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Abstract

We present homogeneous, sub-horizontal branch photometry of 20 dwarf spheroidal satellite galaxies of M31
observed with the Hubble Space Telescope. Combining our new data for 16 systems with archival data in the same
filters for another four, we show that Andromeda dwarf spheroidal galaxies favor strikingly red horizontal branches
or red clumps down to ∼104.2 Le (MV∼−5.8). The age-sensitivity of horizontal branch stars implies that a large
fraction of the M31 dwarf galaxies have extended star formation histories (SFHs), and appear inconsistent with
early star formation episodes that were rapidly shutdown. Systems fainter than ∼105.5 Le show the widest range in
the ratios and morphologies of red and blue horizontal branches, indicative of both complex SFHs and a diversity
in quenching timescales and/or mechanisms, which is qualitatively different from what is currently known for faint
Milky Way (MW) satellites of comparable luminosities. Our findings bolster similar conclusions from recent
deeper data for a handful of M31 dwarf galaxies. We discuss several sources for diversity of our data such as
varying halo masses, patchy reionization, mergers/accretion, and the environmental influence of M31 and the
Milky Way on the early evolution of their satellite populations. A detailed comparison between the histories of
M31 and MW satellites would shed signifiant insight into the processes that drive the evolution of low-mass
galaxies. Such a study will require imaging that reaches the oldest main-sequence turnoffs for a significant number
of M31 companions.

Key words: galaxies: dwarf – galaxies: evolution – galaxies: photometry – Local Group

1. Introduction

Our knowledge of the lowest-mass galaxies primarily comes
from observations of our immediate surroundings. Due to their
intrinsic faintness, Local Group dwarf galaxies tend to be the
only low-mass systems that can be studied in great detail via
their resolved stellar populations (e.g., Mateo 1998; Tolstoy
et al. 2009; McConnachie 2012, and references therein). Their
close proximity does not come without difficulties as, for
instance, the properties of these low-mass stellar systems may
be greatly influenced by their environment. The most direct
example of this effect is the gas content of dwarf galaxies that
depends on distance to the host or the Local Group in general
(e.g., Grcevich & Putman 2009; Spekkens et al. 2014) and may
be an indication of the transformative aspects of orbiting too
close to one’s host (e.g., Mayer et al. 2001).

Within the Local Group, the current observational situation
for low-mass galaxies is far from ideal. Due to their close
proximity, the bulk of observational efforts have been aimed at
satellites of the Milky Way (MW). Thus, our broad under-
standing of low-mass galaxies, including star formation
histories, chemical evolution, dark matter content, and their

use as benchmarks for cosmological simulations, are based on a

set of galaxies that reside in a common galactic ecosystem

(e.g., Simon & Geha 2007; Tolstoy et al. 2009; Kirby et al.

2011; Boylan-Kolchin et al. 2012; Brooks et al. 2013; Brown

et al. 2014; Weisz et al. 2014a; Wetzel et al. 2016). It remains

unknown how well the MW satellite population reflects the

general properties of low-mass spheroidal satellites, let alone

low-mass galaxies in general.
Considerable efforts have been made to remedy this

shortcoming, primarily through observations of M31 satellites

and isolated dwarf galaxies (e.g., Leaman et al. 2013; Cole

et al. 2014; Gallart et al. 2015; Skillman et al. 2017). We now

have broad knowledge of the dark matter contents of most M31

satellites (e.g., Tollerud et al. 2013; Collins et al. 2014) and a

steadily increasing set of systems with spectroscopic metallicity

and heavier element abundance measurements (e.g., Ho

et al. 2012; Collins et al. 2013; Vargas et al. 2014; Ho

et al. 2015).
Critically lacking, however, is a detailed knowledge of the

lifetime evolution of the M31 satellites. While dedicated

imaging surveys such as the Pan-Andromeda Archaeological
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Survey (PAndAS; McConnachie et al. 2009) have proven
invaluable for discovery and structural characterization of M31
satellites (e.g., Martin et al. 2016), the resulting color–
magnitude diagrams (CMDs) are generally limited to the
luminous, evolved phases of evolution (e.g., upper red giant
branch (RGB) stars), which, because of the age–metallicity
degeneracy, provide only coarse information about star
formation histories (SFHs) over cosmologically relevant time-
scales (e.g., Aparicio & Hidalgo 2009; Weisz et al. 2011;
Dolphin 2012).

In order to precisely reconstruct the full SFHs of these faint
and crowded populations of ancient main-sequence turnoff
(MSTO) stars at the distance of M31, it is necessary to conduct
their observations with the Hubble Space Telescope (HST). To
date, such deep observations are limited to ∼20% of the known
M31 systems: M32 (compact elliptical; Monachesi et al. 2012),
NGC 147 and NGC 185 (dwarf ellipticals; Geha et al. 2015),
and six dwarf spheroidal galaxies, observed as part of the
Initial Star formation and Lifetimes of Andromeda Satellites
(ISLAndS) project (And I, And II, And III, And XV, And XVI,
And XXVIII; Weisz et al. 2014c; Monelli et al. 2016; Skillman
et al. 2017). Beyond lacking counterparts to the elliptical
systems, MW satellites of similar luminosity appear to have
notably different SFHs from the ISLAndS systems. The six
ISLAndS systems were quenched more than 5 Gyr ago (i.e.,
they contain few or no stars younger than 5 Gyr), at odds with
MW systems like Carina, Fornax, or Leo I despite being of
similar luminosities and host distances (Skillman et al. 2017).
Moreover, whereas MW satellites below ∼105.5 Le (MV∼
−9.0) tend to harbor only old stars (e.g., Draco, Hercules;
Weisz et al. 2014a), the faintest system in the ISLAndS
program, And XVI (104.8±0.1 Le; Martin et al. 2016) has an
SFH that extends for ∼8 Gyr, which challenges the notion that
low-mass galaxies are ubiquitously quenched by reionization.
Shallower CMDs of other faint M31 companions are also
suggestive of similarly extended SFHs (e.g., Weisz et al.

2014a), reinforcing the conclusions of first generation photo-

metric studies of the M31 satellites that noted the presence of

unusually red horizontal branch (HB) populations (Da Costa

et al. 1996, 2000, 2002), indicative of extended episodes of star

formation in the early ages of the galaxies’ evolution.
While there is clear value in extending the ISLAndS program

to the rest of the M31 satellites, the necessary HST observations

require relatively long integration times. As a compromise, we

have pursued an exploratory program that acquired sub-HB

HST/ACS imaging of all Andromeda dwarf spheroidal

companions known as of late 2014 with no existing HST data,

except for And XIX and XXVII whose surface brightness is too

low to yield useful, shallow CMDs. The observations of these

16 systems, combined with archival data for another 4,

represent the most comprehensive study of the stellar contents

of Andromeda satellite galaxies, with which we can broadly

assess the diversity of their evolution relative to their MW

counterparts.
In this first paper in the series, we present the data and focus

on the HB morphology of all systems observed by our

program. Future papers will quantify what constraints the

current data impart on the recent SFH of these system and

refine their distance estimates from the location of their

HBs. Here, we report a qualitative predominance of red HBs

(RHBs) or red clumps (RC) in the Andromeda companions,

affirming and extending the pioneering work of Da Costa and

collaborators on And I, II, and III. The paper is structured as

follows. Section 2 presents the observations, data reduction,

and resulting data set. Section 3 analyzes the HB content

of the 16 galaxies in our sample, complemented by archival

data for four systems whose observations were conducted

with the same filters. Finally, Section 4 discusses our results

and the systematically red HBs of Andromeda dwarf galaxies

down to ∼105.5 Le, and for a subset of the even fainter

systems.

Table 1

Listing of Observations

Galaxy Name Program ID Instrument Exposure Time (s) PI Observing Dates

(F606W, F814W)

AndIX HST-GO-13699 ACS 1146, 1146 Martin 2014 Oct 01, 2014 Oct 02

AndX HST-GO-13699 ACS 1146, 1146 Martin 2014 Oct 04

AndXI HST-GO-11084 WFPC2 19200, 26400 Zucker 2007 Sep 06, 2007 Sep 09, 2007 Sep 17, 2007 Sep 20

AndXII HST-GO-11084 WFPC2 19200, 26400 Zucker 2007 Jun 14, 2007 Jun 15, 2007 Aug 01, 2007 Aug 02

AndXIII HST-GO-11084 WFPC2 19200, 26400 Zucker 2007 Jul 22, 2007 Jul 23, 2007 Jul 31, 2007 Aug 01,

2007 Aug 02

AndXIV HST-GO-13699 ACS 1110, 1109 Martin 2014 Nov 28

AndXVII HST-GO-13699 ACS 1146, 1146 Martin 2015 Jul 02, 2015 Jul 03

AndXVIII HST-SNAP-13442 ACS 1100, 1100 Tully 2013 Oct 20

AndXX HST-GO-13699 ACS 1128, 1128 Martin 2014 Dec 07

AndXXI HST-GO-13699 ACS 1148, 1146 Martin 2015 Mar 02

AndXXII HST-GO-13699 ACS 1110, 1109 Martin 2015 Feb 03

AndXXIII HST-GO-13699 ACS 1128, 1128 Martin 2015 Jul 01

AndXXIV HST-GO-13699 ACS 1168, 1168 Martin 2015 Jul 01

AndXXV HST-GO-13699 ACS 1168, 1168 Martin 2015 Jul 03

AndXXVI HST-GO-13699 ACS 1168, 1168 Martin 2015 Jul 03

AndXXIX HST-GO-13699 ACS 1118, 1117 Martin 2014 Dec 22

CasII HST-GO-13699 ACS 1168, 1168 Martin 2014 Nov 12

CasIII HST-GO-13699 ACS 1194, 1193 Martin 2015 Mar 03

LacI HST-GO-13699 ACS 1148, 1146 Martin 2015 Jul 06

PerI HST-GO-13699 ACS 1148, 1146 Martin 2015 Feb 25
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2. Observations and Data Reduction

The details of the observations used in this paper are listed in

Table 1 and the properties of the dwarf galaxies are listed in

Table 2. Observations of our sample of 16 galaxies were taken

with the Advanced Camera for Surveys (ACS; Ford et al. 1998)

on board HST between 2014 October 1, and 2015 July 7, as

part of HST-GO-13699 (PI: N. Martin). The target dwarf

spheroidal galaxies are And IX, X, XIV, XVII, XX, XXI,

XXII, XXIII, XXIV, XXV, XXVI, XXIX, Cas II and III, Lac I,

and Per I. Systems that already have archival HST data were not

targeted (And I, II, III, V, VI, VII, XI, XII, XIII, XV, XVI,

XVIII, XXVIII), as the two data sets will eventually be merged.

In this paper, for a homogenous comparison, we restrict

ourselves to observations performed with the set of F606W and

F814W filters and to similar photometric depths. Archival

observations of And XI, XII, XIII, and XVIII meet this criteria

and we include them in our analysis.
A single field was observed for each galaxy of the HST-GO-

13699 program. As much as possible, fields were chosen to

target the center of a dwarf galaxy, but small offsets were

sometimes necessary to avoid the presence of bright foreground

stars. Figure 1 compares the distribution of detections

consistent with being point-sources in the reduced data with

ellipses delimiting the 1, 2, and 3 rh regions of each galaxy.

Obviously, the region sampled by ACS changes from system

to system. It corresponds to smaller regions with at least

10%–20% of a dwarf galaxy’s content for the most extended

systems (i.e., also the brightest; Brasseur et al. 2011), but

covers a significant fraction of the smallest dwarf galaxies, like

And XX and XXII (see the fourth column of Table 2).
For each field, a single orbit was split between two filters,

F606W and F814W, with total integration times for each

system listed in Table 1. Observations in each filter were split

into two sub-exposures taken at the same position to mitigate

the effects of cosmic rays. To maximize time for science
exposures, we opted not to dither the observations, and thus

we did not fill the chip gap. In parallel, we observed a single

pointing with the Wide Field Camera 3 (WFC3) in F606W and

F814W. In half of the cases, the ∼6′ angular separation

between ACS and WFC3 meant the WFC3 field only sampled
the very outer region of the target galaxy, where the expected

stellar densities from ground-based imaging were known to be

vanishingly low (Martin et al. 2016).
We performed point-spread function (PSF) photometry on

each of the flc images using DOLPHOT, a version of

HSTPHOT(Dolphin 2000) that has been specifically modified

for ACS and WFC3 observations. We used DOLPHOT with
Tiny Tim PSF models and photometric parameters recom-

mended by Williams et al. (2014).
The archival data of And XI, XII, and XIII were observed with

the Wide-Field Planetary Camera 2 (WFPC2) during program

HST-GO-11084 (PI: D. Zucker). These data were processed by

Weisz et al. (2014a) and we refer the reader to this paper for

more detail. Finally, AndXVIII was observed with ACS as part
of program HST-SNAP-13442 (PI: Tully) and used a very

similar set-up to our program’s, with 2×1100 s per filter. These
data were processed like those of our program.

Table 2

Properties of the Dwarf Spheroidal Galaxies

Dwarf Galaxy Magnitudea DM31
a

(kpc) Fractional Coverageb nBHB nRHB η

AndIX −8.5±0.3 -
+

182 66

38 0.50 42 805 0.050±0.008

AndX −7.4±0.3 -
+

130 17

60 0.82 40 99 0.288±0.052

AndXI - -
+

6.3 0.4

0.6
-
+

102 1

149 0.85 51 72 0.415±0.069

AndXII - -
+

7.0 0.5

0.7

-
+

181 87

19 0.43 9 19 0.321±0.123

AndXIII - -
+

6.5 0.5

0.7
-
+

115 2

207 0.90 18 91 0.165±0.042

AndXIV - -
+

8.5 0.3

0.4

-
+

161 3

81 0.56 62 298 0.172±0.024

AndXVII −7.8±0.3 -
+

67 24

20 0.82 136 180 0.430±0.044

AndXVIII - -
+

9.2 0.4

0.3

-
+

457 47

39 0.85 112 2346 0.046±0.004

AndXX - -
+

6.4 0.4

0.5

-
+

128 5

28 0.97 22 56 0.282±0.068

AndXXI −9.1±0.3 -
+

135 10

8 0.20 12 278 0.041±0.012

AndXXII - -
+

6.7 0.5

0.7

-
+

275 60

8 0.92 3 38 0.073±0.044

AndXXIII - -
+

9.8 0.3

0.2
-
+

127 4

7 0.19 8 382 0.021±0.007

AndXXIV −8.4±0.4 169±29 0.36 3 59 0.048±0.029
AndXXV −9.0±0.3 -

+
90 10

57 0.26 18 235 0.071±0.017

AndXXVI - -
+

5.8 1.0

0.9

-
+

103 3

234 0.87 19 71 0.211±0.053

AndXXIX −8.5±0.3 -
+

198 10

18 0.76 28 467 0.057±0.011

CasII −11.4±0.3 -
+

145 4

95 0.76 33 268 0.110±0.020

CasIII −12.3±0.7 -
+

144 4

6 0.12 137 3147 0.042±0.004

LacI −11.4±0.3 264±6 0.28 110 3072 0.035±0.003
PerI −10.3±0.7 -

+
374 10

14 0.71 10 806 0.012±0.004

AndXX field (WFC3) 2 4 0.333±0.136
AndXXI field (WFC3) 1 5 0.167±0.068

AndXXVI field (WFC3) 0 5 0.0

Notes.
a
Magnitude and distance measurements are taken from Conn et al. (2012a), Martin et al. (2013c), Martin et al. (2013b), Slater et al. (2015), Martin et al. (2016), and

Rhode et al. (2017).
b
This coverage corresponds to the integral of a dwarf galaxy’s density profile over the HST fields.
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For all data sets, photometric catalogs of detected objects

were culled to include only well-measured stars. Specifically,
to identify stars, we required: SNRF606W>5, SNRF814W
>5, (sharpF606W+sharpF814W)

2<0.1, and (crowdF606W+

crowdF814W)<1.0. The definition of each parameter is given

in Dolphin (2000) and Dalcanton et al. (2009). To gauge the
completeness of our CMDs, we performed ∼100,000 artificial
star tests on three galaxies (Cas III, Cas II, And XX) that span

Figure 1. Spatial distribution of all star-like sources for the 20 dwarf galaxies in our sample. The concentric ellipses correspond to the 1rh, 2rh, and 3rh regions as
inferred by Martin et al. (2013c), Martin et al. (2013b), Slater et al. (2015), Martin et al. (2016), and Rhode et al. (2017). The systems are ordered by decreasing total
luminosity and the total V-band magnitude, MV, of each system is given in the top-left corner of each panel.
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the range of galaxy luminosities and distances of our sample. In
each case, we found 50% completeness limits to be 27.1±0.1
in F606W and 26.2±0.2 in F814W. At the apparent
magnitudes of their HBs, we found the data were 85%–90%
complete.

The photometry of each field is de-reddened using the
extinction values provided by NED14 from the Schlegel et al.
(1998) map, re-calibrated by Schlafly & Finkbeiner (2011).

3. Analysis

Figure 2 presents the CMDs of the 20 dwarf galaxies in our
sample. In order to minimize contamination from foreground
stars, we restrict each CMD to the region within 2rh of each
dwarf galaxy, with rh values taken from Martin et al. (2013c),
Martin et al. (2013b), Slater et al. (2015), Martin et al. (2016),
and Rhode et al. (2017). The CMDs are ordered by decreasing
galaxy luminosity. Variations in the density of the CMDs are a
consequence of the galaxy’s surface brightness and the
fractional coverage of the ACS field. Contamination by M31
stellar halo stars is rarely an issue for these 20 dwarf galaxies
that are relatively isolated in the M31 surroundings (e.g.,
Martin et al. 2013a). A word of caution is needed for And IX as
it is projected on a substructure of the M31 stellar halo (Ibata
et al. 2014). Thus, its CMD is contaminated by a more metal-
rich stellar population. This can be seen as stars redward of the
RGB in Figure 2.

The most striking feature of the CMDs presented in Figure 2
is the presence of a clear red HBs or even RCs in most
galaxies. This is even more evident in the CMDs of Figure 3
that are zoomed-in on the HB region. Even a very faint system
like And XIII (MV=− 6.5+0.7

−0.5; Martin et al. 2016) has a clear
population of RHB stars, which is unlike MW satellites of the
same luminosity (e.g., Hercules, MV∼−6.6) that have
exclusively blue HBs (BHBs; Brown et al. 2014). Only
And XVII and XI show predominantly blue HB and And XIV
hosts a more balanced HB. The situation is more ambiguous for
the faint systems And X, XII, XIII, XX, XXII, XX, and XXVI
that do not contain many stars.

Following Da Costa et al. (1996, 2000, 2002), we quantify
the dominance of RHBs by simply counting stars in two
selection boxes focusing on the RHB and BHB regions, as
shown by the red and blue boxes in Figure 3. The colors of
these boxes remain the same for every system, but we allow for
shifts in magnitude to account for changes to the distances of
the dwarf galaxies.15 The boxes are purposefully kept wide in
the magnitude direction so they generously include the HB
stars, and our counts are not biased by changes in the HB
morphology or stellar variability.16 Although we would have
liked to determine the color limits of the boxes based on
literature values, we could not find studies that relied on the
filter set we use here. We therefore chose to place the boxes so
the blue one encompasses the blue part of the HB for systems
with the bluest HB (And XVII or XI) and similarly for the red
box and the reddest HBs (e.g., Cas III, Lac I, or And XVIII).

The resulting ratios, η=nBHB/(nBHB+nRHB), of numbers
of stars in the BHB (nBHB) and BHB+RHB (nRHB+nRHB)

selection boxes17 are listed in the panels of Figure 3
and confirm our initial impression: all the galaxies in the
brighter half of the sample have η<0.1, except for And XIV
(η=0.189±0.024). For systems with MV−8.0 (i.e.,
LV105.1 Le), the ratios are noisier but are also spread over
a wider range, up to 0.412±0.042 in the case of the system
with the bluest HB, And XVII. Nevertheless, even at these
luminosities, one can still find systems with fairly red
HBs (And XXII with η=0.141±0.050 or And XIII with
η=0.165±0.042).
For a more comprehensive view of the variations in η,

Figure 4 (left panel) presents its changes as a function of the
magnitude of the galaxy. Broadly, two main effects are visible
in this panel.

1. There is a significant change in the color of HBs in the
range of −9.0<MV<−8.0 or LV∼ 105.5 Le. For
brighter magnitudes, HBs are systematically measured
to be red.

2. For fainter systems, the values of η cover a much larger
range, allowing for very blue HBs, but it is not a
systematic trend and red HBs are still present.

For faint systems, shot noise becomes important and is
responsible for the larger uncertainties on η. These are, however,
not large enough to explain the changes in the ratio of blue-to-total
HB stars. Contamination from field objects is also a concern but
the WFC3 observations for the small dwarf galaxies AndXX,
XXII, and XXVI can help us assess expected values of η in the
absence of member stars. These three dwarf galaxies are all small
enough that their WFC3 fields should correspond to the typical
field contamination. Furthermore, they cover a large range of
spatial locations around M31 as they are spread over almost
20°in Galactic latitude between AndXXVI and AndXXII,
located at b=−14°.7 and −34°.1, respectively. For the three
systems, we measure η=0.333±0.136, 0.167±0.068, and 0,
respectively. More importantly, the nBHB and nRHB counts are
extremely low in all cases (<5). We can therefore expect that the
values calculated for the dwarf galaxies are not significantly
contaminated as the counts are always larger than 19 in at least
one of the boxes.
At this point, it is also important to investigate the impact of

the M31-centric distance of a satellite on η. The gaseous
content of dwarf galaxies is known to correlate with their
distance from the host (e.g., Grcevich & Putman 2009) and
distant dwarf galaxies, which have spent most of their orbital
time far from their host, are also more prone to exhibit
extended star formation histories (e.g., Weisz et al. 2014a).
Since the orbits of the studied dwarf galaxies are not known,
the only proxy we can use is their current M31-centric distance.
Figure 5 shows the changes of η as a function of the M31-
centric distance of the satellites. Although the most distant
satellites disfavor blue HBs, one must keep in mind that the
sensitivity of dwarf galaxy searches outside of the PAndAS
footprint (∼150 kpc in projection) is such that discovered
distant dwarf galaxies are more likely to be brighter and above
the ∼105.5 Le transition visible in Figure 4 (e.g., Martin

14
http://ned.ipac.caltech.edu/forms/calculator.html

15
Tying these magnitude shifts to differences in the distance moduli of the

dwarf galaxies (e.g., Conn et al. 2012a) proved unsatisfactory due to the large
uncertainties of some of the distance measurements. It emphasizes the need to
more accurately derive these distances, which is one of our main goals with
these data.
16

Such variable stars can be see in the brighter half of the blue HB box for
Cas III and Lac I.

17
It should be noted that the red box is tailored to include red clump stars

(e.g., those of Cas III or Lac I), which means that it also includes RGB stars. As
such, the ratios of counts in the BHB-to-RHB boxes cannot become very large,
but they nevertheless carry significant changes from galaxy to galaxy.
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Figure 2. CMDs of the 20 dwarf galaxies in our sample, ordered by decreasing luminosity. Each CMD includes stars within the full ACS field or the region with 2rh of
that dwarf galaxy, whichever is smallest. The numbers listed in the top-left corner of each panel correspond to theMV value of that system (Martin et al. 2013b, 2013c,
2016; Slater et al. 2015; Rhode et al. 2017). Systems with blue labels were observed in our program (HST-GO-13699), whereas systems with red labels were observed
with WFPC2 as part of program HST-GO-11084. AndXVIII, shown with a green label, was observed with ACS as part of the HST-SNAP-13442 program, which had
similar observational properties. Note the predominance of red HBs overall.
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et al. 2013c; Slater et al. 2015). In the more complete
DM31200 kpc region, we find no obvious impact of the
M31-centric distance of the dwarf galaxy on η.

Differences in the aerial coverage of the various dwarf
galaxies by the field of view is also worth discussing. It is well
known that bright dwarf galaxies, around both the Milky Way
(e.g., Tolstoy et al. 2004) and Andromeda (e.g., McConnachie
et al. 2007), can host multiple stellar populations and that,
when this is the case, redder HB populations are more centrally
concentrated than their bluer counterpart (e.g., Tolstoy

et al. 2009). Since the brighter dwarf galaxies of Andromeda
are also the larger ones (Brasseur et al. 2011), our observations
probe these systems more centrally and, therefore, could be
biased toward enhancing their red HB fraction. While this is
certainly a concern, this does not appear to drive the dominance
of red HBs. Indeed, if we are to assume very conservatively
that all RHBs are restricted to the region within the half-light
radius of the three systems with the smallest coverage (Cas III/
And XXIII/And XXI with fractional coverages of 0.12/0.19/
0.20), η would only change from 0.044/0.022/0.054 to

Figure 3. Zoom-in on the HB region of the CMDs presented in Figure 2. The red and blue boxes correspond to the selection boxes to count RHB/RC and BHB stars,
respectively. Note that the red box purposefully extends red enough to include RC stars present in, e.g., CasIII or LacI. By construction, this means that the red box
also includes RGB stars. The boxes are fixed in color and allowed to move along the magnitude direction to track the change in distance from galaxy to galaxy. The
number in the top-left corner of each panel is theMV value of the corresponding dwarf galaxy and the number listed in the bottom-left corner of each panel is the blue-
to-total ratio, η. In the case of the more distant AndXVIII, this number is listed in the top-left corner of the panel.
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0.154/0.052/0.097 and remain in the lower part of Figure 4.
Since this is a very strong (and unrealistic) assumption, we
conclude that the predominance of RBHs in Andromeda
satellite dwarf galaxies is unlikely to be mainly driven by
differences in the areal coverage of the data.

Beyond the study of the changes in the number of blue-to-
total HB stars for the 20 dwarf galaxies in the sample, we also
investigate potential differences in the dwarf galaxies that are
aligned in the recently discovered thin disk of Andromeda
satellites (Ibata et al. 2013). The selection function of the
sample, built from what was or was not in the HST archive,
explains the different luminosity range of the on- and off-plane

samples (middle and right-hand panels of Figure 4). Beyond
this effect, there is no significant difference between the η

behavior of the two samples. This conclusion is in agreement
with its ISLAndS counterpart (Skillman et al. 2017) and in line
with similar comparisons of the various properties of these
systems by Collins et al. (2015), who concluded against a
significantly different formation and evolution route for the two
sets of Andromeda satellites because of the absence of a
significant difference between on- and off-plane dwarf-galaxy
properties.

4. Discussion

We have presented deep, sub-HB photometry of 20 dwarf
galaxy satellites of M31 from new or archival HST data. These
data sample two-thirds of all known Andromeda satellite dwarf
spheroidal galaxies and provide a gallery of homogeneous
CMDs that can easily be compared over a wide luminosity
range, from Cas III (106.8 Le) to And XXVI (104.2 Le). With
but a few exceptions, these M31 dwarf galaxies display
predominantly red HBs/RCs, even at the faint end of the
sample. Only And XVII (105.0 Le) and And XI (104.4 Le) host
distinctly blue HBs and a handful of galaxies show balanced
HBs. In addition, there appears to be a transition in the HB
content of the galaxies at ∼105.5 Le (MV;−9.0): only fainter
than this limit do Andromeda’s spheroidal satellites present a
range of blue-to-total HB star ratios. However, even then, there
remain faint systems whose HB is dominated by red stars (e.g.,
And XIII, 104.5 Le).
Our data are not deep enough to enable a decomposition of

the stellar populations at the oldest MSTO, as is the case in
Skillman et al. (2017). Thus, in this paper, we only provide a
qualitative assessment of the evolution of these systems, and
we plan a quantitative SFH determination (e.g., Weisz
et al. 2014b) in a future paper in this series. Using our broad

Figure 4. Ratio of numbers of blue-to-total HB stars, η, as a function of a dwarf galaxy’s total luminosity. Gray symbols correspond to the four dwarf galaxies that
were not part of our program and were taken from the archive (And XI, XII, XIII, XVIII). The hollow dot represents AndIX, which is contaminated by a (metal-rich)
M31 halo structure and whose η is therefore biased low. η is systematically low, indicative of red HBs, for systems brighter than MV;−8.5 but a transition happens
at this luminosity. Dwarf galaxies with predominantly blue HBs (high η values) exist below this limit but others are still dominated by red HBs.

Figure 5. Changes in the ratio of the numbers of blue-to-total HB stars with the
M31-centric distance of a dwarf galaxy. More distant systems disfavor blue
HBs but surveys tend to be limited to bright dwarf galaxies in these regions.
There is no obvious correlation between η and DM31 in the more complete
region within ∼200 kpc of M31. M31-centric distances are taken from Conn
et al. (2012b), Martin et al. (2013c), Martin et al. (2013b), Slater et al. (2015),
and Rhode et al. (2017).
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knowledge of stellar and dwarf galaxy evolution (e.g., Gallart
et al. 2005; Tolstoy et al. 2009) and Skillman et al. (2017) as a
guide, we surmise that the presence of red HB and RC
populations are due to a combined effect of age and metallicity
evolution, which we refer to as extended SFHs, i.e., changes in
both age and metallicity. The few reliable spectroscopic
measurements of metallicities for the dwarf galaxies in our
sample show that they likely are all, broadly speaking, metal-
poor (−2.3[Fe/H]−1.5), with maybe a hint of a
luminosity–metallicity relation (Collins et al. 2015) within
the luminosity range of the sample. This could further
compound the difficulty to derive a quantitative star formation
history from the morphology of the HB and explains why we
focus here on a qualitative analysis. Beyond this, HB
morphology is also known to be influenced by second
parameter effects, e.g., helium abundance. For simplicity, we
will restrict out discussion to age and metallicity effects, but
recognize that a detailed interpretation of the HB morphology
likely requires more than these two parameters (e.g., Gratton
et al. 2010).

The galleries of Figures 2 and 3 suggest that most M31
dwarf galaxies have had a prolonged period of star formation,
even down to ∼104.2 Le. Many formed a significant fraction of
their stars later, and likely at multiple metallicities, when
compared to the oldest metal-poor globular clusters or dwarf
galaxies that host purely blue HBs. It is clear that the prolonged
period of star formation cannot by younger than ∼3–5 Gyr,
otherwise our data would show the presence of young MS
stars, which are not seen in any of the systems.

Our qualitative interpretation is bolstered by the more
detailed and complementary study of a small sample of M31
dwarf galaxies by Skillman et al. (2017), who reached similar
conclusions, i.e., extended age and metallicity evolution, from
the sub-MSTO observations of six dwarf galaxies. In particular,
this ISLAndS sample shows that all of the systems studied in
detail, spanning 104.8<L<106.5 Le, exhibit an extended
period of star formation and quenching at intermediate times,
only 5–9 Gyr ago (z∼1–1.5). Of particular interest, the
faintest system in the ISLAndS sample, And XVI, is the system
that was quenched latest, which mirrors our discovery that even
faint M31 dwarf galaxies can host predominantly red HBs (e.g.,
And XIII and And XXII). Analysis of the HB and variable star
populations in the ISLAndS sample (Martínez-Vázquez et al.
2017) shows that these are systematically redder for their six
dwarf galaxies than for their MW counterparts. They interpret
this as an indication of more extended SFHs for the M31
systems. The shallower data we present here broaden this
conclusion to include most of the M31 dwarf galaxies. Despite
the difficulties of reliably modeling the HB region, Makarova
et al. (2017) inferred from the same HST data we present here
that And XVIII hosts intermediate (2–8 Gyr) and old
(12–14 Gyr) stars, further bolstering our qualitative assessment.

Evidence for systematically red HBs becomes less clear for
galaxies fainter than MV∼−8. Figure 4 shows η values that
range from ∼0.05 to 0.45 for these fainter systems. This trend
persists in excess of shot noise, suggesting that it is a physical
effect. Taking η as a coarse proxy for age, one interpretation of
Figure 4 is that the faint M31 satellites exhibit a wide range of
SFHs. Those with larger values of η have predominantly
ancient SFHs, while those with lower values have more
extended SFHs and intermediate-age stellar populations older
than 3–5 Gyr.

This is in contrast to MW satellites at similar luminosities
(e.g., Hercules, Boötes I, Ursa Major I), all of which have
purely ancient, metal-poor populations as indicated both by
wide-field Subaru photometry (Okamoto et al. 2012) and by
SFHs measured from analysis of HST-based CMDs that extend
below the oldest main-sequence turnoff (e.g., Brown et al.
2014). Affirmed by these MW satellites, the current picture of
quenching in the lowest-mass galaxies is that the ultra-violet
background associated with reionization truncated their star
formation following the end of the reionization era (e.g.,
Bullock et al. 2000; Ricotti & Gnedin 2005; Bovill &
Ricotti 2009; Tumlinson 2010).
However, our suggestion of extended star formation and

chemical evolution in some M31 satellites that should have
quenched by z∼6, via the scenario above, suggests a more
complex picture. For example, the effects of reionization on
low-mass galaxies may be more subtle than the abrupt
quenching of star formation. A number of recent simulations
suggest that reionization may more effectively prevent the
accretion of fresh gas onto a low-mass halo, rather than photo-
evaporate its existing gas supply, thus allowing low-level star
formation to continue beyond the end of reionization (e.g.,
Oñorbe et al. 2015; Fitts et al. 2017). Another possibility is that
reionization may be non-uniform either owing to the statistical
variations in some global background (e.g., patchy reioniza-
tion) or due to the fact that different local sources (e.g., M31
versus the MW versus Virgo) were responsible for reionization
(e.g., Busha et al. 2010; Lunnan et al. 2012; Ocvirk et al. 2013,
2016). Such differences could be imprinted on the stellar
populations of the faintest satellites. Finally, it could be that
many of the M31 satellites with extended SFHs were hosted by
more massive dark matter halos in the early universe than MW
systems of the same luminosity. A larger halo mass in the early
universe, would reduce the quenching effects of reionization on
a given low-mass galaxy.
It is also possible that reionization is not the only mechanism

that shapes the early evolution of very faint galaxies. For
example, galaxy mergers or the re-accretion of gas at later
times could lead to more complex stellar populations in faint
systems (e.g., Deason et al. 2014). In addition, the environ-
mental influence of the MW and M31 on low-mass galaxies
cannot be discounted. At present, there is little observational
handle on the locations of MW or M31 satellites in the early
universe relative to their present-day hosts (e.g., Watkins
et al. 2013). Thus, although the Local Group was quite large at
early times (∼350Mpc3 at z∼7 versus ∼7Mpc3 at z=0;
Boylan-Kolchin et al. 2016), it is possible that present-day
satellites were close enough to the proto-MW or proto-M31 to
be affected by their tides or ram pressure from their hot
circumgalactic media. The influence of these processes could
have altered the evolutionary trajectory of any low-mass
galaxy.
While these conclusions are intriguing, they remain

qualitative and speculative, and it would be very beneficial to
solidify them with detailed and accurate SFHs of the 20 M31
dwarf galaxies presented here. This is one of our goals with this
data set but, unfortunately, the limited depth of the data, which
was driven by the necessity to keep this program competitive in
terms of exposure time, will restrict the derived SFHs to only
the last 5–8 Gyr and will not reach the ancient epochs that can
only be probed by the oldest MSTO. The mounting evidence
that the MW and the M31 dwarf galaxies differ significantly
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should, however, encourage the community to enable an
ISLAndS-like treatment of a large fraction (if not all) of the
M31 dwarf galaxies. Variations in the evolutionary histories of
M31 and MW satellites extend far beyond the history of two
Local Group sub-systems. Indeed, these faint galaxies play
important roles from calibrating physics in detailed simulations
to testing ΛCDM models of galaxy formation (e.g., Wetzel
et al. 2016) to constraining the shape of the faint end of the
high-redshift galaxy luminosity function (e.g., Boylan-Kolchin
et al. 2015; Weisz & Boylan-Kolchin 2017). However, most of
our detailed understanding of dwarf galaxies currently stems
from a small number of systems around the MW and one
should be wary of mistaking the details of a specific system, on
a specific orbit, around a specific host, for the global properties
of dwarf galaxies in a group environment.

Based on observations made with the NASA/ESA Hubble
Space Telescope, obtained (from the Data Archive) at the
Space Telescope Science Institute, which is operated by the
Association of Universities for Research in Astronomy, Inc.,
under NASA contract NAS 5-26555. These observations are
associated with program HST-GO-11084, HST-SNAP-13442,
and HST-GO-13699. Support for this work was provided by
NASA through grant GO-13699 from the Space Telescope
Science Institute, which is operated by AURA, Inc., under
NASA contract NAS5-26555.
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