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    Introduction 

 Nanog is a divergent homeodomain transcription factor that 

functions to maintain self-renewal of embryonic stem cells 

(ESCs;  Chambers et al., 2003 ;  Mitsui et al., 2003 ). Nanog ex-

pression is largely confi ned to the inner cell mass of human 

blastocysts ( Hyslop et al., 2005 ) and is high in undifferentiated 

ESCs and embryonic carcinoma cells but down-regulated dur-

ing ESC differentiation ( Chambers et al., 2003 ;  Armstrong 

et al., 2006 ). This has been attributed to the sequential methyl-

ation of CpG residues in the promoter region of  NANOG  ( Deb-

Rinker et al., 2005 ) as well as suppression by p53 and Tcf3, 

both of which were shown to bind to the  Nanog  promoter region 

( Lin et al., 2005 ;  Pereira et al., 2006 ). 

 Overexpression of Nanog in mouse ESCs confers pluripo-

tency independently of the leukemia inhibitory factor – STAT3 

pathway ( Chambers et al., 2003 ;  Mitsui et al., 2003 ), whereas 

its down-regulation in mouse and human ESCs (hESCs) results 

in loss of pluripotency, reduction in cell growth, and differentia-

tion toward extraembryonic lineages ( Chambers et al., 2003 ; 

 Mitsui et al., 2003 ;  Hyslop et al., 2005 ;  Zaehres et al., 2005 ). 

Elevated expression of Nanog has also been reported to result in 

clonal expansion of murine ESCs, the maintenance of Oct4 ex-

pression, and resistance to differentiation induced in monolay-

ers ( Chambers et al., 2003 ). 

 Large-scale studies have suggested that Nanog acts as a 

component of multiple protein complexes that are individually 

required for controlling the survival and differentiation of the 

inner cell mass in the embryo; some of the protein complexes 

are also putative Nanog and Oct4 targets as well as being their 

effectors in the pluripotency network ( Boyer et al., 2005 ;  Wang 

et al., 2006 ). Not surprisingly, transfection of  OCT4 ,  SOX2 , 

 NANOG , and  LIN28  in human fi broblasts induces pluripotency, 

I
n this study, we show that NANOG, a master tran-
scription factor, regulates S-phase entry in human em-
bryonic stem cells (hESCs) via transcriptional regulation 

of cell cycle regulatory components. Chromatin immuno-
precipitation combined with reporter-based transfection 
assays show that the C-terminal region of NANOG binds 
to the regulatory regions of  CDK6  and  CDC25A  genes 
under normal physiological conditions. Decreased CDK6 
and CDC25A expression in hESCs suggest that both 

CDK6 and CDC25A are involved in S-phase regulation. 
The effects of NANOG overexpression on S-phase regu-
lation are mitigated by the down-regulation of CDK6 or 
CDC25A alone. Overexpression of CDK6 or CDC25A 
alone can rescue the impact of NANOG down-regulation 
on S-phase entry, suggesting that CDK6 and CDC25A 
are downstream cell cycle effectors of NANOG during 
the G1 to S transition.
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liferating cells, with H9 being the most proliferative, which fi ts 

well with the shorter population doubling time compared with 

H1 and hES-NCL1 (unpublished data). Direct immunoblot-

ting also indicated increased proliferating cell nuclear antigen 

expression, suggesting increased cell proliferation as a result 

of NANOG overexpression (unpublished data). Cell counting 

experiments over different periods of time showed a higher 

proliferation in the NANOG sublines compared with controls, 

which correlated to a shorter population doubling time observed 

across all of the NANOG sublines (Fig. S2, available at http://

www.jcb.org/cgi/content/full/jcb.200801009/DC1). 

 The NANOG-overexpressing sublines maintained typical 

hESC morphology in culture, whereas signs of spontaneous and 

typical differentiation were observed in the control sublines 

after 4 – 5 d in culture (unpublished data). AP staining analysis 

showed a small but signifi cant increase in the number of AP-

positive colonies in NANOG-overexpressing sublines compared 

with the controls ( Fig. 2 A ). [ ID] FIG2 [/ID]   This suggests that overexpression 

of NANOG results in the suppression of spontaneous differenti-

ation that occurs during hESC culture. No changes in OCT4 ex-

pression were found by quantitative RT-PCR (not depicted) or 

direct immunoblotting ( Fig. 1 B ), corroborating data reported 

by  Darr et al. (2006) . 

 We performed in vitro differentiation experiments using the 

embryoid body (EB) method to investigate whether NANOG 

overexpression interfered with the ability of hESCs to differenti-

ate. The EBs obtained from NANOG sublines were indistinguish-

able from the controls at a morphological level (unpublished data). 

Recent studies in hESCs and primate ESCs have indicated that 

NANOG overexpression results in the enhancement of primitive 

ectoderm differentiation ( Darr et al., 2006 ) and repression of 

primitive endoderm differentiation ( Chen et al., 2006 ). The study 

performed in hESCs has used the H9 and H13 cell lines ( Darr 

et al., 2006 ). To avoid duplicating fi ndings, we focused our inves-

tigation on the impacts of NANOG overexpression on differentia-

tion on the other two different cells lines, H1 and hES-NCL1. Our 

morphological observation and quantitative RT-PCR analysis 

showed no signifi cant difference between each NANOG-over-

expressing subline and controls in expression of the neuroepithelial 

marker ( PAX6 ; Fig. S3 A, available at http://www.jcb.org/cgi/

content/full/jcb.200801009/DC1), mesodermal marker ( BRACHY-

URY ), endodermal marker ( IHH ), and trophoectoderm ( CDX2 ) 

during the 21-d differentiation time course (not depicted). This 

notwithstanding, NANOG-overexpressing sublines showed an en-

hanced  FGF5  peak expression (P  <  0.05) compared with control 

sublines in which little or no expression of this gene was observed 

(Fig. S3 B), corroborating other published data reporting the en-

hancement of primitive ectoderm expression by NANOG ( Darr 

et al., 2006 ). In addition,  GATA4  expression was signifi cantly re-

pressed in NANOG sublines (P  <  0.05) compared with the con-

trols, suggesting that NANOG is likely to repress primitive 

endoderm differentiation (Fig. S3 C). The injection of NANOG 

and control hESCs into the testis of severe combined immuno-

defi cient (SCID) mice resulted in the formation of teratomas ( Fig. 2, 

B and C ) comprised of cells from all three germ layers, indicating 

the pluripotent nature of the cells. The identity of endoderm, ecto-

derm, and mesoderm tissues within the tumors was confi rmed by 

suggesting an important role for each of these factors in repro-

gramming the genome of somatic cells ( Yu et al., 2007 ). 

 Despite these advances, very little is known about the role 

of NANOG in regulating ESC proliferation and survival. ESCs 

are characterized by rapid cell divisions, and their cell cycles 

have a rather large S phase and a truncated G1 phase ( Burdon 

et al., 2002 ). They can proliferate without apparent limit and can 

be readily propagated, but very little is known about these un-

usual proliferative properties, their cell cycle structure, and how 

this affects the pluripotent phenotype. In this study, we sought 

to identify possible interactions between NANOG, one of the 

master pluripotency factors in ESCs, and cell cycle regulation. 

 To address how NANOG interacts with the cell cycle ma-

chinery, we constitutively overexpressed NANOG in hESCs. In 

this manuscript, we show that NANOG is able to enhance hESC 

proliferation while still maintaining the pluripotent phenotype. 

The results described in this work provide, for the fi rst time, 

several lines of evidence that NANOG accelerates S-phase 

entry in hESCs by directly regulating at the transcriptional level 

two important cell cycle regulators: CDK6 and CDC25A. 

 Results 

 Generation and characterization of 

NANOG-overexpressing hESC clones 

 Three hESC lines, H1, hES-NCL1, and H9, were stably trans-

fected with the empty pTP6 ( Pratt et al., 2000 ) or pTP6-NANOG 

construct to generate three control sublines (H1 control, H9 

control, and hES-NCL1 control) and three overexpressing sub-

lines (H1 NANOG, H9 NANOG, and hES-NCL1 NANOG), re-

spectively. Quantitative RT-PCR for the endogenous expression 

of  NANOG  showed no signifi cant differences between clones 

generated from the same hESC line ( Fig. 1 A ). [ID ]FIG1[ /ID]  Total expression 

of  NANOG  analyzed by both quantitative RT-PCR ( Fig. 1 A ) 

and Western blotting ( Fig. 1 B ) revealed higher NANOG ex-

pression in NANOG-overexpressing sublines compared with 

the control, thus confi rming gene overexpression. Each of the 

six sublines was subjected to karyotype analysis at 20 and 40 

passages after transfection, and, in all cases, no chromosomal 

anomalies were detected (Fig. S1, available at http://www.jcb

.org/cgi/content/full/jcb.200801009/DC1). 

 The NANOG-overexpressing sublines grew faster in cul-

ture and had to be subcultured more often than the respective 

controls. This could be caused by a decrease in apoptosis, an 

increase in hESC proliferation, or both. To distinguish these two 

possibilities, we performed annexin V staining to detect early 

(7-AAD  2   annexin V + ) and late apoptotic (7-AAD +  annexin V + ) 

cells ( Fig. 1 C ) and BrdU incorporation to detect DNA syn-

thesizing/proliferating cells under the aforementioned culture 

conditions ( Fig. 1, D and E ). The results showed that over-

expression of NANOG did not signifi cantly affect the rate of 

apoptosis because percentages of apoptotic cells were similar 

to control sublines under normal culture conditions ( Fig. 1 C ). 

However, overexpression of NANOG increased the percentage 

of cells incorporating BrdU ( Fig. 1, D and E ) compared with the 

control sublines. It is of interest to note the variability between 

different hESC sublines with respect to the percentage of pro-
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to many explanations, and these include increased cell prolifer-

ation, slower progression through S phase, or transient stalling. 

To address some these issues, we synchronized human NANOG 

and control sublines by incubation with 200 ng/ml of the mitotic 

inhibitor nocodazole for 18 h. Flow cytometry analysis with cell 

surface markers associated with hESCs such as SSEA-4 and 

immunohistochemical staining with  a -fetoprotein (AFP), NESTIN, 

and smooth muscle actin (SMA), respectively ( Fig. 2 D ). 

 NANOG accelerates S-phase entry 

 The increase in the number of cells incorporating BrdU in 

NANOG-overexpressing clones compared with controls is open 

 Figure 1.    Characterization of NANOG-overexpressing hESC sublines.  (A) Quantitative RT-PCR for endogenous (right bars) and total (left bars) expression 
of  NANOG  in H1, H9, and hES-NCL1 sublines. The data represent the mean  ±  SEM (error bars) from four independent experiments. The value for the 
control clone from each hESC subline was set to 1, and all other values were calculated with respect to this. (B) Western blot showing NANOG and OCT4 
expression in the H9 sublines.  b -Actin was used as a loading control. H9, wild-type untransfected cells; H9C, H9 control subline; H9N, H9 NANOG-
overexpressing subline. Molecular masses are indicated in kilodaltons. (C) Assessment of cell death in NANOG-overexpressing and control sublines by 
fl ow cytometry analysis. (D) Assessment of cell proliferation in NANOG-overexpressing and control sublines by fl ow cytometry after 45 min of BrdU incor-
poration. (C and D) The data represent the mean  ±  SEM from three independent experiments. (E) Flow cytometry images showing a higher percentage of 
proliferating cells (gate R2) in NANOG-overexpressing sublines compared with controls.   
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 Upon release from inhibition, the hESC cell cycle distri-

bution was investigated by fl ow cytometry every 1 – 2 h ( Fig. 3, 

A and B ). [ID]FIG3 [/ID]  Analysis at the time of inhibitor release (0 h;  Fig. 3 A ) 

revealed that NANOG sublines showed a quicker cell cycle pro-

gression compared with controls because very few cells existed 

in G1 (1.86%) compared with control clones that showed 

13.97% of cells still remaining in G1. Most importantly, 76% of 

the cells were in S phase within 6 h of release from the inhibitor 

TRA-1-60 at 6 h upon release from nocodazole showed 10% 

and 8% more positive cells, respectively, in the NANOG sub-

lines compared with controls, which fi ts well with the AP analy-

sis shown in  Fig. 2 A . In both cases, there were no signifi cant 

changes in SSEA-4 or TRA-1-60 expression as a result of no-

codazole treatment, thus indicating that nocodazole did not 

cause cell differentiation in either NANOG or control clones 

(unpublished data). 

 Figure 2.    Maintenance of pluripotency and 
differentiation capability of NANOG-over-
expressing hESC sublines.  (A) Assessment of 
pluripotency in NANOG-overexpressing and 
control sublines as well as wild-type cells by 
AP staining assay. The data represent the 
mean  ±  SEM (error bars) from three indepen-
dent experiments. (B) Histological analysis of 
teratomas formed from grafted colonies of 
hESCs (hES-NCL1 NANOG) in SCID mice. 
(a) Low-power light micrograph showing hetero-
geneous structure within the body of the tera-
toma and the presence of a diverse range of 
different tissue types. (b) Cartilage (cart) and 
bone. (c) Kidney glomeruli (g) and associated 
tubules (t). (d) Large neural ganglion (ng) with 
connecting nerve fi bers (nf) shown by a black 
arrow. (e) Transverse section through primitive 
intestine (in) with accompanying submucosal 
muscle layer (m). (f) Villous-type structure (v) 
lined with mucus-secreting cells resembling 
an intestinal epithelium (ep). Histological stain-
ing: Weigert ’ s (a and b) and hematoxylin and 
eosin (c – f). Bars: (a) 400  µ m; (b and e) 150  µ m; 
(c, d, and f) 75  µ m. (C) Histological analysis 
of teratomas formed from grafted colonies 
of hESCs (hES-NCL1 control) in SCID mice. 
(a) Low-power light micrograph showing hetero-
geneous structure within the body of the tera-
toma and the presence of a diverse range of 
different tissue types. (b) Cartilage. (c) Bone. 
(d) Small neural ganglia were clearly identifi -
able between layers of connective tissue (cn). 
(e) Kidney glomeruli and associated tubules. 
(f) Higher magnifi cation image of a secretory 
cell resembling an intestinal epithelium produc-
ing mucus from goblet cells (gc) marked by two 
black arrows. Histological staining: Weigert ’ s 
(a – c) and hematoxylin and eosin (d – f). Bars: 
(a) 400  µ m; (b – e) 75  µ m; (f) 25  µ m. (D) Immuno-
histochemical analysis of teratomas formed 
from grafted colonies of hES – NCL1 NANOG 
in SCID mice. hES – NCL1 NANOG cells were 
found to be pluripotent, and the teratomas 
formed were composed of cell types from 
all three germ layers. (a) AFP (endoderm). 
(b) Nestin-positive cells (ectoderm). (c) SMA-
positive cells (mesoderm). (d) Negative con-
trol. Bars, 150  µ m.   
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71A ROLE FOR NANOG S-PHASE ENTRY IN HUMAN ESCs  • Zhang et al. 

 Figure 3.    Changes in hESC cell cycle distribution as a result of NANOG overexpression.  (A) Flow cytometry images showing movement of cells through 
the cell cycle after synchronization by nocodazole for 18 h assessed by propidium iodide staining. This fi gure represents an example of three independent 
experiments. (B) Chart representation of the fraction of cells in S phase assessed by propidium iodide staining over time after release from synchronization 
with nocodazole for 18 h. (C) Chart representation of the fraction of cells in S phase assessed by BrdU incorporation over time after release from synchro-
nization with nocodazole for 18 h. The bottom panel shows fl ow cytometry images of BrdU-incorporating cells in NANOG and control H9 hESC sublines 
after 5 h of release from nocodazole. The dashed line represents the end of G1 and the start of S phase. (B and C) The fi gure represents an example of three 
independent experiments performed in H9 sublines. (D) Western blotting for expression of main components involved in G1 to S transition in NANOG-
overexpressing and control clones. This summary is a representation of three independent experiments. GAPDH was used as a loading control. p16 and 
p15 were absent in all sublines, whereas p19 and p18 were expressed at very low but equal levels in NANOG-overexpressing and control clones (not 
depicted). Molecular masses are indicated in kilodaltons. HN, H1 NANOG; HC, H1 control; NN, hES-NCL1 NANOG; NC, hES-NCL1 control.   
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 Figure 4.    CDK6 and CDC25A are NANOG transcriptional targets.  (A) Quantitative RT-PCR analysis for the expression of  CDK6  and  CDC25A  in NANOG-
overexpressing and control sublines. The value for the control clone from each cell line was set to 1, and all other values were calculated with respect to 
this. The data represent the mean  ±  SEM (error bars) from three independent experiments. (B) Quantitative RT-PCR analysis for the expression of  NANOG , 
 CDK6 , and  CDC25A  in hESC 42 h after the transfection of NANOG siRNA. The data represent the mean  ±  SEM from three independent experiments 
(one in each cell line: H1, H9, and hES-NCL1). The value for the control siRNA samples was set to 1, and all other values were calculated with respect 
to this. (C) Western blotting for NANOG, CDK6, and CDC25A in hES-NCL1 transfected with NANOG or control siRNA 42 h after the transfection of 
NANOG siRNA. GAPDH is used as a loading control. Molecular masses are indicated in kilodaltons. (D and E) Bar chart showing enrichment of  CDK6  
intragenic DNA region (intron 1) and  CDC25A  promoter fragment after ChIP with NANOG antibody in hESCs and day-14 differentiated sample from EBs. 
The data represent the mean  ±  SEM (error bars) from two experiments performed in the H1 cell line. (F and G) Bar chart showing activation of  CDK6 - and 
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in NANOG-overexpressing cells ( Fig. 3 A ). Control sublines 

showed a more gradual and slow entry into S phase, as only 

48% and 70% were in S phase 6 h and 8 h after release from the 

inhibitor, respectively ( Fig. 3, A and B ). Although this analysis 

suggests that NANOG overexpression accelerates G1 to S tran-

sition, it is diffi cult to separate this event from S-phase pro-

gression. In view of this, we performed pulse-labeled BrdU 

experiments at different time points after nocodazole synchro-

nization as described by  Becker et al. (2006 ;  Fig. 3 C ). This 

analysis showed that in NANOG-overexpressing clones, most 

cells enter S phase 5 h after release from nocodazole treatment. 

In contrast, a more gradual and slower progression from G1 to 

S is observed in control clones ( Fig. 3 C ). Collectively, these 

data suggest that overexpression of NANOG shortens the time 

needed for S-phase entry. 

 To investigate how NANOG regulates S-phase entry in 

hESCs, we fi rst performed direct immunoblotting for the ex-

pression of key cell cycle components involved in the G1 to S 

transition in all NANOG-overexpressing and control sublines 

( Fig. 3 D  and not depicted for H9 sublines). Most interestingly, 

we observed an increase in CDK6 and CDC25A in all NANOG-

overexpressing sublines compared with controls ( Fig. 3 D ). It is 

important to point out that expression of other Cdks known to 

be important for the G1 to S progression such as CDK2, CDK4 

( Fig. 3 D ), and CDK1 (not depicted) were not changed as a re-

sult of NANOG overexpression. The aforementioned results 

were independently confi rmed by hybridization of cell extracts 

from NANOG and control sublines to the Panorama antibody 

microarray that is designed to investigate several biological 

pathways, including cell cycle, signal transduction, apoptosis, 

cytoskeleton, etc. This analysis showed that CDK6 was the 

most up-regulated array target as a result of NANOG over-

expression (3.43  ±  0.136 fold), whereas CDC25A occupied the 

17th most up-regulated target (total of 42) showing, on average, 

a 2.3  ±  0.14-fold increase. 

 The C-terminal domain of NANOG 

is responsible for binding to CDK6 

and CDC25A 

 To distinguish between transcriptional and posttranscriptional 

regulation, we performed quantitative RT-PCRs on components 

shown in  Fig. 3 D  and were able to confi rm that  CDK6  and 

 CDC25A  were transcriptionally activated in NANOG-overex-

pressing sublines compared with controls, suggesting that they 

might be direct transcriptional targets of NANOG ( Fig. 4 A ). [ID]FIG4[/ ID]  

We down-regulated  NANOG  expression in hESCs using RNA 

interference. More than 90% down-regulation of this gene was 

achieved 48 h after transfection ( Fig. 4 B ). Both CDK6 and 

CDC25A were down-regulated at the transcriptional and pro-

tein level ( Fig. 4, B and C ). 

 Chromatin immunoprecipitation (ChIP) assays combined 

with quantitative PCR assays using primers that fl anked a 580-

bp region in intron 1 of  CDK6  (suggested by  Boyer et al. [2005]  

to be the NANOG-binding region; Fig. S4 A, available at http://

www.jcb.org/cgi/content/full/jcb.200801009/DC1) confi rmed 

that NANOG does indeed bind to  CDK6  ( Fig. 4 D ). The same 

assays, but using primers that fl ank the fi rst 1.0 kb upstream of 

the transcription start sites of  CDC25A ,  c-MYC ,  CDK2 , and 

 CDK4 , revealed that NANOG also binds to the promoter region 

of  CDC25A  ( Fig. 4 E  and Fig. S4 A) but not of the other three 

targets (not depicted). ChIP assays were performed under iden-

tical conditions with various controls, including no input anti-

body, no input DNA, and a day-14 differentiated sample from 

EBs in which the expression of NANOG is detectable but low, 

as shown by recent work performed in our group ( Neganova 

et al., 2008 ). The results corroborate, in part, the study by  Boyer 

et al. (2005) , who reported that NANOG and SOX2 bind to 

 CDK6  but not to  CDC25A  and identifi ed  CDC25A  as a transcrip-

tional target of E2F4 but not of OCT4, SOX2, or NANOG. 

 A previous study ( Mitsui et al., 2003 ) identifi ed 5 9 -CGG-

ACGCGCATTANGC-3 9  as a NANOG consensus DNA bind-

ing sequence with the highest conservation observed for the 

tetranucleotide ATTA, which is common for DNA recognition 

sequences of many homeobox transcription factors. This consen-

sus sequence was compared with the regulatory regions of  CDK6  

and  CDC25A  identifi ed by  Boyer et al. (2005)  to identify NANOG 

binding domains that are shown in Fig. S4 A. PCR primers that 

fl anked the NANOG binding domains were designed (Table S3, 

available at http://www.jcb.org/cgi/content/full/jcb.200801009/DC1), 

and the corresponding fragments were inserted into the pGL4 

luciferase reporter constructs (Fig. S4 B). Site-directed muta-

genesis was performed, and the ATTA sequence was changed to 

AGGA to confi rm the specifi city of binding. 

 The aforementioned constructs (Fig. S4 B) were trans-

fected in combination with a series of human NANOG domains 

(Fig. S4 C) in hESCs ( Fig. 4, F and G ) to identify which part of 

NANOG protein was important for  CDK6  and  CDC25A  trans-

activation. The expression of NANOG constructs was tested by 

Western blotting (Fig. S4 D). The specifi city of these interac-

tions was confi rmed by using  CDK6  and  CDC25A  reporter con-

structs bearing mutations in the NANOG consensus binding 

sequence. The data obtained in hESCs showed that in the ab-

sence of exogenous NANOG expression (Flag-transfected 

group), the activity of luciferase reporter constructs driven by 

both  CDC25A  and  CDK6  regulatory regions is signifi cantly 

higher than the activity of mutated constructs, which precludes 

 CDC25A -luciferase constructs upon transfection of different domains of NANOG. For each reporter construct, luciferase activities relative to pGL4 
promoterless controls were determined, and data are represented as the fold change caused by the indicated NANOG expression relative to the non-
mutated reporter cotransfected with the empty (Flag) control. mCDK6 or mCDC25A indicates the CDK6- or CDC25A-luciferase constructs with a mutated 
NANOG-binding site. Flag, DNA construct without  NANOG  cDNA; ND + HD, DNA construct containing the homeodomain and the N-terminal region of 
 NANOG ; HD, DNA construct containing the homeodomain region of  NANOG ; HD + CD, DNA construct containing the homeodomain and C-terminal 
region of  NANOG ; Full length, full-length  NANOG  cDNA. In both panels, the luciferase activity for cells transfected with the Flag construct and CDK6-
luciferase (F) or CDC25A-luciferase construct (G) was set to 1, and all other values, including the luciferase activity achieved with mutated CDK6 and 
CDC25A constructs, were calculated with respect to that. The data represent the mean  ±  SEM.   
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 Figure 5.    CDK6 and CDC25A regulate S phase in hESCs.  (A) Quantitative RT-PCR analysis for the expression of  CDK6  and  CDC25A  in H1, H9, and hES-
NCL1 cell lines 42 h after the transfection of  CDK6  and  CDC25A  siRNA. The data represent the mean  ±  SEM (error bars) from three independent experi-
ments (one in each cell line). The value for the control siRNA was set to 1, and all other values were calculated with respect to this. (B) Down-regulation of 
CDK6 by fl ow cytometry 42 h after the transfection of CDK6 siRNAs in hESCs (a representative example from the H9 line is shown). (C) Down-regulation of 
CDC25A by Western blotting 42 h after the transfection of CDC25A siRNAs (a representative example from the H9 line is shown). Molecular masses are 
indicated in kilodaltons. (D) Reduction in CDK6 kinase activity upon knockdown of CDK6. The value for the control siRNA was set to 100%, and all other 
values were calculated with respect to this. (E) Reduction in CDC25A phosphatase activity upon knockdown of CDC25A. The value for the control siRNA 
was set to 100%, and all other values were calculated with respect to this. (D and E) The data represent the mean  ±  SEM from three experiments performed 
in the H9 cell line. (F) Flow cytometry images showing movement of cells through the cell cycle after transfection of CDK6 siRNAs and synchronization 
by nocodazole for 18 h assessed by propidium iodide staining. (G) Chart representation of the fraction of cells in S phase over time after transfection of 
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binding of endogenous NANOG. In addition, the data indicated 

that the C-terminal domain has a critical role in the transcrip-

tional activation of  CDK6  and  CDC25A  ( Fig. 4, F and G ), thus 

corroborating the data obtained by others ( Oh et al., 2005 ). The 

specifi city of the interaction between the C-terminal domain 

and regulatory regions of these two genes was confi rmed by 

using  CDK6  and  CDC25A  reporter constructs bearing muta-

tions in the NANOG consensus binding sequence that showed 

signifi cantly reduced transcriptional activity when compared 

with the wild-type constructs ( Fig. 4, F and G ). 

 CDK6 and CDC25A regulate S phase 

in hESCs 

 Our data have clearly shown that  CDK6  and  CDC25A  are direct 

transcriptional targets of NANOG. However, the role of these 

two cell cycle regulators in hESCs has not been previously in-

vestigated. We set out to investigate this question using RNA 

interference. For each gene, two different mixed pools of siRNAs 

(targeted to different regions of each gene) were purchased from 

Invitrogen and Santa Cruz Biotechnology, Inc. (Table S1, avail -

able at http://www.jcb.org/cgi/content/full/jcb.200801009/DC1). 

For simplicity of presentation, the results from the application 

of mixed pools of three siRNAs obtained from Invitrogen 

are presented in this manuscript; however, similar results were 

obtained with the siRNAs obtained from Santa Cruz Biotech-

nology, Inc. (unpublished data). A 95 and 75% reduction was 

obtained at the transcriptional level for  CDK6  and  CDC25A , re-

spectively, 42 h after transfection ( Fig. 5 A ). [ID]FIG5 [/ID]  Both Western blot-

ting and fl ow cytometry were used to confi rm those fi ndings at 

the protein level, and one example of each is presented in  Fig. 5 

(B and C) . CDK6 kinase activity and CDC25A phosphatase ac-

tivity were also reduced upon down-regulation of  CDK6  and 

 CDC25A , respectively ( Fig. 5, D and E ). 

 To investigate changes in the cell cycle, the transfected 

hESCs were synchronized 24 h after transfection with no-

codazole for an additional 18 h. Upon removal of the inhibitor, 

hESCs were analyzed by fl ow cytometry every 2 h. These ex-

periments showed that down-regulation of CDK6 reduces the 

number of cells entering S phase and delays the S-phase com-

pletion by 2 h ( Fig. 5, F and G ). With this analysis, it is not 

possible to distinguish between S-phase entry and S-phase 

progression because any delays in S-phase entry would also 

delay S-phase progression. Notwithstanding this, we can con-

clude that, overall, CDK6 bears an impact on one or both of 

these events. 

 Flow cytometry analysis at removal of the inhibitor (0 h) 

showed that down-regulation of CDC25A causes a signifi cant 

retention of cells in G1 compared with controls ( Fig. 5 H ), sug-

gesting that CDC25A down-regulation prevents their S-phase 

entry. Further analysis at 2, 4, 6, and 8 h after release from the 

inhibitor showed similar results to those obtained at 0 h (unpub-

lished data), suggesting that perhaps additional blocks at G2 to 

M and S phase were imposed upon CDC25A down-regulation, 

thus preventing further movement of cells into G2 to M and G1. 

Similar results at all time points examined (0, 2, 4, 6, and 8 h after 

release from the inhibitor) were obtained upon down-regulation 

of NANOG alone ( Fig. 5 H ). 

 NANOG regulates S-phase entry in hESCs 

via CDK6 and CDC25A 

 To investigate whether CDK6 and/or CDC25A overexpression 

alone was suffi cient to substitute the role of NANOG in hESCs ’  

S-phase entry, we created stable cell lines that overexpressed 

CDK6 and CDC25A. Quantitative RT-PCR ( Fig. 6 A ) and di-

rect immunoblotting were used to confi rm the overexpression 

of CDK6 and CDC25A ( Fig. 6 B ). [ID] FIG6 [ /ID]  A signifi cant increase was 

observed in CDK6 kinase activity in the CDK6-overexpressing 

hESC sublines ( Fig. 6 C ). Similarly, a signifi cant increase in 

phosphatase activity was observed in the CDC25A-over-

expressing hESC sublines compared with controls ( Fig. 6 C ). 

 To investigate the effects of CDK6 and CDC25A over-

expression, synchronization with nocodazole was performed 

for 18 h. We observed that a higher number of cells were found 

to enter S phase as a result of CDK6 and CDC25A overexpres-

sion ( Fig. 6 D ). In addition, the completion of S phase was 

shortened by 2 h in the CDK6- and CDC25A-overexpressing 

hESC sublines, thus indicating a role for both of these proteins 

in the regulation of S phase in hESCs. 

 To investigate whether CDK6 or CDC25A could substi-

tute for NANOG in hESCs ’  S-phase entry, NANOG down-

regulation was performed using RNA interference in CDK6- and 

CDC25A-overexpressing sublines (unpublished data). Quan-

titative RT-PCR analysis showed an 85 – 90% reduction in 

NANOG expression 42 h after siRNA transfection across the 

different hESC sublines (unpublished data). 24 h after siRNA 

transfection, the cells were synchronized with nocodazole for 

18 h. Analysis of their cell cycle profi le indicated a signifi -

cant retention (43%) of hESCs in G1 as a result of NANOG 

knockdown, thus corroborating our previous results shown 

in  Fig. 5 H . In contrast, a small number of cells, which was 

comparable with control transfections (8.67%), was present in 

G1 phase of the cell cycle in CDK6-overexpressing hESC sub-

lines ( Fig. 6 E ), thus indicating that overexpression of CDK6 

alone can rescue the effects of NANOG down-regulation in 

S-phase entry. The rescue effect was also observed in CDC25A-

overexpressing hESC sublines, albeit at a lesser scale than 

CDK6-overexpressing sublines ( Fig. 6 E ). The difference in 

such results can be explained by changes in fold overexpres-

sion of the genes of interest between those sublines (14-fold 

CDK6 overexpression compared with 10-fold CDC25A over-

expression). It is also likely that CDK6 enhances S-phase 

entry via an increase in CDK6 activity, whereas CDC25A 

could act by enhancing the activity of any G1-specifi c Cdks 

(CDK6, CDK4, or CDK2). 

CDK6 siRNA and synchronization by nocodazole for 18 h assessed by propidium iodide staining. (H) Flow cytometry images showing retention of cells in 
G1 phase of the cell cycle after transfection of CDC25A siRNA and NANOG siRNA and synchronization by nocodazole for 18 h assessed by propidium 
iodide staining. (F – H) The fi gures represent an example of at least two independent experiments performed in the H9 subline.   
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 Figure 6.    Overexpression of  CDK6  and  CDC25A  accelerates S-phase completion.  (A) Quantitative RT-PCR for endogenous (left bars) and total (right bars) 
expression of  CDK6  and  CDC25A  in the H9 hESC line. The data represent the mean  ±  SEM (error bars) from three independent experiments. The value for 
the control clone was set to 1, and all other values were calculated with respect to this. (B) Overexpression of CDC25A and CDC25A shown by Western 
blotting. GAPDH is used as a loading control (a representative example from the H9 line is shown). Molecular masses are indicated in kilodaltons. 
(C) Increase in CDK6 kinase activity and CDC25A phosphatase activity in CDK6- and CDC25A-overexpressing hESC sublines, respectively. The value for 
the control subline was set to 100%, and all other values were calculated with respect to this. The data represent the mean  ±  SEM from three experiments 
performed in the H9 cell line. (D) Chart representation of the fraction of cells in S phase over time in CDK6- and CDC25A-overexpressing hESC sublines 
assessed by propidium iodide staining (a representative example from the H9 subline is shown). (E) Flow cytometry images showing cell cycle distribution 
in H9 control as well as H9 CDK6 and H9 CDC25A after transfection of control siRNA and NANOG siRNA and synchronization by nocodazole for 18 h 
assessed by propidium iodide staining. This fi gure represents an example of at least two independent experiments performed in the H9 subline.   
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 To investigate whether NANOG-mediated effects on 

S-phase regulation could be reversed by down-regulating 

CDK6 and CDC25A, we performed RNA interference experi-

ments on NANOG-overexpressing sublines. An 86% and 88% 

reduction was obtained at the transcriptional level for  CDK6  

and  CDC25A , respectively, 42 h after transfection ( Fig. 7 A ). [ID]FIG7[/ ID]  

Western blotting was used to confi rm those fi ndings at the pro-

tein level ( Fig. 7 B ). 

 To investigate changes in cell cycle, the hESCs were syn-

chronized 24 h after transfection with CDK6 and CDC25A 

siRNAs with nocodazole for an additional 18 h. Upon removal 

of the inhibitor, hESCs were analyzed by fl ow cytometry every 2 h. 

These experiments showed that down-regulation of CDK6 in 

NANOG-overexpressing sublines lengthen the time needed for 

S-phase completion by 2 h compared with the control siRNA –

 transfected sample as well as reducing the numbers of hESCs 

entering S phase. Collectively, these data suggest that NANOG-

accelerated S-phase entry and progression is in part mediated 

by CDK6, for its down-regulation alone reverses this effect, 

making NANOG cells comparable with controls. 

 Flow cytometry analysis of NANOG-overexpressing sub-

lines that were transfected with CDC25A siRNA at the time of 

release from the inhibitor (0 h) showed a signifi cant retention of 

cells in G1 (19%) compared with control (2%;  Fig. 7 D ). Simi-

lar results were obtained upon transfection of NANOG siRNA 

( Fig. 7 D ). Repeated analysis at 2, 4, 6, and 8 h after release 

from the inhibitor showed similar results to those shown in 

 Fig. 7 D  for both NANOG and CDC25A knockdown experi-

ments, suggesting likely additional blocks at S and G2 to M. 

Notwithstanding this, down-regulation of CDC25A in NANOG 

sublines results in a signifi cant retention of cells in G1, support-

ing our hypothesis that NANOG regulation of S-phase entry is 

mediated by CDC25A. 

 Discussion 

 Recent publications suggest that combined overexpression of 

OCT4, SOX2, NANOG, and LIN28 is able to reprogram so-

matic cells to a pluripotent phenotype ( Yu et al., 2007 ). One of 

the key features that distinguish somatic cells from ESCs is the 

length of the G1 phase of the cell cycle, which is much shorter 

in the latter ( Becker et al., 2006 ). This means that during the 

transcription factor – mediated reprogramming, changes in ex-

pression or posttranslational modifi cations of cell cycle regula-

tory genes have to occur. 

 In this study, we sought to unravel the impacts of NANOG 

expression on hESCs and identify target genes that mediate its 

effects. We show that overexpression of NANOG in hESCs 

causes a signifi cant increase in ESC proliferation while enhanc-

ing their pluripotent phenotype. Most importantly, overexpres-

sion of NANOG causes an increase in the numbers of cells 

entering S phase and shortens the time needed for S-phase 

entry. A combination of molecular assays indicated that the 

C-terminal region of NANOG binds to the regulatory regions of 

 CDK6  and  CDC25A . Overexpression of NANOG in hESCs re-

sults in a signifi cant increase in the expression of CDK6 and 

CDC25A. Because NANOG overexpression results in the in-

creased proportion of more pluripotent hESCs as suggested by 

our AP staining, it could be envisaged that an increase in CDK6 

and CDC25A is achieved indirectly via increased homogeneity 

of hESC cultures on the proviso that CDK6 and CDC25A expres-

sion would be high in hESCs and down-regulated upon differ-

entiation. However, this is not the case because CDK6 expression 

increases during hESC differentiation, whereas CDC25A 

shows a slight decrease in the fi rst 3 d of differentiation fol-

lowed by an increase at day 5 ( Neganova et al., 2008 ). Together, 

these data suggest that NANOG has direct transcriptional 

effects on CDK6 and CDC25A. 

 Cdc25A phosphatase has been shown to control entry into 

and progression through S phase by removing inhibitory phos-

phates from cyclin E –  and cyclin A – bound Cdk2 complexes. 

Published data have highlighted an important role for CDC25A 

in both mitotic entry in HeLa cells ( Mailand et al., 2002 ) and 

S-phase progression in cancer cells ( Lehmann and McCabe, 2007 ; 

 Yao et al., 2007 ); however, very little is known about CDC25A 

function in ESCs. Our own data in hESCs have shown that 

CDC25A is present in hESCs and its expression peaks at G1 

( Neganova et al., 2008 ). In addition, immunoprecipitation as-

says have shown that CDC25A is associated with active com-

plexes formed between three G1 Cdks (CDK4, CDK6, and 

CDK2) and the respective cyclins ( Neganova et al., 2008 ). Work 

described in this manuscript shows that one of the impacts of 

CDC25A down-regulation is the retention of cells at the G1-

phase cycle in both NANOG and control sublines, which is 

indicative of its involvement in S-phase entry. In addition, its 

overexpression enhances the numbers of cells entering S phase 

and shortens the time interval needed for S-phase comple-

tion. Our current work has also indicated that down-regulation 

of CDK2 causes cell stalling at G1 phase of the cell cycle 

( Neganova et al., 2008 ), whereas down-regulation of CDK6 delays 

S-phase entry. The similarity in the phenotype and the results of 

the immunoprecipitation assays are suggestive of CDC25A act-

ing through one or more G1-specifi c Cdk – cyclin complexes 

during S-phase entry. It now remains to be investigated how 

CDC25A is able to coordinate different functions during cell 

cycle progression and identify the target Cdk – cyclin complexes 

that are being regulated by CDC25A at different phases of the 

cell cycle. In particular, we are keen to investigate further the 

role of CDC25A and NANOG in S and G2 to M progression 

because the stalling of hESCs at S and G2 to M was also ob-

served upon down-regulation of these two components. It is 

likely that more than one Cdk – cyclin complex is involved in 

this process, and, currently, our experiments are focused on the 

role of CDC2 – CDK1 in hESC cell cycle regulation and likely 

association with CDC25A. It is interesting to point out that 

CDC2 – CDK1 has also been identifi ed as a transcriptional target 

of NANOG ( Boyer et al., 2005 ); however, we were unable to 

identify any signifi cant differences in CDK1 expression between 

NANOG and control clones (unpublished data). 

 Having established a role for CDK6 and CDC25A in cell 

cycle progression in hESCs, we sought to determine whether 

they were the downstream effectors of NANOG-mediated 

S entry and S progression effects. We were able to address this 

question by knockdown experiments in NANOG-overexpressing 
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regulatory components. In this manuscript, we elucidated that 

NANOG has an effect on S-phase and G2 to M progression be-

cause NANOG down-regulation alone causes cell stalling in S 

and G2 to M in addition to G1. Our work on CDC25A also in-

dicated that CDC25A itself has a function in S progression and 

G2 to M transition in hESCs. It is likely that other cell cycle reg-

ulatory components in addition to CDC25A mediate NANOG ’ s 

effects on S-phase progression and G2 to M transition in hESCs. 

Large-scale ChIP – ChIP experiments have suggested that OCT4, 

SOX2, and NANOG regulate the expression of  CDC7 , which 

sublines and overexpression experiments. Data generated by an 

RNA interference approach clearly indicated that both CDK6 

and CDC25A are involved in S-phase completion, for down-

regulation of each component alone caused the lengthening of 

time needed for S phase and/or reduction in the numbers of cells 

able to enter S phase, thus reversing the effects of NANOG on 

S-phase entry. Most importantly, overexpression of either of 

these two genes alone rescued cell retention in G1 caused by 

NANOG down-regulation, suggesting that NANOG ’ s effects on 

the S-phase entry of hESCs are mediated by these two cell cycle 

 Figure 7.    CDK6 and CDC25A are downstream effectors of NANOG.  (A) Quantitative RT-PCR analysis showing down-regulation of  CDK6  and  CDC25A  in 
H1 NANOG, H9 NANOG, and hES-NCL1 NANOG sublines 42 h after the transfection of  CDK6  and  CDC25A  siRNA. The data represent the mean  ±  
SEM (error bars) from three experiments (one in each subline). The value for the control-transfected sample (vector only) was set to 1, and all other values 
were calculated with respect to this. (B) Western blotting showing down-regulation of  CDK6  and  CDC25A  in H1 NANOG sublines. Molecular masses 
are indicated in kilodaltons. (C) Chart representation of the fraction of cells in S phase over time after transfection of CDK6 siRNA and synchronization 
by nocodazole for 18 h in the H9 NANOG subline assessed by propidium iodide staining. This fi gure represents an example of at least two independent 
experiments carried in the H9 subline. (D) Flow cytometry images showing retention of cells in G1 phase of the cell cycle after transfection of CDC25A and 
NANOG siRNAs and synchronization by nocodazole for 18 h in the H9 NANOG subline assessed by propidium iodide staining. This fi gure represents 
an example of at least two independent experiments performed in the H9 subline.   

 o
n

 S
e

p
te

m
b

e
r 9

, 2
0

1
0

jc
b

.ru
p

re
s
s
.o

rg
D

o
w

n
lo

a
d

e
d

 fro
m

 

Published January 12, 2009



79A ROLE FOR NANOG S-PHASE ENTRY IN HUMAN ESCs  • Zhang et al. 

5 9 -ACT GAATTCTCAGGCTGTATTCAGCTCCGAG-3 9 ; CDC25A forward, 
5 9 -ACT GAATTCACCATGGAACTGGGCCCGGAG-3 9 ; and CDC25A re  -
verse, 5 9 -ACTGAATTCTCAGAGCTTCTTCAGACGACTG-3 9 . The cDNAs were 
cloned into the pTP6 vector. hESCs (H1, H9, and hES-NCL1) were plated on 
Matrigel-coated plates and cultured in the presence of feeder-conditioned 
media 4 d before transfection. The transfection of DNA was achieved using 
the Cell Line Nucleofector kit L (Amaxa) according to the manufacturer ’ s 
instructions (program A-023). 2 d after the transfection, stable clones were 
selected using puromycin selection (0.8 – 1.2  µ g/ml) for 10 d. Between 15 
and 20 surviving colonies were pooled in each case, and the resulting 
subline from each cell line was expanded and named, for example, H1 
NANOG, H9 NANOG, and hES-NCL1 NANOG. A similar procedure 
was performed after transfection of the empty vector. Each of the control 
sublines was named H1 control, H9 control, and hES-NCL1 control. All 
sublines were maintained with 0.6  µ g/ml puromycin to ensure the main-
tenance of the transgene. Every 8 – 10 passages, quantitative RT-PCR and 
Western blot analysis were performed to confi rm gene overexpression over 
time. For simplicity, in most fi gures, data from one or two overexpressing 
sublines or controls are shown. 

 Transient transfection of hESCs with CDK6 and CDC25A luciferase 
reporter constructs 
 hESCs were cultured under feeder-free conditions with feeder-conditioned 
media free of antibiotics for at least 4 d before transfections. hESCs were 
nucleofected simultaneously with fi refl y luciferase reporter constructs (6  µ g 
in the case of CDK6 and CDC25A), a transfection control (0.6  µ g in the 
case of the construct containing Renilla luciferase gene driven by the her-
pes simplex virus thymidine kinase promoter), and 6  µ g NANOG cDNA 
(gift from J.-H. Kim, ChaBiotech Co. Ltd., Seoul, Republic of Korea) using 
the Cell Line Nucleofector kit L according to the manufacturer ’ s instructions 
(program A-023). Site-directed mutagenesis for  CDK6  and  CDC25A  lucif-
erase constructs was performed using the QuikChange Site-Directed Muta-
genesis kit (Agilent Technologies) according to the manufacturer ’ s 
instructions. A similar procedure was followed for the transfection of site-
directed mutagenesis constructs. After 24 h, cells were lysed using the lysis 
buffer provided in the Dual Luciferase Detection kit (Promega) according to 
the manufacturer ’ s instructions. The fi refl y and Renilla luciferase activities 
were measured in turn using the LARII and Stop Glow solutions (Promega), 
and the ratio between the two was calculated. 

 siRNAs and transfection 
 siRNAs were obtained from Santa Cruz Biotechnology, Inc. and Invitrogen. 
The siRNA sequences are shown in Table S1. Transfection with scrambled 
control siRNAs with similar guanine-cytosine content to gene-specifi c siRNA 
sequences provided by the same company were used as a negative con-
trol. The transfection of siRNA into hESCs was performed using the high ef-
fi ciency Cell Line Nucleofector kit L and 80 pmol siRNA (in 2 ml of medium) 
as outlined in the manufacturer ’ s instructions (program A-023). 24 h after 
transfection, hESCs were synchronized in G2 to M by incubation in 200 
ng/ml of a nocodazole-containing medium for 18 h. The cells were washed 
three times with normal medium and collected by Accutase (Millipore) 
treatment at various time points as indicated in the results section. 

 Flow cytometry analysis of hESCs 
 For the fl ow cytometry analysis, the hESCs were collected, processed, and 
analyzed as previously described ( Armstrong et al., 2006 ). 

 Western blotting 
 Lysates were electrophoresed on a 10% SDS-PAGE gel and electrophoreti-
cally transferred to a polyvinylidene difl uoride membrane (Hybond-P; GE 
Healthcare). Membranes were blocked in Tris-buffered saline with 5% milk 
and 0.1% Tween. The blots were probed with NANOG (1:1,000; R & D 
Systems), CDK4 (1:100; Santa Cruz Biotechnology, Inc.), CDK6 (1:100; 
Santa Cruz Biotechnology, Inc.), cyclin D1, D2, and D3 (1:100; all from 
Santa Cruz Biotechnology, Inc.), cyclin E, CDK2, CDC25A, c-ABL, retino-
blastoma (phosphorylated or not), and c-Myc (1:100; all from Cell Signal-
ing Technology), p15, p16, p18, p19, and Suv39H1 (1:100; all from Cell 
Signaling Technology), or glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) antibody (1:2,000; Abcam) overnight and revealed with horse-
radish peroxidase – conjugated secondary antibodies, anti – goat (1:2,000; 
Dako), or anti – rabbit (1:20,000; GE Healthcare). Antibody – antigen com-
plexes were detected using ECL reagent (GE Healthcare). Western blot im-
ages were acquired using a luminescent image analyzer (Fujifi lm) and 
LAS-3000 software (Fujifi lm). Protein molecular weights are indicated next 
to the image shown from the Western blotting. 

has been shown to be important for S-phase progression ( Boyer 

et al., 2005 ). Therefore, it is important that the role of CDC7 is 

investigated in connection with NANOG in the S-phase pro-

gression in hESCs. 

 It is interesting to note that forced expression of Nanog in 

3T3 cells and in a subset of T cells causes enhancement in cell 

growth as well as resulting in a transformed phenotype ( Zhang 

et al., 2005 ;  Piestun et al., 2006 ;  Tanaka et al., 2007 ). Murine 

ESCs with high Nanog expression also show an increased ex-

pression of genes involved in cell cycle regulation, whereas 

cells with low Nanog expression have increased expression of 

cell cycle inhibitory genes ( Singh et al. 2007 ). Together, these 

data suggest that Nanog possesses an oncogenic potential that 

might be related to the role it plays in germ cell tumors and to 

its function in self-renewal of ESCs. It remains to be investi-

gated whether these oncogenic functions are related to its role 

in cell cycle regulation and in particular to the direct transacti-

vation of  CDK6  and  CDC25A  genes. This, of course, should be 

extended to the other two coregulators, OCT4 and SOX2, that 

occupy a substantial portion of the Nanog target genes and have 

been described to be involved in oncogenic transformations 

( de Jong and Looijenga, 2006 ;  Rodriguez-Pinilla et al., 2007 ). 

Large-scale ChIP – ChIP experiments have suggested that all 

three factors regulate the expression of  CDC7  shown to be im-

portant for S phase, whereas SOX2 and NANOG regulate the 

expression of  CDC2 – CDK1 , which is crucial for G1 to S and 

G2 to M progression ( Boyer et al., 2005 ). In addition,  CYCLIN 

D1  and  CDK4  have been shown to be transcriptional targets of 

SOX2 and OCT4, respectively ( Boyer et al., 2005 ;  Greco et al., 

2007 ). A schematic summary of the published literature and the 

data generated from this manuscript is presented in  Fig. 8 . [ID]FIG8 [/ID]  Col-

lectively, our fi ndings and those of others suggest that the regu-

lation of cell cycle components is likely to be regulated by the 

important transcriptional network that controls pluripotency 

and self-renewal, and studies focused on these specifi c interac-

tions will help us to understand the unusual cell cycle regulation 

in ESCs. 

 Materials and methods 

 Culture and differentiation of hESCs 
 hESCs were grown on mitotically inactivated mouse embryonic fi broblasts 
and passaged essentially as previously described ( Stojkovic et al., 2004 ). 
EB differentiation was induced by harvesting hESCs with collagenase and 
culturing them in suspension in knockout DME (Invitrogen) containing 20% 
FCS (Hyclone), 1 mM  L- glutamine (Invitrogen), 100 mM of nonessential 
amino acids (Invitrogen), 100  µ M  b -mercaptoethanol (Sigma-Aldrich), and 
1% penicillin-streptomycin (Sigma-Aldrich). One to two passages before ex-
periments, hESCs were transferred to Matrigel (BD)-coated plates with feeder-
conditioned media as previously described ( Stojkovic et al., 2004 ;  Hyslop 
et al., 2005 ). 

 Karyotype analysis of hESCs 
 The karyotype of hESCs was determined by standard G-banding procedure. 

 Stable transfection of hESCs with the full-length cDNA of human NANOG, 
CDK6, and CDC25A 
 The full-length cDNA of human NANOG, CDK6, and CDC25A was 
isolated from cDNA of hESCs using the following oligonucleotides: 
NANOG forward, 5 9 -CATGAGTGTGGATCCAGCTTGT-3 9 ; NANOG 
reverse, 5 9 -ATCTTCACACGTCTTCAGGTTG-3 9 ; CDK6 forward, 5 9 -ACT-
GAATTCACCATGGAGAAGGACGGCCTGTG-3 9 ; CDK6 reverse, 
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 Apoptosis assay 
 Cells undergoing apoptosis can be enumerated using the annexin V – FITC 
apoptosis detection kit (BD). The protocol was performed in accordance 
with the manufacturer ’ s instructions and, in brief, comprises the following 
steps. Cells were harvested using Accutase, washed twice with ice-cold 
phosphate-buffered saline, and counted. 10 5  cells were suspended in 100 
 µ l of 1 ×  binding buffer (supplied), and 5  µ l annexin V – FITC and 5  µ l pro-
pidium iodide solution were added. The mixture was vortexed gently and 
incubated for 15 min at room temperature in the dark. 400  µ l of 1 ×  bind-
ing buffer was added, and the cells were analyzed by fl ow cytometry 
(FACSCalibur; BD). 

 Measurement of cell proliferation using BrdU incorporation method 
 hESC proliferation was measured by incorporation of BrdU (Roche) into 
the genomic DNA during the S phase (DNA replication) of the cell cycle. 
hESCs were grown in a 4-well plate to day 2 and incubated in medium 
containing BrdU for 45 min at 37 ° C in a humidifi ed atmosphere (5% 
CO 2 ). Cells were fi xed with ethanol and 50 mM glycine, pH 2.0, for 45 
min at room temperature and denaturated in 4 M HCl for 10 – 20 min. 
Subsequent detection of BrdU was accomplished with antibodies for 
BrdU (1:5) according to the manufacturer ’ s instructions and visualization 
at 488 nm using immunofl uorescence microscopy. For fl ow cytometry 
assay, hESCs were incubated and processed with a BrdU Flow kit (BD) 
according to the manufacturer ’ s protocol. Cells were stained with FITC or 
allophycocyanin anti-BrdU and 7-amino-actinomycin. Cells from the same 
population that were not BrdU labeled were used as a negative control. 
Flow cytometry analysis was performed using a FACSCalibur and Cell-
Quest software (BD). 

 Cell cycle analysis 
 Cell cycle analysis was performed using the CycleTest Plus DNA reagent kit 
(BD). hESCs were harvested by Accutase treatment and counted with a 
hemocytometer. 500,000 cells were fi xed, permeabilized, and stained in 
accordance with the manufacturers ’  instructions, and the sample was ana-
lyzed by fl ow cytometry using a FACSCalibur measuring FL2 area versus 
total counts. The data were analyzed using ModFit (Tree Star, Inc.) and 
FlowJo (Tree Star, Inc.) softwares to generate the percentages of cells in 
G1, S, and G2 to M phases of the cell cycle. 

 Cell signaling assays 
 Panorama antibody microarray for cell signaling containing 224 differ-
ent antibodies spotted in duplicate on nitrocellulose-coated glass was 
purchased from Sigma-Aldrich. 1 mg of NANOG-overexpressing or con-
trol subline cell extracts was collected, labeled with Cy3 and Cy5, re-
spectively, and hybridized to the slides according to the manufacturer ’ s 
instructions. Cy3 and Cy5 signals were read on the Gene Pix Pro 4.0 
(MDS Analytical Technologies). The results from the NANOG sublines 
were analyzed together using the GeneSpring software (Agilent Technol-
ogies). Sample processing was performed using three normalization 
steps, which involved dye swap where necessary, the division of each 
spot by the control channel, and the normalization of each spot to the 
50th percentile of the entire chip. Filter-on-confi dence criteria was used to 
select the most signifi cantly changed candidates (P  <  0.05). A ratio of 
 > 1.0 indicates higher expression in both NANOG sublines compared 
with both respective control hESC sublines, and a ratio  < 1.0 indicates 
higher expression in control hESC control sublines compared with 
NANOG sublines. 

 LightCycler real-time PCR analysis 
 Quantitative RT-PCR analysis was performed using QuantiTect SYBR Green 
PCR Master Mix (QIAGEN) essentially as previously described ( Boyer 
et al., 2005 ;  Becker et al., 2006 ). The LightCycler experimental run protocol 
used was: PCR activation step (95 ° C for 15 min), amplifi cation with data 
acquisition repeated 50 times (94 ° C for 15 s, annealing temperature for 
primers for 30 s, and 72 ° C for 20 s with a single fl uorescence data collec-
tion), melting curve (60 – 95 ° C with a temperature transition rate of 0.1 ° C/s 
and continuous fl uorescence data collection), and fi nally cooling to 40 ° C. 
The crossing point for each transcript was determined using the second de-
rivative maximum method in the LightCycler software version 3.5.3 (Roche). 
The  GAPDH  crossing point for each sample was used as the internal con-
trol of these real-time analyses. The data were analyzed using the compar-
ative threshold cycle method as described in the user bulletin for the 
LightCycler relative quantifi cation software version 1.01 (Roche). For each 
gene, the control was set to one, and all other values were calculated with 
respect to this. PCR reactions were performed using the primers (fi nal con-
centration of 0.5  µ M) described in Table S2 (available at http://www.jcb
.org/cgi/content/full/jcb.200801009/DC1). 

 Figure 8.    Schematic presentation of G1 to S 
transition in hESCs showing the role of NANOG, 
CDK6, and CDC25A.  A question mark is used 
to indicate lack of information of upstream 
regulators for CDK2. Data regarding the for-
mation of active complexes between three G1-
specifi c Cdks and CYCLIN D and E as well as 
CDC25A have been obtained from ongoing 
work in our group ( Neganova et al., 2008 ). 
Continuous lines represent data obtained 
from this manuscript, whereas dashed lines in-
dicate data obtained from literature  (Boyer 
et al., 2005) .   
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 Phosphatase assays 
 These were performed using the SensoLyte fl uorescein diphosphate (FDP) 
protein phosphatase assay kit (AnaSpec) according to the manufacturer ’ s 
instructions. This kit provides a fl uorogenic assay for measuring the activity 
of protein phosphatases such as tyrosine phosphatases and serine/threo-
nine phosphatases that convert the FDP into fl uorescein, which has a high 
extinction coeffi cient and emission quantum yield, therefore providing high 
assay sensitivity. Immunoprecipitations were performed using CDC25A 
antibody (F6; Santa Cruz Biotechnology, Inc.). The immunoprecipitation 
product was resuspended in 50  µ l of phosphatase buffer (20 mM Tris-HCL, 
pH 8.3, 150 mM NaCL, 2 mM EDTA, 0.01% Triton X-100, 5 mM DTT, and 
1 mg/ml BSA). 50  µ l of a protein phosphatase – containing sample was 
mixed with 50  µ l of FDP reaction solution. The reaction was incubated at 
30 ° C for 30 min, and 50  µ l of stop solution was added to stop the reac-
tion. Fluorescence signal was measured using excitation/emission = 
485 nm/538 nm. As a negative control, samples without phosphatase ac-
tivity (distilled water) were used. The difference in fl uorescence readings 
between the immunoprecipitation product and no antibody control was 
calculated to deduct background phosphatase activity. The phosphatase 
activity for the control sublines was set at 100%, and the respective values 
for the experiment sublines were calculated with respect to that. 

 Statistical analysis 
 Two-tailed pairwise Student ’ s  t  test was used to analyze results obtained 
from two samples with one time point. Analysis of variance (single factor 
or two factors with replication) was used to compare multiple samples (at 
one time or several time points). The results were considered signifi cant if 
P  <  0.05. 

 Tumor formation in SCID mice 
 All procedures involving mice were performed in accordance with institu-
tional guidelines and permission. Approximately 10 6  hESCs were injected 
into the testis of adult male SCID mice. After 70 – 90 d, mice were killed, and 
tissues were dissected, fi xed in Bouins overnight, processed, and sectioned 
according to standard procedures and stained with either hematoxylin and 
eosin or Weiger ’ s stain. Material for immunohistochemical analysis was 
fi xed in 4% PFA (Sigma-Aldrich) in PBS (Cambrex Bio Science Rockland, 
Inc.) overnight, processed, and sectioned to 6  µ m according to standard 
procedures. Sections were cleared using Histoclear (RA Lamb) and rehy-
drated, and endogenous hydrogen peroxide activity was blocked. Antigen 
retrieval was performed by microwaving (800 W) tissues in 10 mM of ci-
trate buffer, pH 6 (citric acid [Sigma-Aldrich] and distilled H 2 O). Endoge-
nous avidin/biotin activity was blocked using a blocking kit (Vector 
Laboratories). Sections were permeabilized (1% Triton X-100 [Thermo 
Fisher Scientifi c] and PBS solution) and blocked (5% normal goat serum 
[Invitrogen], 0.1% Triton X-100, and PBS), and sections were incubated 
with the following primary antibodies: AFP (1:100; Sigma-Aldrich), nestin 
(1:200; Millipore), and SMA (1:200; Sigma-Aldrich). Negative controls 
were performed with the omission of the primary antibody. A universal ABC 
detection kit (Vector Laboratories) with a purple-colored Vector VIP substrate 
(Vector Laboratories) was used to detect the primary antibodies. Sections 
were briefl y counterstained using Mayer ’ s hemalum and briefl y blued using 
4% alkaline alcohol (4% ammonia [Thermo Fisher Scientifi c] in 70% 
alcohol). Sections were dehydrated through a series of alcohols, cleared us-
ing Histoclear, and mounted using distyrene/plasticizer/xylene (RA Lamb). 

 Microscopy 
 Teratoma sections were visualized using a microscope (Diaphot 300; 
Nikon) with the following objectives: 4 ×  NA 0.13, 10 ×  NA 0.25, 20 ×  
NA 0.40, and 40 ×  NA 1.3. Digital images were recorded using a digital 
camera (DXM1200; Nikon). 

 Online supplemental material 
 Fig. S1 shows karyotype analysis of H1 NANOG and hES-NCL1 NANOG 
clones after 20 passages in culture. Fig. S2 shows cell proliferation as-
sessed by cell counting over three time points. Fig. S3 shows the main-
tenance of pluripotency and differentiation capability of NANOG-
overexpressing hESC clones. Fig. S4 shows that the C-terminal domain of 
NANOG is responsible for transactivation of  CDK6  and  CDC25A . Table 
S1 shows the sequences of siRNAs used for the down-regulation of  CDK6 , 
 CDC25A , and NANOG. Table S2 shows the sequences of oligonucleo-
tides used for the quantitative RT-PCR analysis. Table S3 shows the seq-
uences of oligonucleotides used for the quantitative PCR after ChIP 
experiments. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200801009/DC1. 

 AP staining 
 The AP staining was performed using the Alkaline Phosphatase Detection 
kit (Millipore) according to the manufacturer ’ s instructions. Cells were fi xed 
in 90% methanol and 10% formamide for 2 min and washed with rinse 
buffer (20 mM Tris-HCl, pH 7.4, and 0.05% Tween 20) once. Staining so-
lution (Naphthol/Fast Red Violet) was added to the wells, and plates were 
incubated in the dark for 15 min. The bright fi eld images were obtained 
using a microscope (Axiovert; Carl Zeiss, Inc.) and AxioVision software 
(Carl Zeiss, Inc.). 

 ChIP experiments 
 ChIP assays were performed mainly as previously described ( Atkinson 
et al., 2005 ). In brief, cells were harvested at 70 – 80% confl uence, and 
ChIP was performed according to the manufacturer ’ s instructions (Millipore). 
Sonication was optimized to produce chromatin fragments of 500 – 1,000 
bp in length, and DNA from each immunoprecipitation was purifi ed using 
the Qiaquick DNA Purifi cation kit (QIAGEN). Also included in the experi-
ment was a no antibody control immunoprecipitate to detect any back-
ground, and, if it was present, it was subtracted from each immunoprecipitate 
within that experiment. Pilot experiments performed with no antibody con-
trols and irrelevant antibodies such as IgG revealed no signifi cant differ-
ences; thus, no antibody controls were used in all ChIP experiments. 
Standard errors were generated for quantitative PCR reactions by reading 
each sample in triplicate. The sequences of the primers used for this pur-
pose are given in Table S3. 

 Immunoprecipitation experiments 
 hESCs were washed with ice-cold PBS and lysed on ice for 30 min in radio 
immunoprecipitation assay buffer. Lysates were centrifuged at 14,000  g  
for 5 min. The supernatant from cell lysates was collected, and the protein 
concentration was measured using Bradford Reagent (Bio-Rad Laborato-
ries). Protein G – agarose (PGA) beads were washed three times with PBS 
and incubated for 2 h in a rotor at 4 ° C in radio immunoprecipitation assay 
buffer with PMSF and protease inhibitor cocktail (Roche). 400  µ g of protein 
recovered from cell supernatants was precleared with 20  µ l PGA slurry for 
at least 2 h on a rotor at 4 ° C. PGA beads were removed by centrifugation 
at 14,000  g  for 5 min at 4 ° C. Immunoprecipitation was performed by 
overnight incubation/rotation with 2  µ g of mouse monoclonal anti-CDK2 
antibody (D-12; Santa Cruz Biotechnology, Inc.), rabbit polyclonal anti-
CDK4 (C-22; Santa Cruz Biotechnology, Inc.), or rabbit polyclonal anti-
CDK6 antibody (C-21; Santa Cruz Biotechnology, Inc.). A no antibody 
control was also included for each sample. After incubation, 20  µ l of PGA 
beads was added to immunoprecipitated samples and returned to 4 ° C for 
2 h with rotation. PGA beads with bound protein complexes were recov-
ered by centrifugation at 14,000  g  for 5 min, and beads were washed 
once with PBS and 0.2% Triton X-100 and twice with PBS. The sample was 
divided into two aliquots: one to be used for kinase assays and the second 
one for Western blotting. For the latter procedure, 40 – 60  µ l of SDS sample 
buffer was added to the sample before boiling for 5 min. The samples were 
separated using denaturing acrylamide gels, and Western blotting was 
performed as indicated above. 

 Kinase activity assays 
 Kinase activity assays were performed using the PKLight Assay kit (LT07-
500; Cambrex Bio Science Rockland, Inc.) according to the manufacturer ’ s 
instructions. The PKLight Assay exploits the kinases ’  intrinsic ATPase activity, 
resulting in the cleavage of the  g -phosphate moiety of ATP and its subse-
quent insertion into the target substrate. This results in the phosphorylation of 
the substrate and the conversion of ATP to ADP. The PKLight Assay measures 
the consumption of ATP and is based on the bioluminescent measurement of 
the remaining ATP present in the wells after the kinase reaction. The biolumi-
nescent signal of PKLight Assay is inversely proportional to kinase activity. 
Phosphorylation of Retinoblastoma or H1 was measured by incubating for 
10 min at room temperature 20  µ l of immunoprecipitation product for the ki-
nase of interest (see previous section) with 1 mM ATP, kinase buffer (50 mM 
Tris, pH 7.5, and 5 mM MgCl 2 ), and 5 mg/ml Retinoblastoma or H1 as 
substrate. 10  µ l of kinase stop solution was added to each sample at room 
temperature for 10 min. Finally, 20  µ l of ATP detection reagent was added 
to each sample at room temperature for 10 min, and the readings were 
taken using a luminometer. The difference in luminometer reading between 
the no antibody control and immunoprecipitation product containing the an-
tibody was calculated. This fi gure, which is indicative of remaining ATP in 
the solution, was inversely correlated to the kinase activity. The kinase activ-
ity for the control sublines was set at 100%, and the respective values for the 
NANOG sublines were calculated with respect to that. 
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