
 A Role-Based Delegation Framework for Healthcare
Information Systems

Longhua Zhang
College of Information

Technology,
UNC Charlotte

Charlotte, NC 28223, USA

lozhang@uncc.edu

Gail-Joon Ahn
 Laboratory of Information Integration,

Security and Privacy (LIISP)
Dept. of Software & Information Systems,

UNC Charlotte
Charlotte, NC 28223, USA

gahn@uncc.edu

Bei-Tseng Chu
Laboratory of Information Integration,

Security and Privacy (LIISP)
Dept. of Software & Information

Systems, UNC Charlotte
Charlotte, NC 28223, USA

billchu@uncc.edu

ABSTRACT
As organizations implement information strategies that call for
sharing access to resources in the networked environment,
mechanisms must be provided to protect the resources from
adversaries. The proposed delegation framework addresses the
issue of how to advocate selective information sharing in role-
based systems while minimizing the risks of unauthorized
access. We introduce a systematic approach to specify
delegation and revocation policies using a set of rules. We
demonstrate the feasibility of our framework through policy
specification, enforcement, and a proof-of-concept
implementation on specific domains, e.g. the healthcare
environment. We believe that our work can be applied to
organizations that rely heavily on collaborative tasks.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Management, Security

Keywords
Role, Access Control, Delegation, Revocation, Healthcare
Information System.

1. INTRODUCTION
 The healthcare industry is as competitive and multifaceted as
any industry in the world today. The healthcare information
system provides many advantages when used for improved
access, collaboration and data sharing among healthcare
providers, patients, and researchers. Yet considering the highly
personal and potentially destructive nature of the medical data, it

comes with significant risks to the confidentiality, integrity, and
availability of such information. Currently, most healthcare
information systems have supported minimal security features:
data transmission may be encrypted; passwords, public and
private keys are used to provide protection from adversaries.
The problem that remains, and addressed here, is how to enable
selective information sharing without the risk of exposing
additional information that needs to be protected.

 In [1], Wiederhold et al. proposed a centralized solution to
assign a security officer the responsibility to manage sharing of
sensitive information. They formalized the role of a security
officer who has responsibility to assure that no appropriate
information can leave an enterprise domain. But under the
healthcare environment, the information sharing tends to be very
dynamic and often ad hoc. Hence, this centralized management
approach is not appropriate to the healthcare domain because the
workload on such an officer (or a small group of security
officers) will be overwhelming. Since the very goal of our
research is to enable users to access and selectively share
resources in distributed systems, we assume that users can be
trusted to exercise their discretions on resources. If Alice
explicitly shares a resource with Bob, she trusts Bob to use the
resource. We also consider enhancing the scalability of
information sharing. One promising approach is through
delegation [3].

 In today’s distributed systems, all the resources required to
carry out an operation are rarely local to the system to which the
user is logged in. Delegation is more often the rule than the
exception. There are many definitions and different types of
delegation in the literature [2, 3]. In general, delegation is
referred to as one active entity in a system delegates its authority
to another entity to carry out some functions on behalf of the
former. Through delegation, individual user is trusted and
empowered to share resources to which they have access.

 In this paper, we introduce a role-based delegation framework
for information sharing in healthcare information systems. Our
framework adapts a role-based delegation model called
RDM2000 proposed by Zhang, et al [3]. Based on that, we
develop system architecture to apply RDM2000 to the
healthcare information systems. We demonstrate the feasibility
of our approach through a proof-of-concept prototype
implementation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SACMAT’02, June 3-4, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-496-7/02/0006…$5.00.

125

 The rest of this paper is organized as follows. Section 2
describes background and related works. Section 3 presents the
delegation framework for the healthcare setting. In section 4, we
describe the architecture and implementation of the proposed
framework. Section 5 concludes this paper and outlines our
future work.

2. BACKGROUND AND RELATED
WORK

 Delegation requirements arise when a user may need to act on
another user's behalf for accessing resources. There are many
definitions of delegation in the literature. In general, it is
referred to as the process whereby one active entity in a system
authorizes another entity to act on behalf of the former by
transferring a set of rights [2, 3]. We first address some
examples in the healthcare setting to clarify the problem, and
then give an overview of related work.

2.1 Background
 In a healthcare organization, a wide variety of information on
its patients is needed to provide effective medical services. The
main purpose of healthcare information systems is to provide a
fully integrated electronic patient record. Briefly, it includes
traditional clerical information about appointments and
admissions; results from specialties such as pathology,
radiology, and endoscopy; drug treatment; procedures; and
problem lists. In addition, it generates and stores plans for
nursing care, clinical correspondence, and dictated note from
ward rounds.

 During a simple healthcare episode, many professionals
involve in a number of medical acts. Healthcare administration
personnel, healthcare professionals, social care professionals, as
well as patients need to selectively interact with the healthcare
information. The specific level of access and permissions a user
can have to the healthcare information will be determined by his
responsibilities in the organization. In order to achieve this,
users are identified to the system as having one or more roles,
such as ward base nurse, specialist nurse, junior doctor, ward
clerk, clinical consultant, neurologist, gynecologist, radiologist,
etc. Only a specialist doctor may be allowed to see a section of
the records of his patient that pertain to the results of very
sensitive medical test. However, in some situations, a specialist
doctor may need to share information with other specialists
within or across organizational boundaries. Consider the case of
a virtual hospital that consists of several highly collaborative
healthcare organizations connected by high-speed network, as
shown in figure 1. In this example, Jennifer is under the care of
a Neurologist, Dr. Chen. Suppose Jennifer becomes pregnant
and becomes a patient of Dr. Jain, a Gynecologist. Dr. Chen and
Dr. Jain must collaborate very closely to share information
during Jennifer‘s pregnancy. Dr. Chen may further consult Dr.
White in a specialist clinic to prescribe a drug for Jennifer. Thus
Dr. White needs access to Jennifer’s records too.

 Another example we use to motivate our discussions is a
hospital’s policy to enable access to anonymous medical data for
research purposes. Medical research promotes human
knowledge to improve the quality of healthcare; therefore, it
should be encouraged, stimulated, and promoted as strongly as
possible. However, preservation of confidentiality and respect

for patient's rights should take precedence over any scientific
purpose. For example, anonymous medical data removes names
and social security numbers from patients’ records. But
removing names and social security numbers doesn’t ensure
privacy and confidentiality of medical information. Most of the
US population can be uniquely identified by combination of
birth date, sex, and ZIP code. Thus, a hospital may limit the
access to anonymous medical data only to authorized people,
e.g. only cardiologists are allowed to access cardiac medical
records.

 We observe the following commonalities between two
examples above. First, selective information sharing is
necessary. We are dealing with friends, not enemies, and should
provide relevant information expeditiously. Second, the
information may be shared across organizational boundaries.
Medical records may be exchanged between collaborative
hospitals for shared patient; researchers may reside in different
healthcare organizations. Because sharing a resource across
organizational boundaries often means authorizing a server to
give access to a third party, it implies enabling resource servers
to reason about previously unknown third parties. This
requirement contrasts with many conventional systems, wherein
a server need only reason about the set of users known inside a
given organization. Third, it is impossible to fully predicate
what data should be shared, when and to whom. And another
thing is that a mechanism must be provided for revoking the
sharing when it is no longer needed. All these factors have to be
considered in order to formulate the mechanism for information
sharing in healthcare organizations.

2.2 Related Work
 Historically, the access control problem has been couched
based on subjects and objects [5]. The subjects may be users or
processes acting on behalf of users. The objects are data or

 Hospital A

Specialist
Clinic

Patient -
Jennifer

Healthcare
Information
System

Dr. Chen Dr. Jain

Dr. White

Figure 1. Information sharing in the healthcare
environment

Community

Relationship

Authorization

126

resources in the system. Permissions are a set of operations that
a subject can have with one or more objects in the system. Over
the last few decades, we have seen the evolution and
development of many access control models [4, 5]. As
organizations implement information strategies that call for
sharing access to resources in the networked environment,
access control concerns not only the protection of individual
objects and subjects, but also the management of access control
decisions in dynamic, highly distributed systems. Various
approaches have been proposed.

 Thomas et. Al formulated team-based access control (TMAC)
[18] and task-based access control (TBAC) [5] as active security
models. This approach models access control from a context-
oriented perspective than the traditional subject-object one.
TMAC and TBAC are aware of the context information
associated with an ongoing activity. Thus, they provide a natural
way to control access for collaborative activities in teams and
workflows. However, We argue that TBAC modes are specific
configurations of role-based access control, where context
information can be viewed as constraints.

 Role-based access control is an enabling technology for
managing and enforcing security in large-scale and enterprise-
wide systems. The basic notion of RBAC is that permissions are
associated with roles, users are assigned to appropriate roles,
and users acquire permissions by being members of roles. Users
can be easily reassigned from one role to another. Roles can be
granted new permissions. And permissions can be easily
revoked from roles as needed. This greatly simplifies security
management [4]. Constraints can apply to relations and
functions defined in an RBAC model to establish higher-level
organizational policy.

 Delegation is another important factor for secure distributed
computing environment [3]. In large role-based systems, the
number of roles may be in the hundreds or thousands, and users
in the tens or hundreds of thousands. In addition, today’s
dynamic and collaborative work environment may require users
assuming temporary roles. Management of user assignment is a
formidable task and could not realistically be centralized to a
small group of security officers. Decentralizing administration
of user assignment is critical in distributed role-based access
control. It is natural to decentralize the administration through
delegation to increase the scalability of role-based systems. The
basic idea behind a role-based delegation is that users
themselves may delegate role authorities to other users to carry
out some functions authorized to the former.

 Several papers have been published on security requirements
in healthcare environment [13, 14]. Projects have been
undertaken to explore the use of RBAC and identify sample
RBAC policies in healthcare information systems [12, 15]. It is
generally accepted that RBAC is more suited to healthcare than
other access control mechanisms to meet the requirements for
the security of healthcare information. Also, we need to consider
the delegation needs for efficient collaborative environment. The
purpose of this paper is to investigate how to enhance the
information sharing in healthcare information system through
role-based access control and delegation.

3. ROLE-BASED DELEGATION
FRAMEWORK
 The Role-Based delegation framework was initially
developed to provide a means of decentralizing user assignment
in large distributed role-based systems. The framework includes
a delegation model (RDM2000) [3] and a rule-based language
for specifying and enforcing delegation and revocation policies.
Since the delegation framework cannot exist without
implementation of RBAC, we first give a brief discussion of
applying RBAC to healthcare information systems. Throughout
the design of the framework, RBAC is used as a foundation. Our
framework builds upon prior works on RBAC models,
extending them to incorporate the delegation and revocation
notions.

3.1 RBAC in Healthcare Information System
 RBAC offers an elegant solution to the problem of managing
complex access control rule sets in distributed systems. The
basis of RBAC is the concept of roles, which is a group
mechanism used to categorize users based on various properties,
such as job title, job functions, or responsibilities. Permissions
are associated with roles, users are assigned to appropriate roles,
and users acquire permissions by being members of roles.

 Although RBAC is very useful for modeling access control in
a variety of applications, traditional RBAC is difficult to capture
security-relevant contexts that would have an impact on access
decisions. In a healthcare setting, the specific level of access and
permissions a user can have to the system will be determined not
only by his role in the organization, but also the relevant security
context, such as the patient, location, and time. Georgiadis et al.
[9] introduced environment roles to capture security-relevant
contexts in role-based system. Giuri et al [16] proposed the use
of role templates and parameterized permissions to address the
same problem. Our approach is similar to role templates. We
consider security context as a special kind of constraints in
RBAC. As we will address in the subsequent section, the idea is
to assign context constraints to users first, and then apply them
to role activations. The RBAC with context constraints is
illustrated as shown in figure 2.

3.1.1 Users
 X.509 certificates [10] are used to identify users in the
framework. The basic purpose of X.509 certificates is simply the
binding of users to keys. An X.509 certificate is digitally signed
by the issuer of the certificate (certificate authority) that has
confirmed the binding between the public-key and the holder of
the certificate. Roles are assigned to user’s public key in the

RH
PA

.

.

.

UA

U
Users

R
Roles

P
Permission

Session

Figure 2. RBAC with context constraints

Constraints
Contexts

127

certificate. During the login phase, a user presents his X.509
certificate and gets authenticated. After authentication, the roles
assigned to the public key are retrieved from database for the
user to activate. If the healthcare information needs to be
transmitted across organizational boundary, the X.509 certificate
is also used to establish a secure channel for encrypted data
transmission.

 There are two types of users in a healthcare information
system: one is internal users which consists mainly of treating
personnel as well as related clerks, e.g. bill clerks; the other is
external users such as researchers, consultants, and insurance
companies which reside across the organizational boundary. The
reason we distinguish between these users is for administration
purpose, since a healthcare organization may have more strict
management policies for external users.

3.1.2 Role and Role Hierarchies
 One crucial construct provided by RBAC is the role and role
hierarchy. The role hierarchy is a natural means for structuring
roles to reflect an organization’s lines of authority and
responsibility. It is organized in partial order ≥, so that if x ≥ y
then role x inherits the permissions of y. A member of x is also
implicitly a member of y. in such case, x is said to be senior to y
[4]. Role hierarchies allow a security officer to specify generic
access rules just once, rather than for every role to which the
rules apply. A role hierarchy example in a hospital is shown in
figure 3.

3.1.3 Permissions
 In healthcare information systems, patients’ medical
information is saved as records in database. Objects of access
control in the system are views. Views in relational databases
have been considered as an ideal approach for access control of
objects, because they have a higher degree of logical abstraction
than physical data to enable context-based or content-based
security. Thus a permission defined in RBAC represents an
access method to one or more views, e.g. select, insert, update,
and delete.

3.1.4 Context Constraints
 The access control in a healthcare setting involves a variety of
security related contexts [9]. We consider the following context
variables in the proposed framework: patient and location.

• Patient: the specific patient a healthcare employee is in
care of.

• Location: the specific address where the access request
is originated.

 We use the function patient(u) to return all the patients u is in
care of; and location(u) to return current location of u.

 Context constraints are assigned to users and anchored to
roles. And these context constraints are applied to role activation
and permission check. For example, it might be a hospital’s
security policy that a doctor can activate his role of ERP
(Emergency Room Physician) to the information system only
when he is in the emergency room. The context constraints are
inherited according to role hierarchies.

3.1.5 Role Activation with Contexts
 Role-based systems usually treat roles as static attributes or at
least attributes that change infrequently. That is, we might not
allow the following scenario: A hospital employee work as a
doctor in the morning, as a billing clerk in the afternoon, and
then as a doctor again the next day. As a result, roles are usually
defined with a fixed set of permissions. Unfortunately, in a
healthcare setting, permissions assigned to a role are not always
static. Sometimes the permissions assigned to a role should be
given depend on what the member of the role is currently doing,
or the security-related contexts. For example, suppose a
hospital’s privacy policy grants access to sensitive patient
information only to the patient’s Primary Care Physician (PCP).
What permissions should be assigned to the role of PCP? It is
inappropriate to grant the permission to all patients’ records to
PCP. A doctor should be granted the permissions assigned to the
PCP of a patient only when the patient has designated him as the
PCP. We define this kind of permission role assignment as a
dynamic permission assignment, where a set of permissions is
assigned to a role at run-time. This dynamic permission
assignment is achieved by applying anchored context constraints
during the role activation process in a session.

 Traditional RBAC permission activation has three steps. At
first, a user presents suitable credentials to complete the
identification and authentication procedure; then the user has to
select a subset of roles from the assigned role set for activating
in current session; finally, a particular set of permissions
assigned to the subset of roles is granted to the user. In order to
apply context constraints, we change the traditional permission
activation process as follows. After successful authentication,
the user selects a subset of roles for activating in current session.
The anchored context constraints from the user are retrieved and
applied at role activation; after successful role activation, the
anchored context constraints further are applied to permissions
of the activated roles; finally a particular set of permissions is
granted to the user.

Figure 3. A role hierarchy example in a hospital

PCP NEURO GYNECO

CONSULT

RADIO CARDIO

DOC JUNIDOC

EMP

128

3.2 RDM2000 Model
 RDM2000 [3] is an extension of RBAC96 [4]. The scope of
RDM2000 is to address user-to-user delegation supporting role
hierarchies and multi-step delegation in role-based systems. A
new relation called delegation relation (DLGT) is defined. It
includes sets of three elements: original user assignments UAO,
delegated user assignment UAD, and constraints. The motivation
behind this relation is to address the relationships among
different components involved in a delegation. There are four
components defined in a delegation relation: a delegating user, a
delegating role, a delegated user, and a delegated role. A
delegation relation is one-to-many relationship on user
assignments. It consists of original user delegation (ODLGT)
and delegated user delegation (DDLGT). Two types of
delegation are introduced: single-step delegation and multi-step
delegation. Single-step delegation does not allow the delegated
role to be further delegated; Multi-step delegation allows
multiple delegations until it reaches the maximum delegation
depth. The maximum delegation depth is a natural number
defined to impose restriction on the delegation. Single-step
delegation is a special case of multi-step delegation with zero
maximum delegation depth. A delegation path is an ordered list
of user assignment relations generated through multi-step
delegation. A delegation path always starts from an original user
assignment. Delegation paths starting with the same original
user assignment can further construct a delegation tree. A
delegation tree expresses the delegation path in a hierarchical
structure. Each node in the tree refers to a user assignment and
each edge to a delegation relation. The RDM2000 components
are depicted in figure 4. Different revocation semantics are also
addressed in RDM2000.

 Constraints are an important aspect of RBAC96 and
RDM2000 and can lay out higher-level organizational policies.
In theory, the effects of constraints can be achieved by
establishing procedures and sedulous actions of security
administrators [6]. In RDM2000, the constraints are enforced by
a set of integrity rules that provide management and regulators
with the confidence that critical security policies are uniformly
and consistently enforced. In the framework, when a user
delegates a role, all context constraints that are assigned to the
user and anchored to the delegated role are delegated as well.

3.3 Rule-Based Policy Specification Language
 RDM2000 defines policies that allow regular users to delegate
their roles. It also specifies the policies regarding which
delegated roles can be revoked. A rule-based language [3] is
adopted to specify and enforce these policies. It is a declarative
language in which binds logic with rules. The advantage is that
it is entirely declarative so it is easier for security administrator
to define policies.

A rule takes the form:
H← F1&F2&…&Fn

where H, F1, F2, …, Fn are Boolean functions.

 There are three sets of rules in the framework: basic
authorization rules specify organizational delegation and
revocation policies; authorization derivation rules enforce these
policies in the healthcare information system; and integrity rules
specify and enforce role-based constraints.

 For example, a user-user delegation authorization rule
forms as follows:

can_delegate(r, cr, n) ← .
where r, cr, and n are elements of roles, prerequisite
conditions, and maximum delegation depths respectively.

 This is the basic user-to-user delegation authorization rule. It
means that a member of the role r (or a member of any role that
is senior to r) can assign a user whose current membership
satisfies prerequisite condition cr to role r (or a role that is junior
to r) without exceeding the maximum delegation depth n.
 A user delegation request is further authorized by the user-
user delegation authorization derivation rule that takes the
form:

der_can_delegate(u, r, u’, r’, dlg_opt) ←
can_delegate(r”, cr, n)&
active(u, r, s)&
delegatable(u, r)&
senior(r, r”)&
in(u’, cr)&
junior(r’, r”)&
in(depth(u, r), n).

where u and u’ are elements of users; r, r’, and r” are
elements of roles; cr and s are elements of prerequisite
condition and sessions respectively; dlg_opt is a Boolean
term, if it is true, then further delegation is allowed. This
argument is used as Boolean control of delegation
propagation.

 This rule means that a user u with a membership of a role r
senior to r” activated in session s can delegate a user u’ whose
current role membership satisfies prerequisite condition cr to
role r’ (r’ is junior to role r”) without exceeding the maximum
delegation depth n.

 Similar rules [3] are defined for role-based revocations and
are applied to specify constraints.

4. SYSTEM ARCHITECTURE AND
IMPLEMENTATION

4.1 The Architecture
 The notions described in RDM2000 and the rule-based policy
specification language are designed to be utilized within an
administrative-directed delegation management architecture [3].
An overview of the architecture is shown in figure 5. It consists
of a number of services and management agents together with
the objects to be managed. The enforcement agents are based on
a combination of roles and rules for specifying and interpreting
policies [8]. Since delegation and revocation services are only

Figure 4. RDM2000

DDLGT

DLGT

UAO

UAD

Constraints ODLGT

129

part of a security infrastructure, we choose a modular approach
to our architecture that allows the delegation and revocation
services to work with current and future authentication and
access control services. The modularity enables future
enhancements of our approach. This section briefly discusses the
functionality of these main building blocks.

4.1.1 Role Service
 The role service is provided by a role server, which is an
implementation of the RBAC96 and RDM2000 components. A
role server maintains RBAC database and provides user
credentials, role memberships, associated permissions, and
delegation relations of the system. These elements are created
and maintained using a set of graphical administration tools.
These tools can also be used to maintain the integrity of
database elements by checking and enforcing integrity rules [3,
7]. In this paper, we provide administration tools for managing
RDM2000 elements. The administration tools for RBAC
components are beyond the scope of this paper because we can
simply adopt an existing tool for that purpose such as [6, 7].

4.1.2 Rule Service
 The rule service is provided by a rule server, which is used to
manage delegation and revocation rules. A delegation or a
revocation rule is always associated with a role, which specifies
the role that can be delegated. Delegation rules are not meant to
be used for the user role assignment by security officers. Also,
the delegation and revocation rules do not control the actual
delegation and revocation of role memberships. They are
implemented as authorization policies that authorize requests
from users. Rule management will be explained in more detail in
section 4.2.

4.1.3 Delegation Agent
 The delegation agent is an administrative infrastructure,
which authorizes delegation and revocation requests from users
by applying derivation authorization rules and processes
delegation and revocation transactions on behalf of users. A

delegation agent registers to both the rule service and the role
service. It has a rule engine to optimize rule search, interpret
rules and authorize user requests. The result of an authorized
delegation or revocation is sent and saved to the RBAC
database.

4.1.4 Authentication and Access Control
 The implementation requirements related to the delegation
framework are not only a delegation agent, but also
authentication and access control agents. The authentication
agent is used to authenticate users during their initial sign-on
and supply them with an initial set of credentials. Authentication
agents are registered with the role service. The reference
monitor makes access control decisions based on information
supplied by the access control agent.

4.2 Rule Management
 Rules define the authorization policies for delegation and
revocation. Rules are associated with roles, as shown in figure 6.
In large role-based systems, the number of roles may be in the
hundreds or thousands, the management of associated rules is a
tremendous task. It is necessary to decentralize the management
activities among multiple security officers and provide tools to
automate the administration tasks.

4.2.1 Rule Life-Cycle
 During its lifetime a rule undergoes various changes of status.
During the creation phase, it acquires its dormant status. It keeps
this status, undergoing editing by a security officer until it is
enabled or disabled. An enabled rule can be disabled and vice
versa. The disable status is used for the purpose of preserve a
rule without enacting it. Also a rule can be deleted. A deleted
rule does not actually exist anymore. The rule editor provides a
convenient means to change the status of a rule.

4.2.2 Rule Editor
 In large role-based system, there may be tens or hundreds of
delegation and revocation rules. The rule editor is developed to

Delegation
Agent

Reference
Monitor

User Objects

Rule
Editor

Access

Access
Control
Agent

Role Service

Authentication
Agent

Security
Officer

Server

Invoke
Operation

Response or
Reject

Figure 5. Overview of access control and delegation architecture

Request

System Data Flow User Data Flow

Rule
 Service

130

simplify the management of these rules. As a portion of an
integrated RBAC administration platform developed to manage
various RBAC and RDM2000 components, the rule editor is
used to view, create, edit, and delete delegation and revocation
rules, as shown in figure 7. The rule editor consists of two
panes: the hierarchy pane is used to view the role hierarchies
and associated rules in the system displaying parent-child
relationships. The rule pane is used to examine and edit the
attributes of a rule, including the status of the rule. Note that
after selecting a rule to edit, the security officer can switch the
left pane from tree-based view to graph-based role hierarchy
view and define prerequisite condition.

4.3 Delegation and Revocation Walkthrough
 In this section, we use the example requirements specified in
section 2.1 to illustrate the delegation and revocation scenarios
in the healthcare setting. We describe the message exchanged in
each scenario.

 The role hierarchy example shown in figure 3 is used as the
role hierarchy in hospital A. Suppose the security officer in the
hospital has defined the following delegation and revocation
authorization rules:

Rule 1: can_delegate(NEURO, DOC, 1) ← .
Rule 2: can_revokeGD(NEURO) ← .
Rule 3: can_delegate(PCP, TRUSTED_VEMP, 1) ← .
Rule 4: can_revokeGI(NEURO) ← .
Rule 5: can_revokeGD(PCP) ← .

 The first rule says a member of the role NEURO can delegate
role NEURO (or a role that is junior to NEURO) to a user who
is a member of DOC without exceeding the maximum
delegation depth of one. The second rule says the delegated role
NEURO can be grant-dependently revoked. The third rule says a
member of the role PCP can delegate role PCP (or a role that is
junior to PCP) to a user who is a member of TRUSTED_VEMP
(trusted virtual employee) without exceeding the maximum
delegation depth of one. Note that the role TRUSTED_VEMP
indicates the employee status from a trusted organization. In the
virtual hospital example, we assume a user is a member of role
TRUSTED_VEMP if the user’s X.509 certificate is signed by a
trusted organization. For example, if Dr. White’s X.509
certificate is signed by the Specialist Clinic and the Specialist
Clinic is trusted by hospital A, then Dr. White assumes role
TRUSTED_VEMP in Hospital A. It is obvious that a member of
EMP in hospital A must be a member of TRUSTED_VEMP
since an organization always trusts itself. The last two rules
authorize revocations.

Rule
Editor Role

Delegation
Rule

Revocation
Rule

Mapping

Mapping

Authorization
Policy

Connection

Security
Officer

Figure 6. Rule Management

000000

00000000
000000
00000000
0000000

Figure 7. Rule editor

131

Role
Service delegate_req (KChen, NEURO,

 KJain, NEURO,
 FALSE)

Reference
Monitor

Access Control
Agent

Delegation
Agent

Dr. Chen

Access Control Agent
authorizes Dr. Chen’s role
activation
active(KChen, NEURO)

Dr. Chen’s
credentials and
related info

active(KChen, NEURO)=true

delegate(grantor_role=NEURO,
 grantee=KJain,
 granted_role= NEURO,
 opt=FALSE)

Rule
Service

der_can_delegate(KChen, NEURO,
 KJain, NEURO,
 FALSE)

assign_role(KJain, NEURO)
delegation authorized

response

Figure 8. The sequence diagram for a delegation scenario

 can_delegate
 (NEURO, DOC, 1)

Figure 9: Delegation and revocation user interfaces in a healthcare information system

132

4.3.1 Delegation Within Organization
 We first show an example delegation scenario in which Dr.
Chen, as a Neurologist, is authorized to delegate his role
authority NEURO to Dr. Jain, based on the delegation
authorization rule 1 and the delegation authorization derivation
rule described earlier. Dr. Chen initiates the delegation scenario
by sending a request to the Reference Monitor to delegate the
role NEURO to Dr. Jain. The Reference Monitor decomposes
the delegation request into a role-based delegation. The
delegation agent takes the information from the Reference
Monitor and evaluates the delegation request through applying

the delegation authorization derivation rule. In this case, it
checks Dr. Chen’s current activating role NEURO using the
active function call and enforce the delegation authorization
derivation rule logic. After successful authorization, Dr. Jain is
assigned to role NEURO.

 The sequence of message exchanged and the graphic user
interface for role-based delegation are shown in figure 8 and 9
respectively. We have integrated our delegation framework
with the existing healthcare information system. When user
clicks the delegation property page, all previous delegations and
their information requested by the user are displayed. User can
initiate a new delegation using the request form. Also user can
revoke an existing delegation.

 The delegation from Dr. Jain to Dr. Chen with the role
GYNECO is a dual of the above scenario.

4.3.2 Discussion of Delegation Across
Organizations
 While our initial framework was designed to depict the
structure of delegation in a single organization, the framework
can be extended to support delegation across organizations.
There are two major points concerning the cross-organization
delegation: how to establish a trust between an external party
and the information system? And how to define a policy to
authorize the action? Managing trust between collaborative
organizations using RBAC has been explored by [17]. To fully
address these issues is beyond the scope of this paper. It is our
future work to explore the concepts and architecture for cross-
organization authorization through role-based delegation. In this
section we briefly discuss our current approaches.

 Currently, we use X.509 certificates to establish the trust. A
user is trusted if the certificates is signed by a trusted certificate
authority. The specific access privileges a user assumes in the
healthcare information systems are determined by role
memberships associated with his/her public key. The entitlement
between roles and public key has been maintained by a role
server. A rule can be defined to specify the authorization of a
cross-organization delegation or revocation. But few restrictions
can be imposed on such a rule at this moment. The system may
not know the role memberships of a user in another
organization; even if it knows, the information may not mean
anything to the system. Although a mapping function can be
provided for role mapping between two trusted organizations,
we trust users to exercise discretion in a cross-organization
delegation. In the virtual hospital example, Dr. Chen, as a PCP
of patient Jennifer, is authorized to delegate the role authority
CONSULT (which is junior to role PCP) to a trusted external

user by his discretion, in this case, to Dr. White in a specialist
clinic, based on the delegation authorization rule 3. The same
principle can be applied to the delegation between medical
researchers.

4.3.3 Revocation
 Several schemes are identified for revocation of role-based
delegation in [3]. The revocation scenarios might be quite
complicated in certain cases. We only consider a simple
revocation scenario in this paper. In the virtual hospital example,
after Jennifer has successfully delivered her child, Dr. Chen
should no longer share specific neurological information about
Jennifer with Dr. Jain. Thus Dr. Jain should be revoked from
role NEURO. The interactions and sequence of message
exchanged in the revocation scenario is similar to the delegation
scenario illustrated in figure 8. The revocation request form is
same as a delegation form as shown in figure 9.

4.4 Delegation and Revocation Audit
 The benefits of sharing medical information at some points
will come into conflict with patient privacy. Access controls
alone are not enough. Although we assume that users can be
trusted to exercise discretion in how they use resources, we
cannot simply neglect the possibilities of security breaches.
Healthcare information systems themselves have severe audit
requirements. This is for both safety and medico-legal reasons.
For example, access to medical records should be logged with
the user’s name, as well as date and time; all delegation and
revocation actions should be marked on the audit trail. A
security officer can review these access records and audit trails
periodically, so that breaches can be traced and detected.

5. CONCLUSION AND FUTURE
WORK

 Sharing of information resources is a key factor to substantial
improvements in productivity and quality of services. In this
paper we have implemented a role-based delegation framework
to manage information sharing in the healthcare information
system. The central idea is to use delegations as a means to
propagate access to protected resources by trusted users. We
presented the architecture and described our implementation for
the delegation framework. A key feature to enhance the
administrative operations of the framework is a rule editor
which allows us to manage delegation and revocation rules.

 In the current implementation, we focused on a healthcare
setting requirements for the delegation framework. We believe
our approach can be utilized to support any collaborative
environments. It is our future work to extend our framework to
support information sharing in other environments, such as
academic research institutes, government and commercial
organizations. In addition, we are now experimenting with
representing rules with XML based languages and investigate
signed XML statements [11] instead of X.509 certificates to
bind both user identity and role attributes. We would also study
how we can distribute and manage rules across organizational
boundaries to improve the efficiency of administration and to
fully enable delegation and revocation procedures.

133

Reference

[1] G. Wiederhold, M. Bilello, V. Sarathy, and X. Qian:
"Protecting Collaboration"; Proceedings of the
NISSC'96 National Information Systems Security
Conference, pages 561-569. Oct. 1996.

[2] M. Gasser, E. McDermott. An Architecture for
Practical Delegation a Distributed System. 1990 IEEE
Computer Society Symposium on Research in Security
and Privacy. Oakland, CA, May 7-9,1990

[3] L. Zhang, G. Ahn, and B. Chu. A Rule-Based
Framework for Role-Based Delegation. Proceedings of
ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 153–162. Chantilly,
VA, May 3-4, 2001

[4] R. Sandhu, E. Coyne, H. Feinstein and C. Youman.
Role-based access control model. IEEE Computer,
29(2), Feb. 1996.

[5] R. K. Thomas, R. S. Sandhu. Task-based Authorization
Control (TBAC): A Family of Models for Active and
Enterprise-oriented authorization Management. In
proceedings of the IFIP WG11.3 Workshop on
Database Security, Aug. 1997

[6] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A role-
based access control model and reference
implementation within a corporate intranet. ACM
Transactions on Information and System Security,
2(1):34-64, Feb 1999.

[7] S. I. Gavrila, J. F. Barkley. Formal specification for
role based access control user/role and role/role
relationship management. Proceedings of the third
ACM workshop on Role-based access control, pages
81-90, Fairfax, VA, Oct. 22-23, 1998

[8] R. T. Simon and M. E. Zurko. Separation of duty in
role-based environments. Proc. Foundations of
Compute Security Workshop, July 1997

[9] C. K. Georgiadis, I. Mavridis, G. Panglos, and R. K.
Thomas. Flexible team-based access control using
contexts. Proceedings of ACM Symposium on Access
Control Models and Technologies, pages 21–27.
Chantilly, VA, May 3-4, 2001

[10] ITU-T Recommendation X.509. Information
technology - Open systems Interconnection - The
Directory: Authentication Framework, 1997.

[11] XML-Signature Syntax and Processing, W3C
Candidate Recommendation 31-October-2000,
http://www.w3.org/TR/xmldsig-core/

[12] G. Potamias, M. Tsiknakis, D. Katehakis, E. Karabela,
V. Moustakis, and S. Orphanoudakis. Role-Based
Access to Patients Clinical Data: The InterCare
Approach in the Region of Crete. Proceedings of MIE
2000 and GMDS 2000, IOS Press, pages 1074-1079,
Hannover, Germany, August 27- September 1, 2000.

[13] R. Anderson. A Security Policy Model for Clinical
Information Systems. IEEE Symposium on Security
and Privacy, pages 30-45. May 6-8, 1996

[14] J. J. Longstaff, M. A. Lockyer, and M. G. Thick. A
model of accountability, confidentiality and override
for healthcare and other applications. Proceedings of
the 5th ACM workshop on Role-Based Access Control,
pages 71-76, Berlin, Germany. July 26-27, 2000

[15] J. Poole, J. Barkley, K. Brady, A. Cincotta, and W.
Salamon. Distributed Communication Methods and
Role-Based Access Control for Use in Health Care
Applications. http://hissa.ncsl.nist.gov/rbac/

[16] L. Giuri and P. Iglio. Role templates for content-based
access control. In 2nd ACM Workshop on Role-Based
Access Control, pages 153-159, Fairfax, Virginia,
November 1997.

[17] T. Hildmann, J. Barholdt. Managing trust between
collaborating companies using outsourced role based
access control. Proceedings of the 4th ACM workshop
on Role-Based Access Control, pages 105-111.
October 28-29, 1999, Fairfax, Virginia, US

[18] Thomas KR. Team-Based Access Control (TMAC): A
Primitive for Applying Role-Based Access Controls in
Collaborative Environments. Proceedings of the 2nd
ACM workshop on Role-based access control. Fairfax,
VA USA; 1997

134

