of our tests), we have empirically observed that the barrel

distortion fortuitously approximates the cylindrical map-

ping. Thus one could achieve comparable accuracy with a

significant savings in computation simply by performing

optical flow in the uncorrected image and using the median

of horizontal displacements as an indicator of heading

change. While our present algorithm does not take advan-

tage of this trick, we are developing an extension that will

be able to do so. Obviously, this trick cannot be employed

when estimating translation because the transformation re-

quired is entirely different.

To estimate translation, we first subtract the rotational

flow field implied by our estimated heading change. We

then attempt to find the pure translation vector that best ex-

plains the resulting flow observed in the “ground” region of

the image. This is done by back-projecting the flow vectors

on to the ground plane as outlined in (3). This inverts the

perspective distortion induced by the camera, and the

lengths of each vector correspond to actual displacements

on the ground plane. For an ideal image sequence, the re-

sulting flow field would consist of identical vectors; in real-

ity, the flow field is perturbed by unmodeled effects such as

tracking error, variations in the height of the ground surface,

and the motion of other objects in the scene. We obtain a

robust estimate of the robot’s translation by taking the me-

dian of the set of x-displacements and the median of the set

of y-displacements. Such a simple scheme works because

we have already accounted for the effects of perspective

projection and rotation. Note that this simplicity is possible

due to the strong (but valid) assumptions described above.

The median x displacement serves as our estimate of

instantaneous translation along the focal plane (i.e., side-

ways motion) and the median y displacement serves as our

estimate of instantaneous translation parallel along the cam-

era axis (i.e., forward/reverse motion). Or in the case where

the camera is tilted these two axes are defined by the projec-

tions onto the ground plane of the focal plane and the cam-

era axis.

C. Estimating Global Motion

The previous subsection described our algorithm’s ap-

proach for estimating incremental robot motion using a con-

sensus of appropriately back-projected optical flow vectors.

These incremental changes in robot pose are chained frame-

by-frame to derive the global estimate of the robot’s posi-

tion.

Horizon Zone

“Ground” Region

“Sky” Region

Fig. 3 Classifying Optical Flow Field Vectors

Vectors above the horizon are used to estimate robot rotation,

vectors below the horizon are used to estimate robot translation.

VII. DETECTING HAZARDS

In addition to accurately estimating translation and rota-

tion of the robot in a planar environment, our system ex-

ploits optical flow to identify potential hazards, such as ob-

stacles and precipices. In contrast to traditional obstacle-

detection techniques, we do not recover a depth map of the

scene, nor do we rely on the reflectance properties of obsta-

cles. The basic idea is straightforward: discontinuities in the

optical flow field signal the presence of both obstacles

(positive violations of the planar world hypothesis) and

precipices (negative violations). Our current approach to

detecting these discontinuities relies on somewhat ad hoc

heuristics. The image plane is divided into several sub-

regions, each of which independently computes the median

optical flow field direction and velocity. Adjacent sub-

regions are then compared for evidence of a discontinuity.

Since obstacles or precipices are, by definition, located

at a different depth from the camera, the observed flow due

to parallax will be different. A region with disproportion-

ately-short flow vectors signals a depression while a region

with longer vectors is indicative of a looming obstacle.

Thus, when our algorithm notices a sudden change in the

median value of flow vectors in a region, it signals the pres-

ence of a hazard. The robot can monitor the location of

hazards as it continues its careful advance, and can safely

stop before the hazard becomes a threat. This is illustrated

in Fig. 4.

In practice, our robots can safely detect precipices as

near as 3cm away and can autonomously maneuver on small

table-tops (approximately 1 m2) without falling.

VIII. MEASURING THE PERFORMANCE OF A VISUAL

ODOMETRY SYSTEM

A visual odometry system may be used in two modes:

open loop (i.e., passive observation of the robot’s motion),

or closed loop (i.e., integrated with the robot’s motion con-

trol logic as a feedback sensor). Closed-loop operation is

more useful and ultimately more likely in practice, but open

loop testing is substantially more informative when evaluat-

ing a visual odometry system. This is because in certain

modes of closed loop operation (e.g., whenever velocity in

one dimension or one axis is being held at zero), a wide

variety of control loop gain values may yield satisfactory

performance. This flexibility corresponds to insensitivity to

an unknown scale factor in estimated change is position or

orientation. By contrast, open loop evaluation highlights

bias errors in translational and angular velocity estimation

that manifest as cumulative error.

In the following evaluation we use a combination of

open loop and closed loop methods, including open loop

experiments patterned after the procedure we outlined in [6]

and closed loop evaluations versus other forms of dead

reckoning. To measure the relative benefit of open loop

visual odometry we consider three types of position estima-

tion error (also as proposed in [6]), including a) incremental

translational error, b) incremental rotational error, and c)

long-run net (cumulative) translational error. In the case of

(c) we express this error as a percentage of total distance

traveled to enable comparisons between test scenarios done

at different scales. To measure these we use several

ground-truthed visual odometry video sequences.

In the closed loop analysis we measure the net Euclid-

ean distance between the final robot position and the goal

position at the end of a commanded path. We then divide

this distance by the total distance traveled to obtain a basic

measure of cumulative error rate in translational motion.

Each of the robot paths involved around 1000 frames of

video taken over 4-10 m of forward travel and included at

least 360° of cumulative rotation to test the ability to cor-

rectly chain estimates derived from different sets of features.

For both open loop and closed loop tests we use real

imagery obtained from on-robot cameras. While real im-

agery is somewhat more difficult to acquire and ground-

truth, simulated data does a poor job of capturing a host of

factors which can have a significant impact on vision system

and robot performance, including variable lighting, motion

blur, optical imperfections, complex motions, and temporal

and spatial aliasing. The complex interplay of these factors

also offers strong incentive to test robot vision systems in as

wide a variety of environments and lighting conditions as

possible.

IX. CLOSING THE LOOP

To implement the closed loop tests we developed a

simple proportional controller for one of our robots. This

controller uses visual odometry to estimate robot position

relative to the starting point and attempts to execute com-

pound motion plans consisting of sequences of pure transla-

tion and pure rotation. Although the motion plan is con-

structed from segments of pure translation and rotation, the

controller employs mixed translation and rotation to

Fig. 4 Hazard detection

The upper image shows a precipice, lower image shows a pair of obstacles.

Each shaded circle indicates the relative optical flow field velocity at that

point. Lighter circles denote higher velocities and darker circles denote

lower velocities.

smoothly correct errors observed during execution. This

allows the controller to appropriately counteract steady-state

drift due to differential drag forces, uneven tire wear, and

drivetrain irregularities, as well as transient conditions such

as loss of traction and deliberate human interference. Spe-

cifically, the controller maintains 3DOF estimates of the

robot’s pose error and adjusts motor drive speeds and steer-

ing angles to correct those errors.

Given the number of stages involved in obtaining the

video images, processing them, and commanding the robot,

the total latency of the control loop is relatively large – ap-

proximately 300 ms. This leads to substantial overshoot on

each motion segment involved in executing a motion plan.

Rather than improving the controller to get better single-

movement accuracy we instead use the vision system to

measure these additional errors and factor them into the

execution of the next motion segment. Thus we take advan-

tage of strong visual dead-reckoning performance to coun-

teract the failings of both a naïve controller and kinematic

indeterminacy (e.g., wheel slip, experimenter interference,

surface irregularities).

X. RESULTS

We have integrated the closed loop version of the vis-

ual odometry system described above into a mobile robot

system based on the Personal Exploration Rover (PER) plat-

form [20]. The vision system itself runs on a laptop com-

puter which sits adjacent to the robot and is connected via a

tether. This mode of operation is most appropriate for dem-

onstrations and interactive experiments where accessibility

to the user interface displayed on the laptop is important.

Via this interface the user can control vision system parame-

ters such as number of trackpoints, image patch size, and

required corner quality. The laptop can also be attached to

the back of the robot for longer-distance experiments where

tethered operation is impractical or when access to the user

interface is unnecessary. This mobile robot vision system

has proven effective in a variety of difficult conditions such

as polished floors (challenging due to specular reflections),

and crowded rooms full of humans (challenging due to the

many independently moving entities in view).

We have also evaluated our algorithm using prere-

corded video data where ground-truth has been established

with the fiducial-based robot tracking system we described

in [6]. This has allowed us to evaluate the performance of

our algorithm in a variety of outdoor and indoor situations,

including such comparatively extreme cases as ice, high-

glare asphalt and grass. Results are presented in Table I.

For comparison, consider that a recently published result in

visual odometry using calibrated stereo cameras on a

ground vehicle yielded corresponding cumulative (open

loop) error measures of 3.6% and 4.6% on two long test

runs [19]. Our proposed visual odometry algorithm makes

more restrictive assumptions but uses only a monocular

camera and achieves similar error rates while being substan-

tially less complex to implement. While our tests involve

substantially shorter distances than those in [19], the relative

error measurements and motion topologies are comparable.

TABLE I

VISUAL ODOMETRY PERFORMANCE ON VARYING TERRAIN

Terrain

(any special circumstances)

Mean

Incremental

Error Magni-

tude

Cumulative

Error,

(Cartesian

Distance as %

Of Distance

Traveled)

Open-loop tests

 Indoors / Carpet 0.3 3.3%

 Outdoors / Grass 2.2 5.1%

 Outdoors / Asphalt 4.3 6.1%

 Outdoors / Ice 3.5 5.4%

Closed-loop tests

 Indoors / Polished Concrete

(with active, physical human interference

and an independently moving audience)

unmeasured 7.1%

XI. IMPLICATIONS FOR ROBOT DESIGN

Experimental results validate our contention that con-

sumer-grade cameras offer sufficient perceptual information

to enable effective visual odometry and precipice detection.

Such cameras offer a new price / functionality point in the

space of possible robot sensors.

We believe the present results further the case for vi-

sion-based mobile robotics, and also suggest directions for

robot morphology. Visual odometry requires a large camera

height concordant with both visibility of the terrain over the

robot itself and to facilitate measurement of optical flow for

both nearby and distant features. Placement of the camera

at the robot's center of rotation is often in tension with this

desire to push the camera forward so that the terrain in front

of the robot is visible. Our visual odometry results suggest

that, even with the camera at a significant distance from the

robot center of rotation, odometry remains accurate, and so

the camera can be placed to optimize forward and down-

ward visibility. Furthermore, we believe that holonomic

robots and other systems capable of controlling robot mo-

tion along any arbitrary center of rotation will be able to use

this VO technique to measure position and control trajec-

tory. This is particularly important in the case of holonomic

robots using Swedish 90 wheels, such as the Palm Pilot Ro-

bot Kit (PPRK), because such wheels tend to have signifi-

cantly higher wheel-ground slippage than conventional

fixed or steerable wheels. In effect, the visual odometry

algorithm described here, combined with consumer-grade

vision hardware, imbues the robot designer with the free-

dom to design and deploy robots with more expressive mo-

tion regimes because this technique obviates the need for

accurate wheel encoders and wheel-ground slip constraints.

Cameras are easier to place than sonars or IRs because

they image a broad field of view with relatively high resolu-

tion. With adequate robustness in the VO system, cameras

need not be center-mounted, increasing their flexibility and

offering more opportunities to place them ideally for preci-

pice detection. Given that modern robots are very likely to

incorporate high-performance processors typical of today’s

PCs and laptops a vision system can readily be implemented

without the need for additional hardware. PTZ cameras can

serve several navigational configurations for omnidirec-

tional robots well.

XII. CONCLUSION

Vision is falling in price more rapidly than any other

sensor, and yet is also a richer sensor than traditional rang-

ing devices. In particular because a camera can capture so

much data simultaneously, even a monocular vision system

can play multiple roles within a robot system. This paper

has described a vision system capable of robustly estimating

robot velocity and rotation as well as reliably detecting cer-

tain classes of hazards (precipices and obstacles). This vi-

sion system is readily accessible to all levels of robot build-

ers, requiring only a single consumer-quality webcam. We

have evaluated the proposed system on a variety of small

mobile robots and tested it in a wide variety of environ-

ments (see Fig. 5). Our implementation of this algorithm is

available as open source software and can be downloaded

from

 http://info.pittsburgh.intel-research.net/People/jasonc/vo.

ACKNOWLEDGMENT

 We wish to thank Emily Hamner, Eric Porter, Brian

Dunlavey and the CMU Personal Rover Project for their

supply of a Personal Exploration Rover for this work.

Aroon Pahwa was supported by the Intel First Year Re-

search Experience (IFYRE) program at CMU.

REFERENCES

[1] O. Amidi, T. Kanade, and J. Miller. “Vision-Based Autonomous Heli-

copter Research at CMU.” Proceedings of Heli Japan, 1998.

[2] J. Barron, D. Fleet, S. Beauchemin, and T. Burkitt, “Performance of

Optical Flow Techniques,” International Journal of Computer Vision,

vol. 10, pp. 43-77, 1994.

[3] S. Beauchemin and J. Barron. “The Computation of Optical Flow,”

ACM Computing Surveys, 27(3), pp. 433-467, 1995.

[4] J.-Y. Bouguet. “Pyramidal Implementation of the Lucas Kanade Fea-

ture Tracker,” OpenCV Documentation, Intel Corporation, Microproc-

essor Research Labs, 1999.

[5] G. Bradski, et. al. Intel Open Source Computer Vision Library:

http://www.intel.com/research/mrl/research/opencv/

[6] J. Campbell, R. Sukthankar, I. Nourbakhsh. “Techniques for Evaluating

Optical Flow in Extreme Terrain,” Proceedings of IROS 2004.

[7] R. Cipolla, Y. Okamoto, and Y. Kuno. “Robust Structure From Motion

Using Motion Parallax,” in Proceedings of IEEE ICCV, 1993.

[8] A. Davison, Y. Cid, N. Kita. “Real-Time 3D SLAM with Wide-Angle

Vision,” in Proceedings of IFAC Symposium on Intelligent Autonomous

Vehicles, 2004.

[9] D. Gennery and H. Moravec, Cart Project Progress Report, Stanford

University, contract NASW 2916, Sept 1976.

[10] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision. Cambridge University Press, 2000.

[11] B. Horn and E. Weldon. “Direct Methods for Recovering Motion,”

International Journal of Computer Vision, vol. 2, pp. 51-76, 1988.

[12] S. Hutchinson, G. Hager, and P. Corke. “A Tutorial on Visual Servo

Control,” IEEE Trans. Robotics and Automation, vol. 12, no. 5, pp

651-670, Oct 1996.

[13] A. Levin, R. Szeliski. “Visual Odometry and Map Correlation,” in

Proceedings of CVPR 2004.

[14] C. Liebe. “Star Trackers for Attitude Determination,” IEEE Aerospace

and Electronic Systems Magazine, vol. 10, no. 6, pp. 10–16, June 1995.

[15] B. Lucas and T. Kanade. “An Iterative Image Registration Technique

with an Application to Stereo Vision,” International Joint Conference

on Artificial Intelligence, pp. 674-679, 1981.

[16] R. Marks, H. Wang, M. Lee, and S. Rock. “Automatic Visual Station

Keeping of an Underwater Robot,” in Volume 2, Proceedings of IEEE

Oceans '94, pp. 137–142.

[17] S. Negahdaripour and B. Horn. “Direct Passive Navigation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 9, no.

1, pp. 168-176, January 1987.

[18] Nemosoft Webcam driver: http://www.smcc.demon.nl/webcam

[19] D. Nistér, O. Naroditsky, J. Bergen. “Visual Odometry,” in Proceed-

ings of CVPR 2004.

[20] Personal Rover Project: http://www.cs.cmu.edu/~personalrover

[21] S. Se, D. Lowe, J. Little. “Vision-Based Mobile Robot Localization and

Mapping Using Scale-Invariant Features,” in Proceedings of ICRA

2001.

[22] O. Shakernia, R. Vidal, S. Sastry. “Infinitesimal Motion Estimation

from Multiple Central Panoramic Views,” in Proceedings of IEEE

Workshop on Motion and Video Computing, December 2002.

[23] C. Tomasi and J. Zhang. “Is Structure-From-Motion Worth Pursuing?”

Seventh International Symposium on Robotics Research, ISRR '95, Oc-

tober 1995.

Fig. 5 Environments and Robots On/In Which This Visual Odometry System Has Been Tested

Melting Ice Grass Asphalt Dry-Surface Ice

Polished Concrete Office Carpet Untethered in Corridors Plastic Mat

