
A Robust Visual Odometry and Precipice Detection 
System Using Consumer-grade Monocular Vision 

Jason Campbell 1,2 Rahul Sukthankar 1,2 Illah Nourbakhsh 2,3 Aroon Pahwa 2 
 

1 Intel Research Pittsburgh 2 Carnegie Mellon University 3 NASA Ames Research Center 

Pittsburgh, PA  USA Pittsburgh, PA  USA Moffett Field, CA  USA 

{jasoncam,rahuls,illah}@ri.cmu.edu  aroon@cmu.edu 
 

 

 Abstract – We describe a monocular robot vision system 

which accomplishes accurate 3-DOF dead-reckoning, closed-

loop motion control, and precipice and obstacle detection, all in 

dynamic environments, using a single, consumer-grade web-

cam and typical laptop computer hardware.  Simultaneous 

translation and rotation are accurately measured, and the 

camera need not be placed at the robot’s center of rotation.  

The algorithm is straightforward to implement and robust to 

noisy measurements.  The software is based on open source 

computer vision libraries and is itself open source.  It has been 

tested in a wide variety of real-world environments and on 

several different mobile robot platforms. 

 
 Index Terms - mobile robotics, mobile robot vision, optical 

flow, odometry 

I. INTRODUCTION 

Visual mobile robot navigation has long been a goal of 

robotics and computer vision researchers [9].  Whole fields 

have developed around the exploitation of one or more 

moving cameras, including visual simultaneous localization 

and mapping (V-SLAM) [8,21], visual servoing [12], 

spacecraft attitude control [14], and structure from motion 

(SFM).  The past 15 years have also seen a smaller body of 

work on what has been termed visual odometry – that is, the 

incremental, online estimation of robot motion from a video 

sequence shot by an on-robot camera.  [1,13,16,17,19,22].  

Visual odometry is a distinctly local, low-latency ap-

proach that facilitates closed-loop motion control and obsta-

cle and precipice detection, as well as highly accurate dead-

reckoning.  This local focus contrasts with more global ap-

proaches such as V-SLAM  or online SFM which empha-

size mapping, progressive reduction of uncertainty, global 

frames of reference, and which may include iterative re-

finement steps such as multi-frame bundle adjustment [10].  

Historically, visual odometry systems have had diffi-

culty overcoming a number of problems, including numeri-

cal instabilities common in SFM-like projective geometric 

techniques [7], sensitivity to the low quality of point corre-

spondences available from automatic tracking algorithms 

[2,23], a requirement for omnidirectional views [13,22], or 

the inability to disambiguate simultaneous rotation and 

translation [11].  A more recent result overcomes these dif-

ficulties in monocular- and stereo-camera cases but achieves 

high accuracy only with a calibrated stereo pair [19]. 

In this paper we describe an algorithm for strictly mo-

nocular visual odometry which achieves good real-world 

performance (similar to the calibrated-stereo results shown 

in [19]) at substantially lower implementation complexity.  

This is made possible by exploiting a variety of straightfor-

ward consensus methods, several reasonable assumptions 

for ground-based mobile robots, and the increasingly high 

performance of consumer computing hardware.  We have 

tested this system on three small mobile robot platforms (see 

Figs. 1 and 5), and in traditional office environments as well 

as in extreme terrain such as ice. Our visual odometry sys-

tem is readily accessible to a wide range of robot builders 

because it is based on and is itself open source software.  

Visual odometry offers the prospect of substantially re-

duced sensing costs, allowing more reliable navigation 

through unstructured areas and safer operation in close 

proximity to humans. As the cost of computation falls, an 

inexpensive camera can replace a typical sensor suite con-

sisting of dozens of range sensors and a set of encoders and 

provide a broader field of view and the ability to perform 

range and appearance-based sensing simultaneously. Pas-

sive vision systems also avoid the multi-path interference 

problems typical with sonar rangefinders and the high sensi-

tivity to lighting common in low-cost infrared rangefinders.  

For kinematically indeterminate robots (e.g., where friction 

is low and actuation powerful), visual odometry offers a 

low-latency error signal which can be used in a feedback 

loop to correct motion.  For robots that operate in highly 

unstructured indoor environments (e.g., urban search and 

rescue) visual odometry can be significantly more practical 

and functional than other localization systems because no 

radio coverage is required, no beacons need be car-

ried/deployed, static drift is low compared to low-cost iner-

tial measurement units, and high degrees of wheel slip pose 

no difficulty.   

The remainder of this paper is organized as follows: 

Section II describes the hardware used in our experiments.  

Section III outlines the visual odometry algorithm itself.  

Sections IV through VI describe detailed aspects of the al-

Fig. 1 Two examples of robots using this visual odometry system  

Only the uppermost, front camera on each robot is used for visual odometry. 



gorithm.  Section VII addresses obstacle and precipice de-

tection.  Section VIII summarizes the framework within 

which we evaluate this and other visual odometry systems.  

Section IX describes the closed-loop version of our vision 

system.  Section X discusses the real-world performance of 

our algorithm in a variety of environments and on a variety 

of robots, and Section XI explores the implications of robust 

visual odometry for the design of new robot systems.  Sec-

tion XII concludes and summarizes our findings. 

II. HARDWARE CONFIGURATION 

We have successfully deployed our visual odometry 

system using a variety of cameras, ranging from $5 surplus 

webcams to multi-megapixel consumer digicams.  The re-

sults we report here are from USB- and IEEE1394- web-

cams  operating at VGA resolution (640x480 pixels).  These 

cameras, fitted with inexpensive 2.1 mm wide-angle lenses,  

have unit costs around $100 and achieve peak frame rates of 

10 and 30 frames per second (fps), respectively.  Each cam-

era affords a horizontal field of view of approximately 90˚.  

In the USB case, a proprietary compression algorithm was 

required between the camera and camera driver [18] to per-

mit 10 fps VGA operation over a USB 1.1 bus.   

Two types of tests were performed, one that passively 

interpreted video to compute the robot’s trajectory after-the-

fact (“open loop”), and another that used on-line visual 

odometry estimates to actively correct the robot's trajectory 

(“closed loop”).  The open loop tests were performed at 7.5 

fps using uncompressed video recorded by an IEEE1394-

attached webcam.  The open loop vision system computa-

tions were run off-line on a 3.2 GHz Intel® Pentium® Xeon™ 

desktop PC at effective frame rates between 30 and 50 fps.  

The closed loop tests were performed using a USB-attached 

webcam capable of up to 10 fps, however, the actual frame 

rate varied due to CPU load.  Using a laptop equipped with 

a 1.5 GHz Intel® Pentium® M processor for vision process-

ing, robot control, and a near-real-time graphical user inter-

face displaying the estimated optical flow field and resulting 

visual odometry results, rates from 2 to 10 fps were ob-

served.   

III. ALGORITHM OVERVIEW 

The visual odometry algorithm we present here is an 8-

stage process where all eight stages execute sequentially 

after the capture of each video frame.  In practice this algo-

rithm can execute as quickly as 15 fps on common laptop 

hardware.  Our approach relies on two assumptions which 

are quite reasonable for many mobile robots: a) the robot 

travels predominantly over a ground plane, and b) the cam-

era is mounted rigidly with respect to the robot and ground 

plane.  The quality of position estimation results varies with 

frame rate, robot speed, camera height, and visual environ-

ment.  This section presents a brief outline of the eight 

stages and the following sections address specific stages in 

detail.  In this discussion we shall use the notation (u,v) to 

represent image coordinates, lowercase (x,y,θ) to represent 

incremental coordinates in a robot-centered frame of refer-

ence, and uppercase (X,Y,Θ) to represent global coordinates 

in a frame of reference based on the starting position and 

orientation of the robot.  The eight stages are: 

1. Correct camera images for lens distortion. This is ac-

complished using standard computer vision algorithms in-

cluded in the Open Computer Vision Library (OpenCV) [5]. 

2. Estimate the optical flow field corresponding to re-

cent video frames.    

3. Screen flow-field vectors for potential tracking errors 

and independently moving objects.   Discard such vectors.  

4. Divide the optical flow field into “ground” and 

“sky”. 

5. Project image coordinates (u,v) of flow vectors in the 

“sky” region into a robot-centered cylindrical coordinate 

frame and determine consensus angular displacement be-

tween the last two camera views.  Use this as the estimate θ 
of rotational motion.   

6. Project image coordinates (u,v) of flow vectors from 

the “ground” region on to ground plane coordinates.  From 

this set of transformed vectors, determine a consensus x-y 

feature displacement between the last two camera views and 

use this as the estimate (x,y) of translational motion. 

7. Sum incremental measurements (x,y,θ) to arrive at a 

cumulative estimate (X,Y,Θ) of robot position relative to the 

robot’s original starting position.  

8. Periodically repopulate the set of active trackpoints 

to maintain adequate and uniform coverage across ground 

and sky. 

IV. ESTIMATING THE OPTICAL FLOW FIELD 

Optical flow field estimation remains an open problem 

after over 25 years of effort.  Dozens of methods have been 

proposed, each with its own strengths and weaknesses.  In a 

1995 survey [2,3], Barron, Fleet, et al. reported the Lucas 

Kanade method [15] as being among the most accurate and 

most reliable of the methods (then available), when tested 

using a variety of simulated and real data series.  An im-

proved and more efficient form [4] of the Lucas Kanade 

algorithm is available in the open source computer vision 

library, OpenCV.  We employ this feature tracker to obtain 

the point correspondences (equivalently, the optical flow 

field vectors) required in subsequent stages of the algorithm.   

In selecting features to track, we use a low corner 

threshold and specify a large minimum distance between 

features.  (typically 0.005 and 20 pixels, respectively)  This 

encourages the detection of features even in low-contrast 

parts of the image and provides relatively uniform coverage 

across the field of view, at the cost of generating a higher 

number of tracking errors.  Given that the robust methods 

we use to analyze those feature tracks can deal with substan-

tial numbers of outliers, we have found such wider coverage 

preferable to minimizing tracking errors. 

V. SCREENING TRACKPOINTS FOR QUALITY 

Low contrast images, feature-poor environments, oc-

clusions, and spatial aliasing may all cause individual opti-

cal flow vectors to be estimated incorrectly (henceforth, 

“patch tracking errors”).  Also, dynamic elements in the 

environment (e.g., moving people, vehicles) can induce op-

tical flow that may be substantially at odds with the robot’s 

ego-motion-induced optical flow.  Our visual odometry sys-

tem attempts to mitigate the impact of confusing flow vec-

tors from patch tracking errors and independently moving 



objects by identifying and excluding suspect vectors from 

the ego-motion estimation process.  

Patch-tracking errors tend to show erratic movement 

from frame to frame.  For instance, at occlusion boundaries, 

features being tracked disappear or change due to changing 

image content near the discontinuity.  Low-contrast features 

may simply be difficult to precisely relocalize in a subse-

quent video frame due to spatial sampling irregularities in-

herent to typical low cost image sensors.  Specular reflec-

tions may be tracked as features and shortly thereafter dis-

appear due to surface conditions and angles.   

Likewise, the optical flow field associated with dy-

namic elements in the environment also tends to show more 

erratic motion over time because the flow vectors created by 

moving objects are superimposed on to the flow generated 

by the robot’s ego-motion.  In a special, but very important 

case, the optical flow field associated with moving humans 

tends to be particularly erratic because human motion is 

typically discontinuous and moving human bodies undergo 

substantial deformation.   

In contrast, the optical flow field due to ego-motion 

tends to be smooth because the robot’s motion is largely 

smooth.  (While there exist a variety of robots that exhibit 

discontinuous motion, such as legged mechanisms, a smooth 

motion assumption is reasonable for most mobile robots. 

Furthermore, a robot which exhibits periodic or known dis-

continuous motion could actually exploit such motion to 

better disambiguate the optical flow field.) Thus, for both 

tracking errors and independent motion, smoothness can be 

employed as a practical heuristic to assess the reliability of 

each optical flow track in estimating robot motion.  Our 

optical flow algorithm exploits this observation by focusing 

attention on elements that exhibit smooth motion over a 

seven-frame (0.5-3 second) time horizon.  However, to ac-

count for cases where the robot’s actual motion is temporar-

ily not smooth (e.g., during travel over a bumpy surface), 

we suspend this rule in cases where the majority of vectors 

exhibit unsmooth motion over the observation interval.   

The criteria used to identify “smooth” flow centers 

around the incremental angles between successive flow vec-

tors associated with each tracked image patch over time.  

We compute the flow-field direction at the patch in question 

across three intervals – seven to three frames back, three to 

one frames back and one frame back to the current frame – 

and then classify an element as “unsmooth” when the dif-

ference between any of those directions exceeds a threshold 

of 30 degrees. Once an element has been classified as 

unsmooth, it is ignored for purposes of egomotion estima-

tion within the current cycle.   

Over time we also wish to stop tracking consistently 

unsmooth elements and instead choose other image patches 

which may offer a more reliable indication of robot egomo-

tion.  Thus, when a given flow element is classified as 

“unsmooth” but the majority of other flow elements are 

classified as smooth, a score field associated with the 

unsmooth element is incremented by 5.  The score fields for 

all smooth elements are decremented by 1, but not below 

zero.  If, over time, a flow element’s unsmoothness-score 

field exceeds 10, that element is removed from the list of 

image patches to track in future video frames.  This allows 

problematic patches to be replaced with new image patches 

the next time that new tracking features are chosen (i.e., in 

Step 8). We have found that the weights 10/5/1 strike a 

compromise between shielding the motion estimation proc-

ess from confusing optical flow vectors and accommodating 

a limited number of irregularities without prematurely dis-

carding a trackpoint.   

VI. ESTIMATING ROBOT MOTION 

Given the set of filtered optical flow vectors, the next 

task is to derive an estimate of the robot’s incremental mo-

tion during the last pair of frames, and to integrate it over 

time to obtain global estimate of robot position.  First, we 

summarize the derivation of the mapping between image 

pixels and points in the world.  Next, we decompose incre-

mental motion into a rotation and a translation and estimate 

each separately.  Finally, we combine the information to 

recover the robot’s motion in a world coordinate frame.  

These steps are detailed in the following subsections. 

A.  Mapping Camera Coordinates to the Ground Plane 

First, we determine the mapping between the camera 

coordinates (u,v) of a tracked feature and its corresponding 

point (x,y) on the ground plane.  Our physical setup is de-

picted in Fig. 2.  The height H of the camera from the 

ground plane is manually measured, as is the distance D 

from the robot to the intersection of the principal ray with 

the ground plane.  We can recover the tilt α of the camera  

from the expression: 

D
H=α)tan(  (1) 

We also employ basic trigonometry to map from v (as-

sumed to be measured from the top of the image) to β (ver-

tical angle between principal point and the observed point): 

( ) 
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where V is the vertical dimension of the image in pixels 

(e.g., 480 rows) and VFOV is the vertical field of view of 

the camera. These relations enable us to recover the distance 

y from the robot to the observed point: 

)tan( β+α
=

H
y , (3) 

and the depth z to the observed point from the camera: 
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Fig. 2 Mapping Camera Coordinates to the Ground Plane 
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When an optical flow vector generated by a tracked feature 

on the ground plane is imaged by the camera, its observed 

magnitude (in pixels) is affected by its depth z relative to the 

image plane and its orientation β to the camera axis.  The 

above equations enable us to invert this transform, and to 

determine the actual displacement of each observed feature 

on the ground plane – and thus derive the incremental mo-

tion of the robot. 

B.  Estimating Robot Rotation and Translation 

Over a short interval, the robot’s motion on the ground 

plane can be decomposed into a change in heading (rotation 

about a vertical axis) and a displacement (translation).  We 

recover each separately using different regions of the image.  

Such a two-step process is important because, while in prin-

ciple all optical flow vectors can convey information about 

camera translation, vectors corresponding to features that 

are distant from the camera will exhibit such small amounts 

of parallax-induced optical flow that those measurements 

would be overwhelmed by tracking noise.  In contrast, cam-

era rotation causes all observed feature points, both nearby 

and distant, to move through the same angle.  This means 

that we can derive a robust estimate for heading change by 

observing features far from the camera (since those are rela-

tively insensitive to optical flow induced by translation).  

Once the effects of any observed heading change are sub-

tracted from the optical flow field, the flow vectors associ-

ated with features near the camera can serve as a good basis 

for estimating translational motion.  We implement this 

strategy by observing that flow vectors near (and above) the 

horizon typically correspond to distant objects and we em-

ploy these for rotation estimation.  Vectors below the hori-

zon are good candidates for estimating translation.  Fig. 3 

shows a typical image with filtered flow vectors and its de-

composition into the three zones.  We discard vectors in a 

“dead zone” near the horizon since the observed location of 

the horizon is affected by brief, transient changes in robot 

pitch – and this could greatly magnify small errors in trans-

lation estimates based on distant points (which lie near the 

horizon).  Once again, because further steps in the algorithm 

are robust against to outliers, it is not necessary that this 

sky/horizon/ground heuristic always hold true.  For in-

stance, we have observed good visual odometry perform-

ance even in crowded rooms, where many features above 

the horizon are in fact only tens of centimeters or a few me-

ters from the camera.   

To estimate rotation, we back-project each flow vector 

from the “distant” zone into a vertical cylindrical coordinate 

frame centered on the camera using mappings analogous to 

those  described above.  We then simply estimate the 

change in heading by taking the median of the observed 

angular displacements.  Note that one should not naively use 

the horizontal displacement of the flow vector as an estimate 

for heading change since, particularly for wide-angle lenses, 

the mapping from the camera plane to cylindrical coordi-

nates will depend on the position of the observed feature in 

the image.  However, for certain low-cost, highly-barrel-

distorting wide-angle lenses (such as the ones used in most 

of our tests), we have empirically observed that the barrel 

distortion fortuitously approximates the cylindrical map-

ping.  Thus one could achieve comparable accuracy with a 

significant savings in computation simply by performing 

optical flow in the uncorrected image and using the median 

of horizontal displacements as an indicator of heading 

change.  While our present algorithm does not take advan-

tage of this trick, we are developing an extension that will 

be able to do so.  Obviously, this trick cannot be employed 

when estimating translation because the transformation re-

quired is entirely different.  

To estimate translation, we first subtract the rotational 

flow field implied by our estimated heading change.  We 

then attempt to find the pure translation vector that best ex-

plains the resulting flow observed in the “ground” region of 

the image.  This is done by back-projecting the flow vectors 

on to the ground plane as outlined in (3).  This inverts the 

perspective distortion induced by the camera, and the 

lengths of each vector correspond to actual displacements 

on the ground plane.  For an ideal image sequence, the re-

sulting flow field would consist of identical vectors; in real-

ity, the flow field is perturbed by unmodeled effects such as 

tracking error, variations in the height of the ground surface, 

and the motion of other objects in the scene.  We obtain a 

robust estimate of the robot’s translation by taking the me-

dian of the set of x-displacements and the median of the set 

of y-displacements.  Such a simple scheme works because 

we have already accounted for the effects of perspective 

projection and rotation.  Note that this simplicity is possible 

due to the strong (but valid) assumptions described above. 

The median x displacement serves as our estimate of 

instantaneous translation along the focal plane (i.e., side-

ways motion) and the median y displacement serves as our 

estimate of instantaneous translation parallel along the cam-

era axis (i.e., forward/reverse motion).  Or in the case where 

the camera is tilted these two axes are defined by the projec-

tions onto the ground plane of the focal plane and the cam-

era axis. 

C. Estimating Global Motion 

The previous subsection described our algorithm’s ap-

proach for estimating incremental robot motion using a con-

sensus of appropriately back-projected optical flow vectors.  

These incremental changes in robot pose are chained frame-

by-frame to derive the global estimate of the robot’s posi-

tion.   

Horizon Zone

“Ground” Region

“Sky” Region

Fig. 3 Classifying Optical Flow Field Vectors 

Vectors above the horizon are used to estimate robot rotation,  

vectors below the horizon are used to estimate robot translation.  



VII. DETECTING HAZARDS  

In addition to accurately estimating translation and rota-

tion of the robot in a planar environment, our system ex-

ploits optical flow to identify potential hazards, such as ob-

stacles and precipices.  In contrast to traditional obstacle-

detection techniques, we do not recover a depth map of the 

scene, nor do we rely on the reflectance properties of obsta-

cles.  The basic idea is straightforward: discontinuities in the 

optical flow field signal the presence of both obstacles 

(positive violations of the planar world hypothesis) and 

precipices (negative violations).  Our current approach to 

detecting these discontinuities relies on somewhat ad hoc 

heuristics.  The image plane is divided into several sub-

regions, each of which independently computes the median 

optical flow field direction and velocity.  Adjacent sub-

regions are then compared for evidence of a discontinuity. 

Since obstacles or precipices are, by definition, located 

at a different depth from the camera, the observed flow due 

to parallax will be different.  A region with disproportion-

ately-short flow vectors signals a depression while a region 

with longer vectors is indicative of a looming obstacle.  

Thus, when our algorithm notices a sudden change in the 

median value of flow vectors in a region, it signals the pres-

ence of a hazard.  The robot can monitor the location of 

hazards as it continues its careful advance, and can safely 

stop before the hazard becomes a threat.  This is illustrated 

in Fig. 4. 

In practice, our robots can safely detect precipices as 

near as 3cm away and can autonomously maneuver on small 

table-tops (approximately 1 m2) without falling. 

VIII. MEASURING THE PERFORMANCE OF A VISUAL 

ODOMETRY SYSTEM 

A visual odometry system may be used in two modes: 

open loop (i.e., passive observation of the robot’s motion), 

or closed loop (i.e., integrated with the robot’s motion con-

trol logic as a feedback sensor).  Closed-loop operation is 

more useful and ultimately more likely in practice, but open 

loop testing is substantially more informative when evaluat-

ing a visual odometry system.  This is because in certain 

modes of closed loop operation (e.g., whenever velocity in 

one dimension or one axis is being held at zero), a wide 

variety of control loop gain values may yield satisfactory 

performance.  This flexibility corresponds to insensitivity to 

an unknown scale factor in estimated change is position or 

orientation.  By contrast, open loop evaluation highlights 

bias errors in translational and angular velocity estimation 

that manifest as cumulative error. 

In the following evaluation we use a combination of 

open loop and closed loop methods, including open loop 

experiments patterned after the procedure we outlined in [6] 

and closed loop evaluations versus other forms of dead 

reckoning.  To measure the relative benefit of open loop 

visual odometry we consider three types of position estima-

tion error (also as proposed in [6]), including a) incremental 

translational error, b) incremental rotational error, and c) 

long-run net (cumulative) translational error.  In the case of 

(c) we express this error as a percentage of total distance 

traveled to enable comparisons between test scenarios done 

at different scales.  To measure these we use several 

ground-truthed visual odometry video sequences.   

In the closed loop analysis we measure the net Euclid-

ean distance between the final robot position and the goal 

position at the end of a commanded path.  We then divide 

this distance by the total distance traveled to obtain a basic 

measure of cumulative error rate in translational motion.  

Each of the robot paths involved around 1000 frames of 

video taken over 4-10 m of forward travel and included at 

least 360° of cumulative rotation to test the ability to cor-

rectly chain estimates derived from different sets of features. 

For both open loop and closed loop tests we use real 

imagery obtained from on-robot cameras.  While real im-

agery is somewhat more difficult to acquire and ground-

truth, simulated data does a poor job of capturing a host of 

factors which can have a significant impact on vision system 

and robot performance, including variable lighting, motion 

blur, optical imperfections, complex motions, and temporal 

and spatial aliasing.  The complex interplay of these factors 

also offers strong incentive to test robot vision systems in as 

wide a variety of environments and lighting conditions as 

possible. 

IX. CLOSING THE LOOP 

To implement the closed loop tests we developed a 

simple proportional controller for one of our robots.  This 

controller uses visual odometry to estimate robot position 

relative to the starting point and attempts to execute com-

pound motion plans consisting of sequences of pure transla-

tion and pure rotation.  Although the motion plan is con-

structed from segments of pure translation and rotation, the 

controller employs mixed translation and rotation to 

Fig. 4 Hazard detection  

The upper image shows a precipice, lower image shows a pair of obstacles.  

Each shaded circle indicates the relative optical flow field velocity at that 

point.  Lighter circles denote higher velocities and darker circles denote 

lower velocities.   



smoothly correct errors observed during execution.  This 

allows the controller to appropriately counteract steady-state 

drift due to differential drag forces, uneven tire wear, and 

drivetrain irregularities, as well as transient conditions such 

as loss of traction and deliberate human interference.  Spe-

cifically, the controller maintains 3DOF estimates of the 

robot’s pose error and adjusts motor drive speeds and steer-

ing angles to correct those errors.  

Given the number of stages involved in obtaining the 

video images, processing them, and commanding the robot, 

the total latency of the control loop is relatively large –  ap-

proximately 300 ms.  This leads to substantial overshoot on 

each motion segment involved in executing a motion plan.  

Rather than improving the controller to get better single-

movement accuracy we instead use the vision system to 

measure these additional errors and factor them into the 

execution of the next motion segment.  Thus we take advan-

tage of strong visual dead-reckoning performance to coun-

teract the failings of both a naïve controller and kinematic 

indeterminacy (e.g., wheel slip, experimenter interference, 

surface irregularities).  

X. RESULTS 

We have integrated the closed loop version of the vis-

ual odometry system described above into a mobile robot 

system based on the Personal Exploration Rover (PER) plat-

form [20].  The vision system itself runs on a laptop com-

puter which sits adjacent to the robot and is connected via a 

tether.  This mode of operation is most appropriate for dem-

onstrations and interactive experiments where accessibility 

to the user interface displayed on the laptop is important.  

Via this interface the user can control vision system parame-

ters such as number of trackpoints, image patch size, and 

required corner quality.  The laptop can also be attached to 

the back of the robot for longer-distance experiments where 

tethered operation is impractical or when access to the user 

interface is unnecessary.  This mobile robot vision system 

has proven effective in a variety of difficult conditions such 

as polished floors (challenging due to specular reflections), 

and crowded rooms full of humans (challenging due to the 

many independently moving entities in view).  

We have also evaluated our algorithm using prere-

corded video data where ground-truth has been established 

with the fiducial-based robot tracking system we described 

in [6].  This has allowed us to evaluate the performance of 

our algorithm in a variety of outdoor and indoor situations, 

including such comparatively extreme cases as ice, high-

glare asphalt and grass.  Results are presented in Table I.  

For comparison, consider that a recently published result in 

visual odometry using calibrated stereo cameras on a 

ground vehicle yielded corresponding cumulative (open 

loop) error measures of 3.6% and 4.6% on two long test 

runs [19].  Our proposed visual odometry algorithm makes 

more restrictive assumptions but uses only a monocular 

camera and achieves similar error rates while being substan-

tially less complex to implement.  While our tests involve 

substantially shorter distances than those in [19], the relative 

error measurements and motion topologies are comparable. 

 

 

TABLE I 

VISUAL ODOMETRY PERFORMANCE ON VARYING TERRAIN 

Terrain 

(any special circumstances) 

Mean 

Incremental 

Error Magni-

tude 

Cumulative 

Error,  

(Cartesian 

Distance as %

Of  Distance 

Traveled) 

Open-loop tests   

 Indoors / Carpet 0.3 3.3% 

 Outdoors / Grass 2.2 5.1% 

 Outdoors / Asphalt 4.3 6.1% 

 Outdoors / Ice 3.5 5.4% 

Closed-loop tests   

 Indoors / Polished Concrete 

(with active, physical  human interference 

and an independently moving audience) 

unmeasured 7.1% 

XI. IMPLICATIONS FOR ROBOT DESIGN 

Experimental results validate our contention that con-

sumer-grade cameras offer sufficient perceptual information 

to enable effective visual odometry and precipice detection.  

Such cameras offer a new price / functionality point in the 

space of possible robot sensors.  

We believe the present results further the case for vi-

sion-based mobile robotics, and also suggest directions for 

robot morphology.  Visual odometry requires a large camera 

height concordant with both visibility of the terrain over the 

robot itself and to facilitate measurement of optical flow for 

both nearby and distant features.  Placement of the camera 

at the robot's center of rotation is often in tension with this 

desire to push the camera forward so that the terrain in front 

of the robot is visible.  Our visual odometry results suggest 

that, even with the camera at a significant distance from the 

robot center of rotation, odometry remains accurate, and so 

the camera can be placed to optimize forward and down-

ward visibility.  Furthermore, we believe that holonomic 

robots and other systems capable of controlling robot mo-

tion along any arbitrary center of rotation will be able to use 

this VO technique to measure position and control trajec-

tory.  This is particularly important in the case of holonomic 

robots using Swedish 90 wheels, such as the Palm Pilot Ro-

bot Kit (PPRK), because such wheels tend to have signifi-

cantly higher wheel-ground slippage than conventional 

fixed or steerable wheels.  In effect, the visual odometry 

algorithm described here, combined with consumer-grade 

vision hardware, imbues the robot designer with the free-

dom to design and deploy robots with more expressive mo-

tion regimes because this technique obviates the need for 

accurate wheel encoders and wheel-ground slip constraints. 

Cameras are easier to place than sonars or IRs because 

they image a broad field of view with relatively high resolu-

tion.  With adequate robustness in the VO system, cameras 

need not be center-mounted, increasing their flexibility and 

offering more opportunities to place them ideally for preci-

pice detection.  Given that modern robots are very likely to 

incorporate high-performance processors typical of today’s 

PCs and laptops a vision system can readily be implemented 

without the need for additional hardware.  PTZ cameras can 

serve several navigational configurations for omnidirec-

tional robots well. 



XII. CONCLUSION 

Vision is falling in price more rapidly than any other 

sensor, and yet is also a richer sensor than traditional rang-

ing devices.  In particular because a camera can capture so 

much data simultaneously, even a monocular vision system 

can play multiple roles within a robot system.  This paper 

has described a vision system capable of robustly estimating 

robot velocity and rotation as well as reliably detecting cer-

tain classes of hazards (precipices and obstacles).  This vi-

sion system is readily accessible to all levels of robot build-

ers, requiring only a single consumer-quality webcam.  We 

have evaluated the proposed system on a variety of small 

mobile robots and tested it in a wide variety of environ-

ments (see Fig. 5).  Our implementation of this algorithm is 

available as open source software and can be downloaded 

from 

 http://info.pittsburgh.intel-research.net/People/jasonc/vo.  
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Fig. 5 Environments and Robots On/In Which This Visual Odometry System Has Been Tested 
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