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A Robust Word Boundary Detection Algorithm for
Variable Noise-Level Environment in Cars

Chin-Teng Lin, Senior Member, IEEE, Jiann-Yow Lin, and Gin-Der Wu

Abstract—This paper discusses the problem of automatic word
boundary detection in the presence of variable-level background
noise in cars. Commonly used robust word boundary detection
algorithms always assume that the background noise level is fixed
and sets fixed thresholds to find the boundary of word signal. In
fact, the background noise level in cars varies in the procedure
of recording due to speed change and moving environment,
and some thresholds should be tuned according to the variation
of background noise level. This is the major reason that most
robust word boundary detection algorithms cannot work well
in the condition of variable background noise level. To solve
this problem, we propose a minimum mel-scale frequency band
(MiMSB) parameter which can estimate the varying background
noise level in cars by adaptively choosing one band with minimum
energy from the mel-scale frequency bank. With the MiMSB
parameter, some preset thresholds used to find the boundary of
word signal are no longer fixed in all the recording intervals. These
thresholds will be tuned according to the MiMSB parameter.
We also propose an enhanced time–frequency (ETF) parameter
by extending the time–frequency (TF) parameter proposed by
Junqua et al. from single band to multiband spectrum analysis,
where the frequency bands help to make the distinction between
speech signal and noise. The ETF parameter can extract useful
frequency information by choosing some bands of the mel-scale
frequency bank. Based on the MiMSB and ETF parameters,
we finally propose a new robust algorithm for word boundary
detection in variable noise-level environment. The new algorithm
has been tested over a variety of noise conditions in cars and has
been found to perform well not only under variable background
noise level condition, but also under fixed background noise level
condition. The new robust algorithm using the MiMSB and ETF
parameters achieved higher recognition rate than the TF-based
robust algorithm, which has been shown to outperform several
commonly used algorithms, by about 5% in variable background
noise level condition. It also reduced the recognition error rate
due to endpoint detection to 25%, compared to an average of 34%
obtained with the TF-based robust algorithm.

Index Terms—Mel-scale frequency, multiband, spectrum anal-
ysis, time-frequency, word boundary detection.

I. INTRODUCTION

T
HE WIDESPREAD use of mobile telephones has mo-

tivated the development of robust speech recognition

systems in cars [1]. A major source of errors in automatic

speech recognition systems is the inaccurate detection of
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the beginning and ending boundaries. In cars, the problem

is further complicated by nonstationary backgrounds where

there may exist concurrent noises due to movements, engine

running, speed change, braking, slams, etc. These background

noises can be broadly classified into three classes: impulse

noise, fixed-level noise, and variable-level noise. Decreasing

the distance between the mouth and microphone is one way

of minimizing the effects of such transient background noise.

However, this method is not user-friendly. In order to solve this

problem, many researchers proposed robust word boundary

detection algorithms in the presence of noise. However, they

focused only on the impulse noise and fixed-level background

noise. The main aim of this paper is to develop a new robust

word boundary detection algorithm to attack the problem of

variable-level background noise in cars.

Among the three classes of background noises, the impulse

noise can be solved by the parameter of time duration. The

problem of fixed-level background noise was first attacked by

commonly used robust word boundary detection algorithms

[1]–[5]. These algorithms usually use energy (in time domain),

zero crossing rate, and time duration to find the boundary

between the word signal and background noise. However, it has

been found that the energy and zero-crossing rate are not suf-

ficient to get reliable word boundaries in noisy environments,

even if more complex decision strategies are used [6]. Cur-

rently, several other parameters were proposed such as linear

prediction coefficient (LPC), linear prediction error energy [7],

[8] and pitch information [9]. Although the LPCs are quite

successful in modeling vowels [10], they are not particularly

suitable for nasal sounds, fricatives, etc. The reliability of the

LPC parameter depends on the noise environment. The pitch

information can help to detect the word boundary, but it is not

easy to extract the pitch period correctly in a noisy environment.

Four-endpoint detection algorithms were compared in [6]:

an energy-based algorithm with automatic threshold adjustment

[4], [5], use of pitch information [9], a noise adaptive algorithm,

and a voiced activation algorithm. These four algorithms are

strongly dependent on the noise condition. The reliability of

the parameters used by the four algorithms also depends on the

noise condition. In the connection, Junqua et al. [6] proposed

the time–frequency (TF) parameter. They used the frequency

energy in the fixed frequency band 250–3500 Hz to enhance

the time energy information. The TF parameter is the result ob-

tained after smoothing the sum of the time energy and frequency

energy. The frequency energy helps us to make the distinction

between speech and noise. Based on the TF parameter, a ro-

bust algorithm was proposed in [6] to get more precise word

boundary in noisy environment. This robust algorithm includes

1524-9050/02$17.00 © 2002 IEEE
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noise classification, a refinement procedure, and some preset

thresholds. Although this algorithm outperforms several com-

monly used algorithms for word boundary detection in the pres-

ence of noise, it could work well only for the impulse noise and

fixed-level background noise. For the condition of variable-level

background noise in cars, this algorithm usually results in inac-

curate detection of the beginning or ending boundaries in the

recording interval. There was little research about specific algo-

rithm for processing the variable-level background noise in cars.

The existing robust algorithms usually set thresholds from the

first few frames of the recording interval. Then the algorithms

used these preset thresholds to determine the word boundary of

speech signal. These thresholds are fixed in all the recording

interval.

In cars, the background noise level varies in the recording in-

terval due to the dynamically moving environment. It is not rea-

sonable to make all preset thresholds fixed in all the recording

intervals. If the variation of background noise level is large,

these fixed preset thresholds will result in incorrect location

of word boundaries. In order to avoid this problem, we need

to have a parameter which can efficiently reflect the variation

of background noise level. Then we can use this parameter to

tune the preset thresholds. Based on this concept, this paper first

proposes a minimum mel-scale frequency band (MiMSB) pa-

rameter. The MiMSB parameter comes from the mel-scale fre-

quency bank (20 bands). The 20 frequency bands are spaced on

a nonlinear frequency scale (mel scale). The MiMSB param-

eter corresponds to the band with the lowest frequency energy,

and can efficiently extract the information of background noise

level. With the MiMSB parameter, some preset thresholds used

to find the boundary of word signal are no longer fixed in all the

recording intervals. They are tuned from time to time according

to the MiMSB parameter.

In addition to being tuned for variable noise level, the thresh-

olds in the word boundary detection algorithm are also expected

to be tuned reliably according to variable types of background

noises. In the TF parameter proposed by Junqua et al. [6], the

frequency information is extracted on a single frequency band

(250–3500 Hz). Since the frequency energy (i.e., magnitudes

of the spectrum) of different types of noises focus on different

frequency bands, more accurate frequency information can be

obtained by considering multiband analysis of noisy speech sig-

nals. With this motivation, we propose a new robust param-

eter, called enhanced time–frequency (ETF) parameter, for word

boundary detection in noisy environment. Like the TF param-

eter, the ETF parameter represents both the time and frequency

features of noisy speech signals. The ETF parameter is to ex-

tend the TF parameter from single-band to multiband spectrum

analysis, so it inherits the ability of the TF parameter for de-

tecting the impulse noise. Besides, the undesired impulse noise

can be further smoothed by the three-point median filter used

in our algorithm. A procedure is proposed such that the ETF

parameter can extract more informative frequency energy than

the single-band approach to compensate the time-energy infor-

mation by adaptively choosing some frequency bands. The ETF

parameter is the result obtained after smoothing the sum of the

time energy and frequency energy. It makes the word signal

more obvious than the TF parameter that uses single frequency

band.

Based on the MiMSB and ETF parameters, we propose a

robust word boundary detection algorithm for variable back-

ground noise level. If the background noise level changes grad-

ually in the recording interval, the proposed robust algorithm

will automatically tune its thresholds to find the word boundary.

The new proposed algorithm has been tested over a variety of

noise conditions in cars and has been found to perform well

not only in variable background noise level environment but

also in fixed background noise level environment. To simulate

the varying noise-level conditions, a normal way is to use the

continuous increasing/decreasing changing noises, which cover

the whole spectrum of varying noise levels under considera-

tion. The increasing/decreasing changing noises can also mimic

the accelerating/decelerating behaviors of cars in the real en-

vironment. In our experiments, we take four typical types of

noise for speech contamination. They are vehicle noise, cockpit

noise, multitalker babble noise, and white noise. These noisy

signals are added to the recorded speech signals with different

signal-to-noise-ratios (SNRs) including 5 dB, 10 dB, 15 dB,

20 dB, and dB. The experimental results show that the new

robust algorithm with the MiMSB and ETF parameters achieved

higher recognition rate than the TF-based robust algorithm in

[6], which has been shown to outperform several commonly

used algorithms, by about 5% in variable background noise level

condition. It also reduced the recognition error rate due to end-

point detection to 25%, compared to an average of 34% obtained

with the TF-based robust algorithm.

This paper is organized as follows. The minimum mel-scale

frequency band (MiMSB) parameter which can estimate the

variation of background noise level is derived in Section II. In

Section III, we derive the ETF parameter which helps us to

make the distinction between speech signal and noise. Based on

the MiMSB and ETF parameters, a new robust word boundary

detection algorithm for variable background noise level is pro-

posed in Section IV. The performance evaluation and compar-

isons of the proposed robust algorithm are performed exten-

sively also in Section IV. Finally, the conclusions of our work

are summarized in Section V.

II. MiMSB Parameter

This section derives a parameter which can estimate the vari-

ation of background noise level reliably. When the background

noise adds to the speech signal, we cannot clearly get the back-

ground noise level in the presence of word signal. In this section,

we propose the MiMSB parameter to estimate the background

noise level in the segment of word signal. The MiMSB param-

eter is obtained by adaptively choosing one band with minimum

frequency energy from the mel-scale frequency bank. A proce-

dure to calculate the MiMSB parameter is proposed as follows.

A. Auditory-Based Mel-Scale Filter Bank

Loosely speaking, it has been found that the perception of

a particular frequency by the auditory system is influenced

by the energy in a critical band of frequencies around [11].

Hence, an auditory-based spectrum obtained by summing
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Fig. 1. (a) The relation between mel-scale frequency (Mels) and normal
frequency (Hz). (b) A mel-scale filter-bank in which each filter has a triangular
bandpass frequency response with bandwidth and spacing determined by a
constant mel-frequency interval.

the energies in each critical band is a perceptually relevant

characterization. It is also known that critical band filtering

of the speech spectrum using parallel bandpass filters func-

tionally represents an aspect of auditory processing. There

is an evidence from auditory psychophysics that the human

ear perceives speech along a nonlinear scale in the frequency

domain. One approach to simulating the subjective spectrum is

to use a filter bank, spaced uniformly on a nonlinear, warped

frequency scale, such as the mel scale. The relation between

mel-scale frequency and frequency (hertz) is shown in Fig. 1(a),

and described by the following equation [12]:

(1)

where is the mel-frequency scale and is in hertz. The

filter bank is then designed according to the mel scale as shown

in Fig. 1(b), where the filters of 20 bands are approximated by

simulating 20 triangular bandpass filters, ,

, over a frequency range of 0–4000 Hz. Hence, each

filter band has a triangular bandpass frequency response, and the

spacing as well as the bandwidth is determined by a constant mel

frequency interval by (1). The value of the triangular function,

, in the figure also represents the weighting factor of the

frequency energy at the th point of the th band.

With the mel-scale frequency bank given in Fig. 1(b), we

can now calculate the energy of each frequency band for each

time frame of a speech signal. Consider a given time-domain

noisy speech signal, , representing the magnitude

of the th point of the th frame. We first find the spectrum,

, of this signal by discrete Fourier transform

(128-point DFT)

(2)

(3)

where is the magnitude of the th point of the spec-

trum of the th frame, is 128 in our system, and is the

number of frames of the speech signal for analysis. We then mul-

tiply the spectrum by the weighting factors

on the mel-scale frequency bank and sum the products for all

to get the energy of each frequency band of the th

frame

(4)

where is the filter band index, is the spectrum index, is

the frame number, and is the number of frames for analysis.

We found in our experiments that the energy ob-

tained in (4) usually had some undesired impulse noise and was

covered by the energy of background noise. Hence, we further

smooth it by using a three-point median filter to get

(5)

Finally, the smoothed energy, , is normalized by

removing the frequency energy of the beginning interval,

, to get , where the energy of the beginning

interval is estimated by averaging the frequency energy of the

first five frames of the recording

(6)

With the smoothed and normalized energy of the th band of the

th frame, , we can calculate the total energy of the

nearly pure speech signal at the th band as

(7)

B. Minimum-Energy Band Selection

Since our goal is to extract the information of variation of

background noise level, we need a parameter to stand for the
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(a)

(b)

Fig. 2. (a) Flowchart for computing the parameters and thresholds in the proposed robust word boundary detection algorithm. (b) Minimum band selection
procedure [in (a)] for computing the MiMSB and VAR parameters, and adaptive band selection procedure [in (a)] for computing the frequency energy.

amount of the background noise. It is understood that in

(7) cannot represent the total (frequency) energy of the exactly

pure speech signal, since the part of the word signal covered by

background noise is also removed in the normalization proce-

dure. However, is still a good indicator for the amount of

speech information, since the more the word signal information

is covered by the noise, the smaller the is. In other words,

the larger the is, the more word signal information the th

band has. Hence, we use the total energy, , to stand for the

amount of the word signal information in band . In order to ex-

tract the information of background noise and reduce the effect

of word signal, we choose the band having the smallest to

stand for the background noise.

Since the band with smaller contains less pure speech

information, we shall sort the 20 mel-scale frequency bands ac-

cording to their values. This is also a preparatory task for

the adaptively band-chosen method developed in the following

section. Let be the set of all

(8)

The sorting is performed as follows:

...

(9)

where is the maximum total energy, and is the min-

imum total energy. Let the band index corresponding to be
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Fig. 3. (a) Speech waveform recorded in silent environment (no additive
noise). (b) Smoothed and normalized frequency energy, X(m; i), on 20
frequency bands, where X(m; 13) has the minimum total energy. (c) The
values of MiMSB parameter obtained by X(m; 13).

represented by , for . That is, is the

index of band having the maximum total energy , and

is that having the minimum total energy .

From the above analysis, the output of the band

is a good indicator for the variation of background noise level.

We name it the minimum mel-scale frequency band parameter

of the th frame . The procedure to get the value

of MiMSB parameter is illustrated in Fig. 2(a). The details of

the block with label “Select the minimum total energy band” of

this figure is shown in Fig. 2(b). Finally, we define a parameter,

VAR, to be the sum of the MiMSB values over all frames

VAR

MiMSB

(10)

where is the number of frames of the speech signal for anal-

ysis. The VAR parameter can tell us the average variation of

background noise level.

To demonstrate the efficiency of MiMSB parameter,

Figs. 3–7 show the experimental results in white noise back-

ground with different noise levels. We first see its performance

in silent environment. Fig. 3(a) shows a clean speech signal.

The corresponding smoothed and normalized frequency en-

ergies, [see (6)], on 20 mel-scale frequency bands

Fig. 4. (a) Speech waveform recorded in fixed noise-level environment with
SNR being 5 dB. (b) Smoothed and normalized frequency energy,X(m; i), on
20 frequency bands, where X(m; 13) has the minimum total energy. (c) The
values of MiMSB parameter obtained by X(m; 13).

and 100 frames are shown in Fig. 3(b), which indicates that

has the minimum total energy. The values of MiMSB

parameter can be obtained by as shown in Fig. 3(c).

It appears that the MiMSB parameter is almost constant (zero)

and does reflect the level of background noise. In Fig. 4(a),

the speech is recorded in the condition of fixed background

noise level with SNR being 5 dB. The corresponding frequency

energies and values of MiMSB parameter are shown

in Fig. 4(b) and (c), respectively. Again, the MiMSB parameter

is nearly constant in the recording interval. It matches the

situation of fixed background noise level. In Figs. 5 and 6,

the speech signals are corrupted by background noise with

increasing and decreasing levels, respectively. Accordingly, the

corresponding values of MiMSB parameter form an increasing

curve and a decreasing curve, respectively, in Figs. 5(c) and

6(c). From these observations, we see that the MiMSB param-

eter can efficiently reflect the background noise level, either in

fixed noise-level background (including silent environment) or

in variable noise-level background.

In the above, we focused on the band with the minimum total

energy. In fact, the bands which have larger total energy are

also useful. These bands can help us to make the distinction

between speech signal and noise in noisy environment. We shall

introduce this concept in the next section.
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Fig. 5. (a) Speech waveform recorded in increasing noise-level environment
with SNR being 5 dB. (b) Smoothed and normalized frequency energy,
X(m; i), on 20 frequency bands, where X(m; 12) has the minimum total
energy. (c) The values of MiMSB parameter obtained by X(m; 12).

III. ETF PARAMETER

In general, the word boundary is susceptible to noise corrup-

tion because the additive noise obscures the distinction between

the word signal and noise. The general solution is to compen-

sate the strength of word signal in noisy environment. It has

been found that the information of frequency energy of a noisy

speech signal can enhance the normally used time energy to

make the distinction between word signal and background noise

more obvious. In [6], Junqua et al. extracted the frequency en-

ergy of the signal on a single frequency band (250–3500 Hz)

to form the TF parameter. In this section, we generalize the

single-band analysis of the TF parameter to multiband analysis

based on mel-scale frequency bank and propose a new ETF pa-

rameter. The ETF parameter is obtained by smoothing the sum

of the time energy and frequency energy, where the frequency

energy is contributed by six adaptively chosen frequency bands.

Based on our experiments, the ETF parameter improves the

word boundary detection accuracy not only in noisy environ-

ment, but also in silent background.

A. Effect of Additive Noise

Since our goal is to select some bands having the maximum

word signal information, we need a parameter to stand for the

Fig. 6. (a) Speech waveform recorded in decreasing noise-level environment
with SNR being 5 dB. (b) Smoothed and normalized frequency energy,
X(m; i), on 20 frequency bands, where X(m; 11) has the minimum total
energy. (c) The values of MiMSB parameter obtained by X(m; 11).

amount of word signal information in each band. Based on the

analysis in the previous section, we know that in (7) is a

good indicator for the amount of speech information. In other

words, the larger the is, the more word signal information

the th band has.

Before we consider the adaptive choices of suitable bands for

extracting useful frequency information of word signal, we first

make some observations on the effect of additive noise on each

frequency band. Obviously, larger background noise will add

more noise component into each band, and thus reduce each

. Especially at low SNR, we found the total energy of

each band become small. However, some bands are corrupted

more seriously than the others. These seriously obscured bands

have little word signal information left, and are not useful, if not

harmful, for word boundary detection. We denote the number of

bands useful for producing reliable frequency energy as . We

also observed that even at the same noise energy level (SNR),

the useful bands were different under different noise conditions.

This is because different noise sources focus their energy on

different frequency bands; some focus on low frequency bands,

and others on high frequency bands. The effect can be detected

by the total frequency energy in (7) .

We try to add white noise (10 dB) to the clean speech signal to

see the effects of adding noise on each band. For illustration, the
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Fig. 7. Multiband spectrum analysis of the speech signal with additive white
noise of 10 dB. (a) Smoothed and normalized frequency energies, X(m; i),
on 20 frequency bands. (b) Smoothed and normalized frequency energies,
X(m; 5) and X(m; 18), on the 5th and 8th frequency bands.

smoothed and normalized frequency energies of a speech signal,

in (6), for 20 bands ( ) and 100 frames

( ) are shown in Fig. 7(a). Specifically, the

energies of the 5th and 18th bands, and , are

shown in Fig. 7(b). From the figure, we observe that the additive

noise reduces and , and thus reduces

and , but we still have . Hence, both the

bands are corrupted by the additive noise. However, Fig. 7(b)

shows that the 18th band is corrupted by the added noise more

seriously than the 5th band. The word signal is still clear in the

5th band whose maximum value is about 30, but the

word signal is ambiguous in the 18th band whose maximum

value falls below 10. As a result, we cannot extract

helpful word signal information from the 18th band, and we

shall not treat this band as a useful frequency band. On the other

hand, the 5th band is still a useful frequency band in the added

white-noise environment.

B. Robust Parameter in Noisy Environment

Based on the above discussion and illustrations, we now pro-

pose a way to adaptively extract helpful frequency informa-

tion of word signal. More precisely, after ordering the band in-

dexes according to their total frequency energy as in

(9), we want to decide the number such that the first

bands can produce helpful frequency

energy,

.

By trial and error, we observed that the first 6 bands (after

ordering) could provide the maximum improvement for word

boundary detection in noisy environment. With , we

then sum the total energies of the first bands (after ordering)

in (9) to get the final frequency energy, , of frame :

(11)

The proposed ETF parameter of the th frame is the result ob-

tained after smoothing the sum of the frequency energy

in (11) and time energy :

(12)

where SMOOTHING is performed by a three-point median

filter as in (5), and constant is a proper weighting factor to

adjust the scale of the ETF parameter. Different values around

1 affect the smoothing process slightly. The typical value that

we used in the smoothing process is 1.1. The time energy

in (12) is given by smoothing and normalizing the logarithm of

the root-mean-square (rms) energy of the time-domain speech

signal:

(13)

(14)

(15)

where is the length of the frame, which is 120 (15 ms) in

our system. The procedure to calculate the ETF parameter is

illustrated in Fig. 2(a). The details of the block with label “Select

useful bands to produce frequency energy” of this figure is

shown in Fig. 2(b).

Up to now, we have proposed the MiMSB and ETF param-

eters to indicate the variable background noise level and the

amount of word signal information, respectively. We shall next

propose a new robust word boundary detection algorithm using

these two parameters for variable background noise level in the

next section.
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Fig. 8. Flowchart of the proposed robust algorithm for word boundary detection. Part A is to find the rough reliability boundary, Part B is to tune the rough
beginning boundary, and Part C is to tune the rough ending boundary.

IV. ROBUST ALGORITHM FOR VARIABLE

NOISE-LEVEL ENVIRONMENT

In this section, we propose a new robust algorithm using the

MiMSB and ETF parameters for word boundary detection. If

the background noise level changes gradually in the recording

interval, the proposed robust algorithm will automatically tune

its thresholds to find the word boundary. The new algorithm

works well in fixed noise-level environment as well as in vari-

able noise-level environment.

A. New Robust Word Boundary Detection Algorithm

Most algorithms for word boundary detection cannot find

proper boundary of the word signal in variable background noise

level condition, since they cannot get the correct information of

the background noise level and use it to tune some preset thresh-

olds in all the recording intervals. Improper thresholds will re-

sult in incorrect location of the boundaries. In previous sections,

we have proposed the MiMSB parameter to estimate the back-

ground noise level and the ETF parameter to make the distinc-

tion between speech signal and background noise clear. The next

problem is how to use these parameters in variable noise-level

background. We shall deal with this problem by proposing a new

word boundary detection algorithm.

The new robust algorithm of using MiMSB and ETF param-

eters for word boundary detection is outlined in Fig. 8. The

VAR parameter in (10) is used to stand for the average vari-

ation of background noise level, and threshold is used to

judge whether the background noise level is fixed or variable. If

, the average variation of background noise level in

all the recording intervals is small. In this case, the preset thresh-

olds and are not tuned and kept constant in all

the recording intervals

(16)

where is the maximum time energy, and and

are the weighting factors for determining the thresholds

and to find the word boundary in the condition

of fixed background noise level. If , the average

variation of background noise level in the recording interval is

large. In this case, thresholds and are tuned

properly in the recording interval

MiMSB

MiMSB (17)

where the MiMSB parameter is used to estimate the background

noise level, and and are used to determine the

change amount of and due to the variable background

noise level. In other words, and are used to tune

the thresholds and to find the word boundary in

the condition of variable background noise level. Since the ETF

parameter can extract useful frequency information, it is used

to find the word boundary in the noisy environment. In Part A

of Fig. 8, thresholds and are used to find the rough

reliability boundary. In Part B of Fig. 8, thresholds and

are used to tune the rough beginning reliability boundary.

In Part C of Fig. 8, thresholds and are used to tune
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Fig. 9. Performance illustration of word boundary detection algorithms under
different background noise conditions, where the word boundaries detected by
the proposed MiMSB–ETF-based algorithm are shown by solid lines, and those
by the TF-based algorithm are shown by dotted lines. (a) The condition of
silent background. (b) The condition of fixed background noise level. (c) The
condition of increasing background noise level. (d) The condition of decreasing
background noise level. Noted that the solid lines and dotted lines coincide in
Figs. (a) and (b), and the right-hand-side dotted line in Fig. (c) is missing. This
means that the word ending boundary was not found by the TF-based algorithm.

the rough ending reliability boundary. Finally, we can obtain the

beginning boundary and ending boundary . By trial and

error, we choose , , ,

, , and in the proposed new robust

algorithm.

We call the word boundary detection algorithm in [6] as the

TF-based algorithm. Compared to the TF-based algorithm, the

proposed MiMSB–ETF-based robust algorithm gives more ac-

curate word beginning and ending boundaries in the condition

of variable background noise level. In Fig. 9, we add white

noise with different noise levels to demonstrate the efficiency

of the proposed robust word boundary detection algorithm.

The word boundaries determined by the TF-based algorithm

are shown as dotted lines and those by the MiMSB–ETF-based

algorithm are shown as solid lines. The background noise

level is fixed in Fig. 9(a) and (b). It is observed that the two

algorithms find nearly the same word boundaries in the fixed

background noise level condition, where dotted lines and solid

lines coincide. Under the condition of variable background

noise level in Fig. 9(c) and (d), the TF-based algorithm fails

to find the correct word boundary because its preset thresh-

olds cannot be tuned properly according to the variation of

background noise level. In Fig. 9(c), the TF-based algorithm

finds the wrong beginning boundary and cannot find the

ending boundary due to the increasing noise level. Also, in

Fig. 9(d), the TF-based algorithm finds the wrong location of

the boundaries because the decreasing background noise level.

In the proposed MiMSB–ETF-based robust algorithm, the

preset thresholds and are tuned by the MiMSB

parameter according to the variation of background noise level.

The MiMSB parameter makes these thresholds proper from

time to time to find the correct location of word boundaries as

shown in Fig. 9(c) and (d).

B. Experimental Evaluation

There are two possible ways to evaluate the correctness of

a word boundary detection algorithm; one is to compare the

detected results to hand labeled ones, and the other is to pass

the detected words into a speech recognizer to see the recog-

nition rate. The latter approach is the most common one due

to its subjective nature. In this section, we shall test the per-

formance of the proposed MiMSB–ETF-based algorithm and

compare it to the TF-based robust algorithm in [6]. In order to

observe the effects of the proposed MiMSB and ETF parame-

ters, respectively, we use the TF parameter instead of the ETF

parameter in the MiMSB–ETF-based algorithm to form another

word boundary detection algorithm, called MiMSB–TF-based

algorithm for performance comparison. In addition, we used the

ETF parameter instead of the TF parameter in the TF-based al-

gorithm to form the ETF-based algorithm. Recognition rates of

these four word boundary detection algorithms (MiMSB–ETF-

based algorithm, MiMSB–TF-based algorithm, ETF-based al-

gorithm, and TF-based algorithm) will be obtained in the fol-

lowing tests. The tests are performed in the variable background

noise conditions in cars. Since inaccurate detection of word

boundary is harmful to recognition, the performance of the word

boundary detection process is examined by the recognition rate

of speech recognizer. In the following, we shall introduce the

used speech recognizer, test database, and the evaluation results.

Speech Recognition System: The speech recognition system

used in this paper for evaluating the performance of word

boundary detection algorithms is a robust isolated word

recognition system consisting of two parts, feature extractor

and classifier. In the feature extractor, the modified two-di-

mensional cepstrum (Modified TDC—MTDC) [13]–[16] is

used as the speech feature. The MTDC can simultaneously

represent several types of information contained in the speech

waveform: static and dynamic features, as well as global and

fine frequency structures. To represent an utterance, only some

MTDC coefficients need to be selected to form a feature vector

instead of the sequence of feature vectors. The MTDC has
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Fig. 10. Recognition rates of four word boundary detection algorithms (MiMSB–ETF-based new algorithm, MiMSB–TF-based algorithm, ETF-based algorithm,
and TF-based algorithm) in the condition of variable background noise level.

the advantage of simple computation and is suitable for noisy

speech recognition due to its choices of robust coefficients.

In the classifier, a Gaussian clustering algorithm is used. The

training was done on clean speech pronounced in a clean

environment (without background noise). In the training phase,

each model is trained by a mixture of four Gaussian distribution

density functions. We use a total of 1000 utterances for training.

The details of the above isolated word recognition system can

be found in [16].

Test Environment and Noise Speech Database: In the recog-

nition procedure, the frame window used for obtaining the

MTDC features is 30 ms in length, with 15-ms overlap between

two frames. In the word boundary detection procedure, the

frame length is set to be 15 ms in order to get more accurate

endpoint location. The sampling rate of our system is 8 kHz.

The noise signals are taken from the noise database provided

by the NATO Research Study Group on Speech Processing

(RSG.10) NOISE-ROM-0 [17]. The database consists of 24

noise sources in order to offer as wide as possible variations

in characteristics. Among these noise sources, we take four

typical types of noise for speech contamination in our ex-

periments. They are vehicle noise, cockpit noise, multitalker

babble noise, and white noise. The original NOISE-ROM-0

data were sampled at 19.98 kHz and stored as 16-bit integers.

In our experiments, they are prepared for use by downsampling

to 8 kHz and applying attenuation on them. The attenuation

was applied to enable the addition of noise without causing

an overflow of the 16-bit integer range. The speech data used

for our experiments are the set of isolated Mandarin digits.

They are ten digits spoken by ten speakers and each speaker

pronounced the ten digits 20 times. The recording sampling

rate is 8 kHz and stored as 16-bit integer. To set up the noisy

speech database for testing, we added the prepared noisy

signals to the recorded speech signals with different SNRs

including 5, 10, 15, 20, and dB. To test the proposed robust

algorithm in the variable background noise condition, we

change the amplitude of a given noise signal between 0.4 and

2.5 times of its nominal energy value linearly under a desired

SNR level. In other words, we change the power level of the

noise signal between 0.16 and 6.25 times of its nominal power

value linearly. For example, if the desired SNR is 10 dB, then

we change the noise level such that the SNRs vary from 1.6

to 6.25 dB. The noise level changing could be in increasing,

decreasing, increasing–decreasing, or decreasing–increasing

order. The duration of each utterance used for testing the

performance of the word boundary detection algorithm is about
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Fig. 11. Recognition error rates of four word boundary detection algorithms (MiMSB–ETF-based new algorithm, MiMSB–TF-based algorithm, ETF-based
algorithm, and TF-based algorithm) in the condition of variable background noise level.

1 s (including silence). A total of 600 utterances were used in

our experiments.

Experimental Results: Four word boundary detection al-

gorithms (MiMSB–ETF-based algorithm, MiMSB–TF-based

algorithm, ETF-based algorithm, and TF-based algorithm)

are tested in the variable background noise condition, and the

results are shown in Fig. 10. There are totally 600 utterances

used in this test to simulate the variable background noise level

conditions in cars; 300 utterances are recorded in the increasing

background noise level condition and 300 utterances are

recorded in the decreasing background noise level condition.

We first make some observations on the effect of the MiMSB

parameter. Since the MiMSB parameter tunes some preset

thresholds according to the variation of background noise level,

the MiMSB–TF-based algorithm outperforms the TF-based

algorithm. Since the ETF parameter can extract more useful

frequency information of word signal than the TF parameter,

the ETF-based algorithm also outperforms the TF-based

algorithm. By using both the MiMSB and ETF parameters, the

proposed MiMSB–ETF-based algorithm outperforms the other

three algorithms.

Considering another performance index, we examine the

recognition error rates averaged across the four noise conditions

due to incorrect word boundary detection as a function of SNRs.

The results are shown in Fig. 11. Here, the recognition error

rate is the ratio of the recognition errors due to incorrect word

boundary detection (taking the recognition scores obtained by

hand labeling as a reference) to the total number of recognition

errors of the detection algorithm [6]. More precisely, let the

recognition errors obtained by hand labeling be , and

the recognition errors obtained by using the automatic word

boundary detection algorithm be . Then the recognition

error rate is given by . This index represents the

percentage of recognition errors attributable to word boundary

detection errors relative to the total number of errors, where

the recognition rate with hand-labeled boundaries is used as a

reference. By averaging the experimental results obtained in

Fig. 11 with both different background noise types (vehicle

noise, cockpit noise, multitalker babble noise, and white noise)

and different SNR decibels, (5, 10, 15, 20, and dB) we get

the averaged recognition error rates of these four algorithms

which are 25%, 31%, 30%, and 34%, respectively. In other
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words, these rates are obtained by averaging the point values

on the curves corresponding to each algorithm in Fig. 11.

It shows that the proposed MiMSB–ETF-based algorithm

reduced the recognition error rate due to endpoint detection to

25%, compared to an average of 31%, 30%, and 34% obtained

by the MiMSB–TF-based algorithm, ETF-based algorithm,

and TF-based algorithm, respectively. The MiMSB–ETF-based

algorithm still outperforms the other three algorithms.

As a summary, since the MiMSB parameter tunes some preset

thresholds in all the recording intervals and the ETF parameter

extracts more useful frequency information of word signal than

the TF parameter, the proposed MiMSB–ETF-based algorithm

achieves higher recognition rate than the TF-based algorithm

by about 5% in the variable background noise level condition.

It also reduces the recognition error rate due to endpoint detec-

tion to 25%, compared to an average of 34% obtained with the

TF-based robust algorithm.

In the proposed robust word boundary detection algorithm,

we use some segmental parameters such as , VAR, and

MiMSB to help the detection of word boundaries. Since most

of these parameters are independent of those used in the speech

recognizer, they need extra computation for each frame. Al-

though this two-phase process (i.e., word detection and word

recognition) is a normal mechanism existing in a speech recog-

nition system, our word detection scheme is more time con-

suming than the normal approaches. However, this is the reason-

able expense paid for a robust word boundary detection scheme

suitable, especially, for varying background noise like the in-car

environment. In all the segmental parameters of our algorithm,

only the VAR parameter cannot be obtained on-line; it needs to

be calculated after a set of speech frames has arrived. The VAR

is to detect the average variation of background noise level and

to determine if the tuning of the two thresholds, and

in (17), are necessary. Hence, the VAR parameter need not be

calculated at any time; once it detects the varying noise envi-

ronment, we can switch on the tuning phase of thresholds and

keep this phase running for a period of time without recalcu-

lating VAR. So, the proposed algorithm can on-line detect word

boundaries practically in adverse environments. This makes it

have potential for real-time operation, depending the computa-

tion power of the used hardware platform.

V. CONCLUSIONS

In this paper, we first proposed a MiMSB parameter which

can efficiently estimate the variation of background noise level

in cars. This parameter adaptively chooses one band with min-

imum frequency energy from the mel-scale frequency bank. We

also proposed a reliable parameter, ETF, that possesses both

the time and frequency features for word boundary detection in

noisy environment. This parameter adaptively adopts six useful

bands from 20 mel-scale frequency bands for producing useful

frequency features to enhance time features of word signal in

noisy environment. Based on the MiMSB and ETF parameters,

we proposed a new robust word boundary detection algorithm.

In contrast to the commonly used robust word boundary de-

tection algorithms which always fix all preset thresholds in the

recording interval, the proposed MiMSB–ETF-based algorithm

does not use fixed preset thresholds; they are tuned adaptively

according to the MiMSB parameter. This makes the algorithm

more reliable in the noisy environment with variable noise level.

The MiMSB–ETF-based algorithm has been tested over a va-

riety of noise conditions in cars and has been found to perform

well in both fixed and variable noise-level environments. Also,

the results are compared to those of other word boundary detec-

tion schemes under the same well-behaved speech recognizer. In

our experimental evaluation, the MiMSB–ETF-based algorithm

achieved higher recognition rate than the TF-based algorithm

by about 5% in the variable background noise level condition.

It also reduced the recognition error rate due to endpoint detec-

tion to 25%, compared to an average of 34% obtained with the

TF-based robust algorithm. In our future work, we will perform

some advanced experiments of the proposed robust algorithm in

a real car on site.
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