
May 2017 | Volume 8 | Article 5501

REVIEW
published: 12 May 2017

doi: 10.3389/�mmu.2017.00550

Frontiers in Immunology | www.frontiersin.org

Edited by: 

Lee-Ann H. Allen,  

University of Iowa, USA

Reviewed by: 

Elsa Anes,  

Universidade de Lisboa, Portugal  

Shivaprakash Gangappa,  

Centers for Disease Control and 

Prevention, USA

*Correspondence:

Colleen B. Jonsson  

cjonsson@utk.edu

Specialty section: 

This article was submitted to 

Microbial Immunology,  

a section of the journal  

Frontiers in Immunology

Received: 03 December 2016

Accepted: 24 April 2017

Published: 12 May 2017

Citation: 

Camp JV and Jonsson CB (2017) A 

Role for Neutrophils in Viral 

Respiratory Disease.  

Front. Immunol. 8:550.  

doi: 10.3389/�mmu.2017.00550

A Role for Neutrophils in Viral 
Respiratory Disease
Jeremy V. Camp1 and Colleen B. Jonsson2*

1 Institute of Virology, University of Veterinary Medicine at Vienna, Vienna, Austria, 2 Department of Microbiology, University of 

Tennessee-Knoxville, Knoxville, TN, USA

Neutrophils are immune cells that are well known to be present during many types of lung 

diseases associated with acute respiratory distress syndrome (ARDS) and may contri-

bute to acute lung injury. Neutrophils are poorly studied with respect to viral infection, 

and speci�cally to respiratory viral disease. In�uenza A virus (IAV) infection is the cause 

of a respiratory disease that poses a signi�cant global public health concern. In�uenza 

disease presents as a relatively mild and self-limiting although highly pathogenic forms 

exist. Neutrophils increase in the respiratory tract during infection with mild seasonal 

IAV, moderate and severe epidemic IAV infection, and emerging highly pathogenic avian 

in�uenza (HPAI). During severe in�uenza pneumonia and HPAI infection, the number 

of neutrophils in the lower respiratory tract is correlated with disease severity. Thus, 

comparative analyses of the relationship between IAV infection and neutrophils provide 

insights into the relative contribution of host and viral factors that contribute to disease 

severity. Herein, we review the contribution of neutrophils to IAV disease pathogenesis 

and to other respiratory virus infections.
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INTRODUCTION

Neutrophils are a type of polymorphonuclear granulocyte that di�erentiate from myeloblasts in 
the bone marrow to comprise approximately 60% of the circulating blood leukocytes (1). �e 
formation of intracellular granules (azurophilic granules, speci�c granules, gelatinase granules, 
and secretory vesicles) and the morphologically characteristic segmentation of nuclei occur during 
the terminal di�erentiation process into neutrophils (1). Neutrophils are o�en considered profes-
sional bacteria-responsive immune cells: they express bacteria-speci�c receptors (e.g., formylated 
peptide receptors or certain toll-like receptors, “TLRs”) and their granules have anti-bacterial or 
bacteriostatic properties. Currently, their role in viral infection has received very little scienti�c 
attention (2).

Neutrophils are present during many types of lung diseases associated with acute respira-
tory distress syndrome (ARDS) and may contribute to acute lung injury (3–12). �e lung has 
a global in�ammatory response to infection regardless of etiology, and this response includes 
the in�ltration of neutrophils and macrophages in response to chemotactic signaling which 
originates in the lung (3, 5, 12–20). �ese phagocytic cells leave circulation and hone to sites 
within the infected airways where they may deploy potent e�ector functions to control disease 
(Figure 1) in response to pathogen associated molecular patterns (PAMPs) and in�ammatory 
cytokines and chemokines (21, 22). In the case of viral infections, the type I interferons (IFN) and 
IFN-stimulated genes (ISGs) signal an appropriate immune response (23–26). Lethal infections 
may result from insu�cient information or incorrect information about the speci�c cause(s) of 
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FIGURE 1 | In�uenza A virus (IAV) infection in the upper respiratory tract. Infection of epithelial cells in the bronchus results in the release of type I interferons 

(IFN α/β) which signal to nearby cells. The result of IFN α/β signaling is the release of pro-in�ammatory cytokines (e.g., IL-1β, IL-6, TNFα) that signal to endothelial 

cells, which help spread in�ammatory signals (chemokines, such as CCL2, CCL5, CXCL8, CXCL10) throughout the blood to recruit innate immune cells to the site 

of infection. Recruited innate immune cells [such as natural killer cells (NK); monocytes (Mo); and neutrophils (NΦ)] must interact with activated endothelium to leave 

the blood stream and migrate toward the site of infection. There they can perform effector functions to control infection, such as releasing reactive oxygen species 

(ROS) and directly killing infected cells (cytolysis).
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infection, thereby signaling inappropriate (incorrect or exces-
sive) immune responses (27). Neutrophils, as �rst-responders 
to many forms of airway infection, may be a keystone species 
in determining viral disease outcome; however, neutrophils are 
poorly studied with respect to viral infection and speci�cally to 
respiratory viral disease.

Much research has focused on the role of neutrophils in severe 
versus mild respiratory disease, as well as their role in bacterial 
infections. It is, therefore, important to establish a general role of 
neutrophils in respiratory virus infection to provide a ground-
work into more speci�c questions (e.g., are neutrophils capable 
of catering to a virus-speci�c response?). Herein, the evidence 
for the presence and activities of neutrophils during respiratory 
viral infection is reviewed. Having established spatio-temporal 
aspects of the neutrophil response to in�uenza A virus (IAV), 
the potential antiviral function(s) of neutrophils during acute 
virus infection as well as recovery from infection are discussed. 
�e discussion will focus on IAV and neutrophil activities during 
the course of a “typical” �u infection: activation, migration, and 
e�ector functions in  situ (Figure  1). IAV are particularly well-
suited for the study of neutrophils in viral respiratory disease, 
since they are well-studied in humans and animal models, and 
it is well-established that infection with speci�c viral variants 
(i.e., genetic point mutations) alter the course of disease from 
mild to severe (28). More recently, speci�c IAV viral variants 
that a�ect pathogenicity have been linked to alterations of the 
neutrophil response (29). �us, a comparison of the neutrophil 
response between disease phenotypes of a single virus species 
(In�uenza A virus) may elucidate a role for neutrophils in the 
viral microenvironment. Herein, we review evidence of neu-
trophil responses during the course of disease in various IAV 

phenotypes in animal models of infection, as well as comparing 
these responses to what is known about neutrophil responses  
during bacterial infection of the airways.

INFLUENZA A VIRAL PHENOTYPES

In�uenza A virus poses a concern for global public health due to 
emergence of strains with increased human transmission and/or 
increased pathology (30–35). In 2009, a novel virus type, in�uenza 
A(H1N1)pdm09 IAV, emerged with an increased transmission 
rate and greater disease, i.e., moderate to severe patho logy rela-
tive to seasonal human IAV (36–50). Clinical isolates of in�uenza 
A(H1N1)pdm09 have relatively little genetic variability yet cause 
variable clinical outcomes from moderate to severe pathology, 
including ARDS (39, 41, 47, 48, 51). �erefore, they are well-suited 
to understand host and viral contributions to IAV pathogenesis. 
A detailed discussion of the viral replicative cycle is beyond this 
review, yet excellent reviews are plentiful [e.g., Ref. (52–54)]. IAV 
is a well-studied model for virus infection in laboratory animals, 
such as mice and ferrets, and much is known about the contribu-
tions of viral and host determinants to severe disease (55–58). 
Retrospective and experimental infection studies routinely 
demonstrate common occurrences in the formation of severe 
IAV [including severe in�uenza pneumonia (SIP) and ARDS] 
in humans, ferrets, and mice; these include increased cytokine 
secretions in the lung, di�use alveolar damage (“DAD,” bronch-
ointerstitial pneumonia in veterinary pathology), and neutro philic 
in�ltration (29, 55, 58–66).

In general, IAV infection is an excellent model to investigate 
the respiratory system’s immune response to viral infection, spe-
ci�cally the pathway leading to severe pneumonia and/or ARDS. 
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FIGURE 2 | The course of disease following in�uenza A virus (IAV) infection. A timeline depicting major events in the viral replication cycle (red), the host 

immune response (blue), and the effects on the host tissue environment (green) during an IAV infection of the airways. A star marks the critical point for the formation 

of severe disease versus recovery from infection. This review posits that at this timepoint, coincident with a second wave of increasing neutrophilia and in�ammation, 

the outcome of disease is determined.
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In�uenza disease is commonly relatively mild and self-limiting, 
although highly pathogenic forms exist (42, 59, 67–72). �e major 
complication from IAV infection is the formation of SIP which 
may develop into ARDS (59, 65, 67, 68, 70–73). �e reason(s) 
why infection with IAV may lead to severe viral pneumonia and 
ARDS is poorly understood, but is thought to involve both host 
and viral factors. �e respective and combined contributions of 
the host innate immune response and viral factors to the timing 
and severity of SIP are poorly understood. Neutrophils are pre-
sent in the respiratory tract during infection with mild seasonal 
IAV, SIP, and highly pathogenic avian in�uenza viruses [“HPAI,” 
which includes avian in�uenza A (H5N1) virus] (50, 51, 65, 67, 
68, 74–76). During SIP and HPAI infection, an increase in the 
number of neutrophils in the lower respiratory tract (LRT) is 
correlated with disease severity (50, 51, 65, 67, 68, 76).

Although clinical pathology suggests that a spectrum of 
disease results from IAV infection, there are at least three disease 
“phenotypes” caused by infection with IAV, listed by increasing 
case fatality rate: a mild upper respiratory tract (URT) infection, a 
SIP which can lead to ARDS, and a LRT infection which can lead 
to hypercytokinemia. �e virological basis for disease phenotype 
is related to adaptations to mammals—most important are 
receptor speci�city and e�ciency of replication—and the major 
mechanisms have been de�ned through the use of experimental 
animal models (30, 32, 33, 57, 77–80). An “ideal” viral infection 
(i.e., one that is successful for the virus and non-lethal for the 
host) may be considered a balance between virus replication and 
an immune response necessary to promote viral shedding, typi-
cal of mild seasonal (“epidemic”) IAV. In general, emergent IAV, 
directly or indirectly from avian enzootic cycles, have increased 
pathology in humans, the most fatal form of which is a syndrome 
of complete immune dysregulation (65, 69, 70, 81–84). IAV is 
genetically highly variable, and mechanisms for increased disease 
severity are multifactorial, involving host and viral factors.

Uncomplicated In�uenza
�e majority of yearly, seasonal IAV infections in the world 
cause a relatively mild, self-limiting URT disease. In�uenza 
disease is characterized by an abrupt onset fever, myalgia, and 
malaise, with symptoms similar to other URT infections, such 
as sneezing, coryza, and rhinorrhea (67, 85). Symptoms can 
last anywhere from 1–5  days and are clinically indistinguish-
able from other “�u”-like illnesses, including bacterial and 
viral infections that cause the common cold [e.g., Streptococcus 
pneumoniae, Haemophilus in�uenzae, human rhinovirus (HRV) 
infection, Human respiratory syncytial virus (hRSV) infection, 
and coronavirus infection] (85–88). Experimental infection of 
humans with IAV suggests that the virus is mainly restricted to 
the URT, although sampling the LRT is di�cult (67, 68, 87, 89). 
While fever typically begins 2 days postinfection, virus is shed 
from the URT in nasal secretions as quickly as 24 h postinfec-
tion, allowing e�cient transmission prior to symptom onset and 
continues until 4–5 days postinfection (86, 87, 89) (Figure 2). 
Rhinorrhea is coincident with neutrophilic rhinitis and shedding 
of necrotic nasal epithelium (67, 90, 91). Surprisingly, the LRT 
seems to be involved in uncomplicated IAV infection, although 
this observation is frequently overlooked or unaddressed in stud-
ies (68, 92). In humans, local and systemic concentrations of IL6, 
CXCL8/IL8, and MCP1/CCL2 correlate with increased disease 
severity (i.e., symptom severity and increased virus shedding) 
(87–89, 93) (Figure 2).

Severe In�uenza Pneumonia
In�uenza A(H1N1)pdm09 virus spread quickly throughout 
the globe, much like previous pandemic viruses, such as the 
1918 H1N1 “Spanish �u” IAV. Humans infected with in�uenza 
A(H1N1)pdm09 virus also presented with typical �u-like 
sym ptoms (e.g., fever, cough); however, there was an increased 
number of cases presenting with dyspnea, respiratory distress, 
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and pneumonia (36–38, 40–48, 50, 94, 95). Additionally, retro-
spective assessments show a proportionately greater number of 
adolescents and adults with severe disease compared to typical 
seasonal in�uenza, and patients with comorbidities, such as 
obesity and asthma, were at higher risk of severe infection  
(51, 96–98). In general, the virus causes infection of URT, as well 
as bronchitis and bronchiolitis, and a high proportion of cases 
presented with severe disease in the form of viral pneumonia  
(42, 51, 96). Histopathologic changes in autopsies revealed 
extensive cytonecrosis, desquamation, and in�ammatory in�l-
tration of the bronchus and trachea, mild to severe necrotizing 
bronchiolitis (42, 50, 51, 99). �e primary pathologic �nding 
of SIP was sporadic to DAD with hyaline membrane formation, 
edema, and occasionally hemorrhage (42, 50, 51, 99). As is typical 
of in�uenza infections, some patients experienced bacterial coin-
fection although this was not in a majority of patients, including 
those dying from ARDS (42, 48, 50, 51, 93, 99–103). �is may 
distinguish the in�uenza A(H1N1)pdm09 virus from the 1918 
H1N1 IAV, for which bacterial superinfection was determined 
to cause a majority of the deaths (104, 105), although this may 
more accurately re�ect improved hygiene and standard of care. 
As discussed below, studies of the reconstructed 1918 H1N1 IAV 
using animal models suggest that this virus was highly pathoge-
nic irrespective of secondary bacterial pneumonia (62, 106–108).

Across many cohorts of clinical patients, serum concentra-
tion of IL6, CCL2, and CXCL8 were signi�cantly elevated in 
severe cases of in�uenza A(H1N1)pdm09 viral pneumonia 
compared to patients with other con�rmed illnesses including 
seasonal IAV, milder forms of in�uenza A(H1N1)pdm09 virus, 
bacterial pneumonia, or other viral respiratory infection [hRSV, 
HRV, human adenovirus (hAdv)] (93, 100–102, 109). �ese 
cytokines and chemokines remained elevated over time (up to 
6 days following hospital admission) in cases of severe in�uenza 
A(H1N1)pdm09 viral pneumonia, whereas they decreased as 
patients recovered from seasonal and mild in�uenza A(H1N1)
pdm09 virus infection (93, 100). In severe cases of in�uenza 
A(H1N1)pdm09 virus infection, decreased type I IFN and ISG 
production was occasionally noticed compared to adult patients 
with seasonal IAV infection (93). �e in�uenza A(H1N1)pdm09 
viruses have received much scrutiny, and a large dataset of the 
genetics and pathogenic phenotypes of virus isolates exists in 
human and animal models. �e H1N1 subtype IAV are highly 
important viruses due to their pandemic potential, as supported 
by the historical record (62, 68, 110). Some in�uenza A(H1N1)
pdm09 viruses can infect the LRT in humans and in the ferret 
animal model, which makes them excellent laboratory viruses 
to investigate the involvement of the LRT in pathogenesis, 
speci�cally in the development of severe disease (42, 111–115). 
�eir overall genetic similarity makes for excellent comparison 
studies between natural clinical isolates, and reverse genetics 
systems exist to study molecular pathogenicity (41, 95, 113, 
116–126).

HPAI and Cytokine Storm
Avian IAV has been recorded sporadically entering the human 
population over the last 20 years, beginning with an H5N1 sub-
type virus which emerged in China in 1997 (70, 82, 127, 128). 

It is likely that this avian in�uenza A (H5N1) virus and other 
emergent strains result from contact with infected domestic 
poultry that are infected with HPAI (82). �e disease caused 
by avian in�uenza A (H5N1) virus is characterized by DAD, 
alveolar necrosis, and alveolar hemorrhage [human disease, 
including pathology, is reviewed in Ref. (83)]. �ere is evidence 
of viremia and systemic spread; IAV antigen has been detected in 
the trachea, bronchi, and alveolar pneumocytes (69, 76), as well 
as infrequently in the brain and gastric epithelium (59, 76, 83).  
�e innate cellular immune response in the lungs was character-
ized by an increase in inter-alveolar macrophages/histiocytes 
(59, 65, 69, 71, 81, 129) and only moderate in�ltration of lym-
phocytes and neutrophils in the few patients that were analyzed 
postmortem (69, 76). Systemically, patient serum had high 
concentrations of CXCL10, CCL2, IL6, IL8, and IL10 compared 
to matched-control patients with seasonal H3 and H1 IAV, and 
these concentrations were correlated with viral load in throat 
(59, 65, 69). In lethal cases, the result of infection and immune 
dysregulation led to multiple organ failure (e.g., kidney tubular 
in�ammation, necrotic lesions in brain, impaired liver func-
tion) and abnormal clotting. Reactive histiocytes undergoing 
hemophagocytosis were frequently found in bone marrow and 
lungs of patients, which is indicative of diseases involving hyper-
cytokinemia (59, 65, 70, 81, 83, 130).

Other events involving avian IAV transmission to humans are 
known and are o�en associated with veterinary or other animal 
workers; for example, a 2004 case of avian in�uenza A (H7N7) 
virus infection in a veterinarian in Europe showed severe fatal 
pneumonia and DAD (131). It was reported that 1  L of sero-
sanguineous �uid was drained from his chest upon autopsy. In 
2013, another avian IAV emerged in Southeast Asia; this time 
an avian in�uenza A (H7N9) virus (71, 72, 129, 132). �e histo-
pathology was similar to avian in�uenza A (H5N1) virus: severe 
pneumonia, DAD, and epithelial necrosis were common features 
of infection with both viruses (71, 72). �erefore, it seems the 
typical presentation of human patients infected with either virus 
includes high levels of CXCL10, CCL2, IL-6, and CXCL8 in the 
plasma, peripheral blood leukopenia, and lung neutrophilia  
(65, 69, 81, 129, 130, 132), and this is also similar to experimental 
infection of laboratory animal models (111, 133). �ere were 
slightly more bacterial coinfections in cases of H7N9 compared 
to H5N1 avian IAV (71, 72, 81). In a direct comparison, serum 
from patients with infected with avian in�uenza A (H5N1) virus 
had higher concentrations of IFNα and IFNγ in the blood and 
lower levels of IL8, whereas the opposite was true for patients 
with avian in�uenza A (H7N9) virus (134). Similarly, CXCL9 
and CXCL10 were higher in patients with avian in�uenza A 
(H5N1) virus, whereas CCL4 concentrations were higher in 
patients with avian in�uenza A (H7N9) virus (134). Infection 
with either virus resulted in higher blood C-reactive protein 
(CRP) (129). Variability between patients may account for the 
apparent discrepancies between speci�c immune responses. 
�erefore, experimental infection of laboratory animals removes 
individual variability and provides a clear picture of general dis-
ease progression, with important caveats for their comparison 
to human disease as discussed in more detail in the next section 
(58, 135).
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NEUTROPHILS IN IAV COURSE  
OF DISEASE

Neutrophils are increased in the lungs and blood a�er infection 
with pathogenic IAV in mice, humans, and ferrets (28, 136, 137). 
Cell depletion studies have demonstrated that neutrophils are 
necessary for recovery from severe, but not mild, IAV infection 
(29, 138, 139). Studies in mice show that neutrophils have e�ects 
during both early and late stages of disease (140). As discussed in 
detail below, initial pathogen sensing through various pathogen 
recognition receptors (PRRs) stimulates in�ammatory signals 
from resident macrophages to initiate neutrophil chemotaxis 
to the infected airways (Figure 1). For example, TLR7 recogni-
tion of IAV dsRNA- and Myd88-mediated release of TNFα and 
CCL3 by mononuclear cells is important for neutrophil recruit-
ment to the site of infection (141, 142). Transgenic mice have 
been used to study the contribution of speci�c cytokines and 
chemokines to in�ammation following IAV infection, particu-
larly as this relates to “hypercytokinemia,” and are summarized 
in Tables S1–S4 in Supplementary Material. �e signals from 
the infected lung are propagated systemically by endothelial 
cells, which recruit and tether neutrophils. �e importance of 
endothelial signaling in the development of severe disease has 
been shown recently using sphingosine-1 phosphate agonist to 
prevent severe disease in animal models of both in�uenza virus 
and respiratory syncytial virus (143, 144). �e complex interac-
tions governing neutrophil extravasation, migration through 
the interstitium, and crossing the alveolar epithelium are well 
known in relation to many forms of ALI and the development 
of ARDS with the exception of conditions surrounding viral 
infection, although mechanistically they should be quite similar  
(3–5, 7, 145, 146).

Neutrophil Migration
In the ferret model, the migration of neutrophils to the lungs 
occurs in two distinct waves: a �rst wave within hours of chal-
lenge, peaking a�er 24  h then decreasing; and a second wave 
that increases over time until disease resolution or death (111) 
(Figure  2). In the ferret model, we have shown that the neu-
trophils become concentrated at speci�c foci in the lungs coin-
cident with in�uenza-positive epithelium and the expression of 
chemoattractant chemokine genes (22). Neutrophil chemotaxis 
in humans is thought to be mediated by many factors, such as the 
chemokine CXCL8, cytokines IL-1 and TNFα, and complement 
C5a (145, 147, 148). During both mild and severe IAV disease, 
patients show increased blood CRP and activation of C5a (149), 
as well as increased secretion of CXCL8, TNFα, and IL-1 in 
nasal washes, which correlate with disease severity (87, 89, 93,  
150–152). In the mouse model of in�uenza virus infection, 
chemical reduction of C5a during IAV infection reduced lung 
neutrophilia (153). Similarly, knockout mice de�cient in the 
in�ammasome pathway or mice not expressing cytokines, 
such as IL-1b and IL-6, have decreased neutrophil activation 
and migration to the lungs during IAV infection (Table S1 in 
Supplementary Material) (154–156). Mice do not possess 
CXCL8, but CXCL1 and CXCL2 have equivalent functions. 
Neutrophils contribute CXCL2 to the IAV-infected mouse 

lung to further stimulate neutrophil recruitment (157). More 
recently, it was shown that removing a CXCL1 repressor (Setdb2)  
does not increase recruitment of neutrophils to the lungs of 
mice infected with IAV PR8, rather it reduces the ability to 
respond to bacterial superinfection (158). In addition, it was 
shown that another ISG, CXCL10, operates on a unique subset 
of CXCR3+ neutrophils present during mouse IAV infection 
in an autocrine manner, increasing chemotaxis, oxidative 
burst, and enhancing in�ammation (157) (Tables S3 and S4 in 
Supplementary Material). Finally, aryl hydrocarbon receptor 
is somehow linked to increases in NO and neutrophilia in the 
lungs of IAV-infected mice independently of known neutro phil 
chemoattractants or mechanisms of neutrophil extravasation  
(159–162).

Neutrophil Extracellular PRRs  
and Phagocytosis
In cell coculture, human neutrophils were seen to interact 
speci�cally with IAV-infected cells (163), although the nature 
of this interaction in the infected lung is unknown. Neutrophils 
are phagocytic cells, and their methods for sensing extracellular 
pathogens rely on TLRs (2, 147). Stimulation of neutrophils 
through cell surface TLRs has been recorded to promote cytokine 
secretion (CXCL8 and TNFα via NFκB and AP-1), formation of 
reactive oxygen species (ROS), phagocytosis, granule secretion, 
neutrophil extracellular trap (NET) formation, and migration 
(145, 147, 148). Human neutrophils highly express nucleic acid-
detecting TLRs, speci�cally endosomal TLR8 (164, 165), but do 
not express nor respond to activators of TLR3 or TLR7 (164–166). 
[Interestingly, TLR3−/− mice have increased neutrophilia and 
fewer macrophages in the lungs, yet have increased survival 
a�er infection with IAV (167, 168).] TLR4 is required for LPS-
induced neutrophil migration to the lung (169) and can stimulate 
immunostimulatory responses via TRIF adaptors (170); however, 
TLR4-stimulation does not lead to the production of type I IFN 
in neutrophils (166, 171).

Several innate immune e�ector proteins with opsonizing 
func  tions that are present in airway mucosae are known to inter-
act with both IAV and neutrophils. Surfactant protein D, a lung 
collectin, is an innate immune defense against a variety of viruses, 
opsonizing the viruses for phagocytosis by neutrophils, which in 
turn causes the production of ROS (172–178). Human neutrophil 
defensins are short basic peptides released from neutrophil gran-
ules during in�ammation (145, 178, 179). �ey have been shown 
to interact with IAV, reducing infectivity, and promote neutrophil 
phagocytosis and clearance of IAV (178–182). Defensins may 
also bu�er the oxidative burst from neutrophils that follows from 
phagocytosis of viruses that have been opsonized by surfactant 
protein D (178–180). One study indicated that neutrophils do 
not interact with immunoglobulin-bound IAV (183); however, 
another showed that protective anti-IAV antibody therapy 
only protected mice in the presence of neutrophils (184). �e 
hypothesis that IAV pathogenicity can be partially explained 
by infection with viral variants that can evade opsonization 
by innate immune e�ectors is attractive and deserves further  
study (176).
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Neutrophil Intracellular PRRs
Neutrophils express sialic acid receptors and may become 
infected with IAV (74, 185, 186). Neutrophils infected with IAV 
have increased apoptosis, but infection does not result in the 
production of virus (186). Infection of human neutrophils with 
IAV treated at 56°C to denature the viral replicase but not HA 
suggested that infection alone, but not replication, is su�cient to 
stimulate the release of CXCL8 and CCL4 in human neutrophils 
(187). Neutrophils infected with IAV have rapid upregulation 
(<9  hpi) of type I IFN pathways, including cytoplasmic PRRs, 
IFNβ, and ISGs (186), which is counter to the long-held dogma 
that neutrophils were incapable of gene expression. �is is may 
be due to RIG-like receptors (RLRs) sensing of viral dsRNA, as 
neutrophils transfected with poly(I:C) (a viral RNA mimic) have 
a similar response (166). Additionally, neutrophils express nod-
like receptors but it is unclear how these interact with IAV infec-
tion (188, 189). In general, in�ammasome and pro-IL1 activation 
following IAV infection is poorly understood (154, 155, 190, 191). 
However, studies of IAV infection using caspase-1, IL-1β, or 
IL-1R transgenic mice show modulation of neutrophil in�ltration 
and pathology and suggest that it is an IAV subtype-dependent  
e�ect (154, 191–195) (Tables S1 and S2 in Supplementary 
Material). Furthermore, it has been demonstrated that the HA 
of some IAV isolates suppresses neutrophil activation, providing 
further evidence for IAV subtype-dependent e�ects on neutro-
phils (185, 186, 196).

Neutrophil Activation and Degranulation
Activation of TLRs and RLRs trigger degranulation and the 
expression of surface CD11b (166), which pairs with CD18 to 
form the “Mac-1” integrin dimer that binds collagen (197). �is 
facilitates migration through tissues, and release of gelatinase or 
collagenase (MMP-2 and MMP-9) from neutrophils assist in clear-
ing connective tissue from the path. At the site of infection, neu-
trophils release microbial e�ectors [reviewed in Ref. (145, 198)].  
Neutrophils develop granules sequentially (azurophilic, speci�c, 
gelatinase, secretory) and secrete granules in the reverse order 
(145). Secretory and gelatinase granules are released shortly a�er 
endothelial transmigration and contain membrane proteins 
essential for movement [extracellular matrix (ECM)-binding 
integrins] and pathogen recognition [immunoglobulin (FcR) 
and complement receptors] (145). Speci�c and azurophilic gra-
nules contain tissue-destroying enzymes and antimicrobial 
proteins. For example, neutrophil myeloperoxidase (MPO) may 
contribute to lung injury during IAV infection (199); however, it 
may have direct antiviral e�ects on IAV (200). An investigation 
found no di�erence between IAV infection of a wild-type and 
neutrophil elastase knockout mouse, measuring lung function, 
chemokine secretion, and neutrophil recruitment (201) (Table S5 
in Supplementary Material). �e contents of the granules can be 
secreted to destroy ECM (such as MMP-9) or directed toward 
phagosomes to destroy engulfed microbes. �e production of 
hypochlorous acid (HOCl) is the main oxidant used in phago-
somal killing, and its production is dependent on the generation 
of ROS by the neutrophils. Interestingly, infection by IAV was 
related to the inhibition of phagosomal killing of bacteria (196).

Neutrophil degranulation primes neutrophils for ROS 
generation by mobilizing NADPH oxidase components to the 
plasma membrane (145) and exocytosis of MPO. IAV infection 
causes the generation of ROS in neutrophils (202). Oxidative 
burst is thought to have direct microbial e�ects; however, the 
direct e�ect on IAV has not been published (203). IAV infec-
tion bene�ts from the presence of ROS in the environment 
(204, 205), yet IAV also suppresses NADPH oxidase activity 
within infected phagocytes (206, 207). Many have investigated 
the e�ects of ROS and NO on lung in�ammation during IAV 
infection and found that reduction of oxidative stress in the 
form of both ROS and NO alieves IAV-dependent lung injury  
(206, 208–213) (Table S5 in Supplementary Material). For 
example, oxidized lipids in the lung environment may trigger 
TLR4, activating immune cells and contributing to increased 
lung injury (214–216).

Neutrophil Netosis
Neutrophils undergo a form of programmed cell death called 
netosis, in which NETs are formed (217). NETs are extracellular 
strands DNA wrapped in histones and enriched in neutrophil 
e�ector proteins (e.g., neutrophil elastase and MPO) (218). 
NETs have the e�ect of killing many pathogens, including 
bacteria (146), fungi (219), protozoans (220), and more recently 
viruses (221). NETs are becoming the focus of study in autoim-
mune disease atherosclerosis, since they damage endothelium 
(222–224). Recently, it was shown that hantavirus stimulates 
NET production during infection, which leads to the generation 
of autoantibodies and may provide a mechanism for the hemor-
rhagic fever caused by Old World hantaviruses (225). NETs are 
typically found with histones, MPO, and neutrophil elastase, and 
the e�ect is to isolate the e�ects of these molecules directly onto 
the pathogen surface with a “sticky” NET of nucleic acid. NETs 
contribute to acute lung injury and alveolar capillary damage 
during IAV infection (139). Yet, very little is known about the 
relationship between NETs and viral infection in viral disease 
pathogenesis (226).

In summary, neutrophils are capable of recognizing viruses 
via PRRs as either opsonized virions or via endosomal TLR. 
Although the signaling cascade di�ers from other phagocytic 
cells, neutrophils are capable of responding to viral PAMPs with 
respiratory burst, degranulation of proteases and cytokines, and/
or netosis. It is not clear if these responses are e�ective against 
in�uenza virus; in fact, evidence exists that suggest in�uenza 
viruses may take advantage of the in�ammatory environment. 
More importantly, it is not clear if there are di�erences in 
response to di�erent in�uenza virus subtypes or strains. As is 
true for many respiratory etiologies, neutrophil responses must 
be balanced during in�uenza virus infection to adequately con-
trol of in�ammation while promoting pro-immune responses. 
�e timing of neutrophils during disease progression correlates 
with a key point in divergent disease outcomes (Figure 2), and 
neutrophils may act both globably and locally at foci of infection 
(22, 111). �us, neutrophils are focused in the airways at critical 
timepoints following infection and therefore balancing their 
potent in�ammatory e�ector functions may determine disease 
outcome.
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COMPARISONS OF NEUTROPHILS IN 
VIRAL RESPIRATORY DISEASES

As discussed above, there appears to be a correlation between the 
timing and location of IAV infection and the action of neutro phils, 
but evidence directly linking these phenomena together remains 
overall circumstantial. In contrast, during bac terial pneumonia 
there is direct evidence of the importance of neutrophils in dis-
ease: bacterial PAMPs directly upregulate neutrophil activating 
and chemoattractant chemokines, bacteria have de�ned anti-
neutrophil functions, and some bacteria, e.g., Mycobacterium 
tuberculosis, rely on neutrophils to establish their granulomatous 
niche (6, 227, 228). Similarly, we suggest that viruses may interact 
with respiratory cells to create a viral microenvironmental niche. 
To further substantiate a link between neutrophils and virus 
infection, evidence for the role of neutrophils in selected viral 
respiratory diseases is summarized in Tables 1 and 2. Discussion 
below focuses on common patterns of neutrophil responses in 
severe and mild forms of respiratory viral infection.

Severe Viral Respiratory Disease
For both viral and bacterial etiologies, the most severe clinical 
complications result from infection of the LRT. Infection of the 
LRT by viruses, such as human parain�uenza viruses, in�uenza 
A(H1N1)pdm09, HPAI, New World hantavirus infections (caus-
ing hantavirus pulmonary syndrome), Severe acute respiratory 
syndrome-related coronavirus (SARS-Cov), and Middle East 
respiratory syndrome coronavirus (MERS-CoV), are all associ-
ated with neutrophilic in�ltration at sites of infection to various 
degrees and may develop into ARDS (9–11, 19, 60, 131, 242–245). 
Clinically de�ned, ARDS has three phases; and most patents die 
within the �rst phase, the acute or “exudative” phase [reviewed 
in Ref. (12–14)]. �is phase is characterized by an increased 
immune response with high production of pro-in�ammatory 
cytokines and chemokines, increased neutrophil in�ltration 
and accumulation in the alveoli, and disruption of the alveolar 
epithelial–capillary barrier, which leads to increased vascular 
permeability and edema (13). �e distinctive role for lung neutro-
phil in�ltration in viral infection is summarized as follows: some, 
but not all, viruses that infect the LRT result in clinically de�ned 
ARDS, and lung neutrophil in�ltration is associated with viruses 
that do and do not lead to ARDS (3, 5, 9, 10, 60, 131, 199, 242–244, 
246, 247). In ARDS, there are data that directly support the role 
of neutrophils as both bene�cial and detrimental (3, 13, 14).  
Perhaps, there are general factors (host or virus) that lead to a 
common antiviral response of neutrophils.

Mild Viral Respiratory Disease
In contrast to emergent highly pathogenic respiratory viruses, 
notable “mild” human respiratory viruses also involve increased 
neutrophils at the site of infection (e.g., hRSV). As expected, infec-
tion with these viruses is typically associated with the increase of 
neutrophil chemoattractant chemokines. For example, infection 
with HRV is a well-studied virus for which there are several 
studies on the link between neutrophils and disease (229–231, 
248) (Table  2). HRV virions enter nasal epithelial cells via 
endocytosis, yet, unlike in�uenza, infection does not cause major 
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TABLE 2 | (+) Sense RNA and DNA respiratory viruses that cause increased neutrophil in�ltration during infection.

Virus family Virus type Host/

model

Primary cell 

target

Pathology Neutrophil 

abundance

Reference

Picornaviridae (+RNA) Human rhinovirus Hu Epithelium Mild to moderate: neutrophilic rhinitis; severe: 

acute LRT, bronchiolitis, and alveolitis

(+++) (231)

Adenoviridae (dsDNA) Human adenovirus (HAdv3, HAdv7) Hu Epithelium Bronchitis and alveolitis (+) (240)

Coronaviridae (+RNA) Human coronavirus (NL-63 or OC43) Hu Epithelium Mild (+/−) (241)

Coronaviridae (+RNA) Severe acute respiratory syndrome 

coronavirus

Hu, Fe Epithelium Alveolitis, acute respiratory distress syndrome 

(ARDS), hypercytokinemia

(++) (10)

Coronaviridae (+RNA) Middle east respiratory syndrome 

coronavirus

Hu, Fe Epithelium Alveolitis, ARDS, hypercytokinemia (++) (11)

Hu, humans; Fe, ferrets.
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damage to the nasal epithelium (249–251). Neutrophilic rhinitis, 
increased vascular permeability, and mucus hypersecretion are 
the key pathological features of HRV infection (229–231, 249), 
and infected epithelium seems to be the source of large amounts 
of neutrophil chemotactic molecules, particularly CXCL8 and 
kinins (229, 248, 252, 253). Interestingly, in  vitro studies have 
shown that viral recognition of HRV shares features with hRSV, 
but is somewhat di�erent than with IAV (254–256). It has been 
established that there are virus-speci�c and cell-speci�c di�er-
ences in sensing RNA viruses via primarily TLR- and/or RLR-
pathways (and even in a preference for RIG-I versus MDA5), 
yet these pathways may have similar general endpoints, such as 
chemokine and cytokine signaling (255, 257–259).

Finally, a key question is whether virus-induced cytopathy 
drives neutrophilia or whether it is the result of host response to 
viral infection. Infections with in�uenza A(H1N1)pdm09 virus, 
HPAI, SARS-CoV, and MERS-CoV are thought to cause acute 
lung injury which results in ARDS; characterized by excessive 
damage to the alveolar epithelium and involving the in�ltration 
of neutrophils (67, 68) (Tables 1 and 2). However, less pathogenic 
strains such as HRV infections do not cause signi�cant damage 
to the respiratory mucosa, yet neutrophils are present (249, 250). 
Conversely, viruses that cause moderate, focal cytopathy in the 
lungs, for example seasonal IAV and hRSV, are known to cause 
neutrophilic in�ltration (250, 252, 253). �erefore, neutrophils 
are not necessarily associated with direct cytopathic e�ect nor are 
they exclusively associated with severe disease.

Bacterial Respiratory Disease
Despite many years of searching, there is no single reliable 
biomarker to indicate a bacterial versus viral infection (although 
CRP is a good candidate). �is is surprising, given the otherwise 
signi�cant fundamental di�erences between the biology of these 
two types of pathogens; di�erences which are re�ected in general 
immune responses and begin with pathogen detection. Signaling 
through TLR on the plasma membrane versus endosomal or 
cytoplasmic PRRs is controlled by complex intracellular adaptor 
proteins [reviewed in Ref. (260)]. For example, the complexities 
of signaling allow the characteristically bacteria-speci�c TLR4 to 
signal the upregulation of immunostimulatory type I IFN char-
acteristic of a virus infection (170). As evidenced above, many 
viral infections associated with neutrophil in�ltration have RNA 
genomes. Host cells detect RNA viruses primarily through RLR as 
well as TLR, whereas bacteria rely on a di�erent group of PRRs to 

detect extracellular PAMPs (255, 261–263). Interestingly, the lung 
microenvironment to hRSV has been shown to be di�erent from 
IAV, speci�cally in the presence of IL-4 (264, 265). It is thought 
that this is driven by the presence of alternatively activated 
macrophages during RSV infection (266). It is not known if this 
directs di�erences in neutrophil chemoattraction, yet IL-4 is 
known to drive a �2 (“bacterial” or antibody-biased) immune 
response (267). In sum, surprisingly little is clinically di�erent 
between the innate immune responses to viral versus bacterial 
infection; however, perhaps comparative studies that focus on 
neutrophils can uncover virus-speci�c responses.

NEUTROPHILS IN THE VIRAL 
MICROENVIRONMENT

In general, immune activation pathways that involve the activa-
tion of NFκB lead to the secretion of neutrophil chemotactic 
chemokines [reviewed in Ref. (268)]. �is is heavily driven by 
PAMP recognition and activation pathways, and during a viral 
infection type I IFNs and ISGs are the unique elements in the 
virus-in�amed lung environment [reviewed in Ref. (24–26,  
269, 270)]. �is single di�erence between viral and bacterial 
infections could have drastic e�ects on the actions of neutrophils 
once in the lung. Moreover, without this information (e.g., 
pathogenic viruses that suppress type I IFN) neutrophils may 
respond to in�ammation in an ine�cient way, potentially with 
pathologic e�ects (23, 186, 256, 271–277). Neutrophils are known 
to respond to IAV and type I IFN by upregulation of ISGs (186). 
In systemic lupus erythematosus, neutrophils may be a large 
contributor of type I IFN (278, 279). During increased in�amma-
tion, le�-shi�ed or immature neutrophils emerge from the bone 
marrow—a classic sign for sepsis, but also known to be present 
during some severe viral respiratory diseases (e.g., HPS) (239). It 
is known that immature neutrophils do neither express IFNα/β 
receptor nor many other cytokine receptors (273). It is unknown 
what a�ect this would have during increased in�ammation dur-
ing pathogenic in�uenza infection, although their role in other 
in�ammatory conditions suggests it may a�ect their functions 
(271, 273, 280, 281).

Resolving In�ammation
All forms of respiratory infection require resolution of the 
infection and in�ammation. IFNs are essential components 
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of initiating sterilizing immunity to virus infection via the 
adaptive immune system (i.e., resolution of infection), at which 
point the resolution of in�ammation can e�ectively proceed 
(25, 26, 282). Although the mechanisms are poorly understood, 
through their direct antiviral actions and indirect actions on 
the lung microenvironment (e.g., e�erocytosis of apoptotic 
neutrophils by macrophages), neutrophils have the ability 
to in�uence outcomes toward successful resolution as well 
as toward the formation of ARDS (3, 5, 12, 13, 21, 74, 166, 
184, 198, 199, 283–285). �us, there is evidence that the role 
of neutrophils in viral infections of the respiratory system is 
not limited to in�ammation, but likely includes recovery from 
infection and the initiation of adaptive immunity (74, 138, 284). 
Apart from initiating adaptive immunity, resolution of in�am-
mation may be partially regulated by secretion of IL-1RA and 
chemokine-destroying factors by recruited macrophages (286, 
287). Additionally, it has been proposed that e�erocytosis of 
apoptotic neutrophils is a key step in resolution of in�ammation 
(288–290), and occurs in the lung during bacterial pneumonia 
(291). It is unclear if this happens during IAV infection or infec-
tion with other respiratory viruses.

Prolonging In�ammation
Factors that prolong the life span of neutrophils in the lungs 
increase the probability that they may contribute to immuno-
pathology. IL-6 and G-CSF are immune mediators present in 
the lung during infection and are known to prolong survival 
of neutrophils in mouse lungs following IAV infection (292). 
Both neutrophils and macrophages are known to phagocytose 
apoptotic epithelial cells in mouse lungs during IAV infection 
(283). �e cells may be recruited via chemokines or damage 
receptors. For example, necrotic IAV-infected epithelial cells 
are a source of CXCL8 (293), which attract neutrophils to 
dying cells. In addition, neutrophils can detect DAMPs such 
as S100A9 (294). It has been shown that extracellular S100A9 
is abundant during IAV infection in mice (295). Antibody-
mediated neutralization of S100A9 decreased lung in�amma-
tion in mice and improved disease outcome (295). Apart from 
potential tissue-destroying e�ects of neutrophil proteases, the 
presence of NETs may induce even more in�ammation in the 
lungs (21, 139). �us, there are limited data supporting directly 
malevolent actions of neutrophils (Table S5 in Supplementary 
Material), yet factors that increase their presence and prolong 
their survival in the lung are correlated with increased disease 
severity.

CONCLUDING REMARKS

�ere are substantial data that suggest neutrophils are a part of 
a viral response to infection. Neutrophils are among the �rst 
responders to IAV infection in the lung, and they remain in 
great numbers throughout the development of ARDS. Although 
neutrophils are an important component of the general response 
to infection in the respiratory system, as is discussed herein, 
neutrophils are capable of recognizing viruses (via viral PAMPs), 
responding to viruses with speci�c e�ector functions, and may 
be instrumental in determining disease outcome. Evidence exists 
to support the hypothesis that neutrophils respond speci�cally 
to the focal nature of viral infection, and they act to in�uence 
this microenvironment via their virus-speci�c e�ector func-
tions. Factors that in�uence successful recovery from respiratory 
viral infection (versus lethal outcome) are complex and both 
host- and virus-speci�c. However, a better understanding of the 
role neutrophils, previously underappreciated with respect to 
viral infections, will reveal important information about disease 
outcome. Many questions remain before it is determined the part 
neutrophils play in mild and severe disease.
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