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ABSTRACT 

SUMOylation, the covalent attachment of the small ubiquitin-like modifier (SUMO) to 

target proteins is emerging as a key modulator of eukaryotic immune function. In 

plants, a SUMO1/2-dependent process has been proposed to control the deployment 

of host defence responses. However, the molecular mechanism underpinning this 

activity remains to be determined. Here we show that increasing NO levels following 

pathogen recognition promote S-nitrosylation of the Arabidopsis SUMO E2 enzyme, 

SCE1, at Cys139. The SUMO-conjugating activities of both SCE1 and its human 

homologue, UBC9, were inhibited following this modification. Accordingly, mutation of 

Cys139 resulted in increased levels of SUMO1/2 conjugates, disabled immune 

responses and enhanced pathogen susceptibility. Our findings imply that S-

nitrosylation of SCE1 at Cys139 enables NO bioactivity to drive immune activation by 

relieving SUMO1/2-mediated suppression. The control of global SUMOylation is 

predominantly thought to occur at the level of each substrate via complex local 

machineries. Our findings uncover a novel, parallel and complementary mechanism by 

suggesting that total SUMO conjugation may also be regulated directly by SNO 

formation at SCE1 Cys139. This Cys is evolutionary conserved and specifically S-

nitrosylated in UBC9, implying this immune-related regulatory process might be 

conserved across phylogenetic kingdoms. 
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SIGNIFICANCE STATEMENT 

S-nitrosylation, the addition of a nitric oxide (NO) moiety to a reactive protein cysteine 

(Cys) thiol to form an S-nitrosothiol (SNO) is emerging as a pivotal redox-based, post-

translational modification (PTM) during plant immune function. However, the Cys target 

sites of NO bioactivity and the associated consequences on cellular signalling are not 

well defined. Our findings suggest that S-nitrosylation of small ubiquitin-like modifier 

(SUMO) conjugating enzyme 1 (SCE1) at Cys139 controls SUMOylation, a protein-

based PTM that negatively regulates plant immunity through conjugation of SUMO1/2. 

This Cys is evolutionary conserved and specifically S-nitrosylated in the human 

homologue, UBC9, implying this mechanism might be conserved across phylogenetic 

kingdoms.  
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\body 

INTRODUCTION 

 The production of nitric oxide (NO) is a conspicuous feature of immune 

responses in complex eukaryotes (1, 2). In this context, S-nitrosylation, the addition of 

an NO moiety to a protein cysteine (Cys) thiol to form an S-nitrosothiol (SNO), is 

thought to be a major route to regulate protein function (3-5). In combination with 

reactive oxygen intermediates (ROIs), NO regulates the hypersensitive response (HR) 

(3, 6), a programmed execution of plant cells at sites of attempted infection(7) and the 

expression of a suite of immune-related genes (8-10). However, the underpinning 

molecular mechanisms are not well understood.  

 The small ubiquitin-like modifier (SUMO) is present in all eukaryotes and is 

essential for viability (11, 12). SUMO is conjugated to target proteins via a pathway 

analogous to ubiquitylation, involving E1 and E2 enzymes as well as E3 ligases. The 

SUMO activating enzyme (E1) is a heterodimeric complex and forms a high-energy 

thioester bond with the C-terminal carboxyl group of SUMO. Next, SUMO is transferred 

to the SUMO conjugating enzyme (E2), which catalyzes the conjugation of SUMO to 

its targets. SUMO ligases (E3) enhance the efficiency of conjugation and may 

contribute to target specificity but are not required for SUMO conjugation in vitro (13). 

SUMOylation has been implicated in plant immunity by virtue of its function in HR 

control (14) and signalling integral to salicylic acid (SA), a major immune activator (15-

17). Either loss of function of the SUMO E3 ligase, SAP and Miz 1 (SIZ1), or 

knockdown of SUMO1 and SUMO2, the two major stress-responsive SUMO isoforms, 

results in constitutive SA-dependent gene expression and increased pathogen 

resistance (16, 17). Furthermore, immune phenotypes of siz1 mutants are dependent 

on the immune receptor SNC1 (18). Collectively these studies suggest that in the 
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absence of pathogen challenge, global SUMOylation mediated by SUMO1/2 

negatively regulates plant immunity.   

 Despite the central role of SUMOylation in both plant and animal cell biology, 

there is currently little insight into the regulatory processes underpinning this post-

translational modification. Here we show that following pathogen recognition, the 

Arabidopsis SUMO E2 enzyme, SUMO conjugating enzyme 1 (SCE1), is S-

nitrosylated at a highly conserved cysteine, Cys139. We show that this site-specific 

modification inhibits the SUMO-conjugating activity of both SCE1 and its human 

homologue UBC9, suggesting that this might constitute an evolutionary conserved 

mechanism of regulating levels of SUMO conjugates in cells. Furthermore, expression 

of mutant SCE1(C139S) in Arabidopsis results in elevated levels of SUMOylated 

proteins after pathogen infection, compromised immune gene activation and increased 

disease susceptibility. These data therefore suggest that after immune activation, 

increasing NO levels are, in part, transduced into immune responses by inhibiting 

global conjugation of SUMO1/2 through S-nitrosylation of SCE1.  
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RESULTS 

S-nitrosylation of SUMO E2 enzymes inhibits SUMOylation in vitro  

To determine if NO might in part sculpt the plant immune response by regulating 

SUMOylation, protoplasts were isolated from wild-type (WT) Arabidopsis plants and 

used to monitor the potential impact of the natural NO donor, S-nitrosoglutathione 

(GSNO), on this modification following heat shock. This is a well-established method 

to increase SUMO2/3 or SUMO1/2 conjugates in human or plant cells, respectively 

(19, 20). This SUMOylation response was also observed in protoplasts after exposure 

to 37°C for 15 minutes, with a concurrent decrease in levels of free SUMO (Fig. 1A). 

Pretreatment of protoplasts with 1 mM GSNO inhibited this response and also reduced 

levels of SUMO conjugates under resting conditions, suggesting that SUMOylation is 

inhibited by GSNO. Since NO can modulate protein activity by S-nitrosylation, we 

hypothesized that components of the SUMOylation machinery might be targeted by 

this post-translational modification. The sole Arabidopsis SUMO E2 conjugating 

enzyme, SCE1, possesses four cysteine residues, including its active site Cys94 that 

could potentially be targets of S-nitrosylation. To test this, we employed the biotin-

switch technique (BST), which specifically replaces protein SNOs with a biotin label 

(21). Purified, recombinant SCE1 was efficiently S-nitrosylated by GSNO in a 

concentration-dependent manner in vitro. Further, another natural NO donor, CysNO, 

also S-nitrosylated SCE1 (Fig. 1B). Informatively, this modification could be reversed 

by dithiothreitol (DTT), consistent with S-nitrosylation of SCE1 on a given Cys thiol. 

Mutagenesis of the Cys residues within SCE1, established that only mutation of 

Cys139 prevented S-nitrosylation by GSNO and subsequent detection by BST (Fig. 

1B). This finding was further confirmed by mass-spectrometry (SI Appendix, fig. S1).  
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 Structural modelling of SCE1 based on its human homologue UBC9 revealed 

that Cys139 is likely solvent-exposed and therefore accessible for modification (SI 

Appendix, fig. S2A). This contrasts with Cys44 and Cys76 which are both located in 

the interior of the protein structure with their side chains orientated inwards, and Cys94, 

which sits within the active-site cleft. Importantly, the cysteine corresponding to 

Arabidopsis Cys139 is highly conserved in various higher eukaryotes (SI Appendix, fig. 

S2B), suggesting it may have a functional role. To test this, the corresponding residue 

(Cys138) in human UBC9 was mutated and the protein subjected to BST analysis. 

Similar to SCE1, UBC9 was specifically S-nitrosylated at Cys138 (Fig. 1D). 

 After identifying Cys139 of SCE1 and Cys138 of Ubc9 as sites of S-nitrosylation 

in vitro, we sought to uncover the effect of these modifications on enzymatic activity. 

By reconstituting the Arabidopsis SUMO machinery in vitro, the formation of poly-

SUMO1 chains was used as a read out of E2 activity and revealed that both WT and 

C139S forms of SCE1 are equally capable of rapidly forming SUMO1-chains (Fig. 1E). 

Therefore, it appears that mutation of Cys139 does not affect enzyme activity in vitro. 

However, pretreatment of WT SCE1 with GSNO, inhibited its SUMO-conjugating 

activity (Fig. 1E). Importantly, this effect was not observed with GSNO pretreatment of 

the C139S protein, suggesting specific modification of Cys139 inhibits SCE1 activity 

(Fig. 1E). We also confirmed that SUMO chain formation was inhibited by pretreating 

SCE1 with another NO donor, CysNO (SI Appendix, fig. S2C). We next established if 

S-nitrosylation of UBC9 affected its SUMO-conjugating activity by monitoring the in 

vitro formation of poly-SUMO2 chains using the reconstituted human SUMO machinery 

(22). Similar to SCE1, only GSNO pretreatment of WT, but not C138S UBC9, inhibited 

SUMO conjugating activity (Fig. 1F).  
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 SUMO first forms a thioester with the E1 heterodimer before it is transferred to 

the active site of the E2, also establishing a thioester linkage. Subsequently, SUMO is 

conjugated to its target substrate forming an isopeptide bond. Thus, inhibition of SCE1 

by S-nitrosylation of Cys139 can occur at either SUMO-SCE1 thioester formation or 

the transfer of SUMO from SCE1 to the given target. To discriminate between these 

two alternative possibilities, we performed in vitro SCE1-SUMO1 thioester formation 

assays. Both WT and C139S SCE1 proteins were equally capable of forming thioester 

bonds with SUMO1 and this reaction was unaffected by pretreatment with GSNO (Fig. 

1G). This suggests that the inhibition of poly-SUMO1 chain formation by GSNO 

observed in Fig. 1E did not result from inhibition of SCE1-SUMO1 thioester formation. 

We next determined if SNO formation at Cys139 might interfere with SUMO1 transfer 

to a given target. To explore this, we performed in vitro SUMOylation reactions using 

Saccharomyces cerevisiae proliferating cell nuclear antigen (ScPCNA), a model 

substrate (23). Similar to poly-SUMO chain formation, the SUMOylation of ScPCNA 

was inhibited by GSNO pretreatment of SCE1 (Fig 1H). Collectively, these data 

suggest that mutation of SCE1 Cys139 does not affect the activity of this enzyme and 

significantly, S-nitrosylation of this redox-active residue blunts SCE1 function by 

inhibiting the ability of SCE1 to transfer SUMO to its substrates, rather than interfering 

with SCE1-SUMO thioester formation. 

 

S-nitrosylation of SCE1 Cys139 inhibits SUMOylation in vivo  

Next, we determined if SCE1 is subjected to S-nitrosylation in vivo by generating 

transgenic plants expressing either FLAG epitope-tagged WT, or C139S SCE1. 

Expression was confirmed as comparable between these lines (SI Appendix, fig. S3A 

and S3B) and SUMO1/2 co-immunoprecipitated with both FLAG-SCE1 and FLAG-
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C139S at the expected SCE1-SUMO thioester molecular weight, suggesting these 

proteins are active in vivo (SI Appendix, fig. S3C). We tested if SCE1 expressed in 

plants could be S-nitrosylated by GSNO by subjecting protein extracts to BST analysis, 

followed by isolation of S-nitrosylated proteins, with their subsequent analysis by 

western blotting employing an anti-FLAG antibody, to detect the possible presence of 

FLAG-SCE1 among these protein SNOs. Very little SNO-SCE1 was detected under 

basal conditions but pre-incubating the extracts with 1 mM GSNO resulted in S-

nitrosylation of SCE1 (Fig. 2A) suggesting that FLAG-SCE1 expressed in vivo can be 

S-nitrosylated.  

 Global SNO levels are increased in Arabidopsis upon pathogen recognition (24, 

25), so we performed the BST on plants challenged with either the virulent bacterial 

pathogen Pseudomonas syringae pv. tomato (Pst) DC3000, or an avirulent strain 

expressing AvrB, recognized by the RPM1 resistance protein in WT Col-0 plants (26). 

Low levels of SNO-SCE1 were detected in non-inoculated plants (Fig. 2B) while SNO-

SCE1 levels were increased at 6 hours post inoculation (hpi) with either Pst DC3000 

or especially Pst DC3000 (avrB), suggesting that S-nitrosylation of SCE1 is enhanced 

in response to pathogen challenge (Fig. 2B). Importantly, SCE1(C139S) was not S-

nitrosylated in response to attempted pathogen ingress (Fig. 2B), implying that Cys139 

is also the site of SNO formation in vivo. Further, total SNO levels increased 

significantly at 6 hpi following challenge with same Pst DC3000 strains (SI Appendix, 

fig. S4A). Collectively, these data suggest that following pathogen recognition, global 

SNO levels are increased, promoting S-nitrosylation of SCE1 at Cys139. 

 Since SCE1(C139S) is insensitive to S-nitrosylation and this modification was 

shown to inhibit SUMO-conjugating activity in vitro, we next examined the impact of 

SCE1(C139S) expression on global SUMOylation levels in either the absence or 
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presence of pathogen challenge. Consistent with a previous report (16), Pst DC3000 

inoculation had no observable effect on global SUMOylation in leaves of WT plants, 

with similar results observed for SCE1 expressing plants (Fig. 2C). Strikingly, in the 

SCE1(C139S) line, SUMO conjugate levels were increased after challenge with either 

Pst DC3000 or Pst DC3000 (avrB) (Fig. 2C). In a similar fashion, SCE1(C139S) plants 

also exhibited increased and prolonged SUMOylation following heat shock, which also 

results in rapid NO synthesis (27) (Fig. 2D). Thus, S-nitrosylation of Cys139 following 

engagement of the pathogen-triggered nitrosative burst, may be required to suppress 

SCE1 activity and by extension SUMOylation, during plant immune function. 

 

Cys139 of SCE1 is required for immunity and stress-induced gene expression. 

 After establishing that S-nitrosylation of SCE1 at Cys139 is driven by attempted 

pathogen infection, we next explored the biological consequences of this redox-based 

modification on plant disease resistance. Bacterial growth assays revealed that 

compared to WT and SCE1 expressing plants, which both showed similar levels of 

pathogen growth, SCE1(C139S) plants were more susceptible to infection by Pst 

DC3000 (Fig. 3A). Similarly, the SCE1(C139S) line exhibited increased growth of Pst 

DC3000 (avrB) (Fig. 3B). Additional independent transgenic lines also showed similar 

results (SI Appendix, fig.  S4B, S4C). However, the difference in bacterial titre between 

Pst DC300 and Pst DC3000 (avrB) was similar between SCE1 and SCE1(C139S) 

expressing plants, suggesting RPM1 mediated disease resistance may not be 

impacted. In aggregate, these data imply that SNO formation at Cys139 of SCE1 is 

required for full basal disease resistance. To uncover the molecular basis of these 

observations, the expression of the SA marker gene, PR1, was monitored after Pst 

DC3000 inoculation. As expected, PR1 expression was induced in WT plants and more 
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pertinently, SCE1 plants at 12 hpi (Fig. 3C). In contrast, PR1 expression was 

compromised in SCE1(C139S) plants (Fig. 3C). Furthermore, Pst DC3000 (avrB)-

induced PR1 expression was also reduced at 12 hpi in SCE1(C139S) plants (Fig 3D). 

 Since pathogen-induced gene expression was compromised in SCE1(C139S) 

plants that also displayed higher levels of SUMO conjugation, we tested whether 

similar links between SUMO conjugate levels and transcriptional responses might exist 

in response to heat shock. It is well-established that heat stress induces NO levels in 

plants (28) so we monitored the expression of the heat-stress marker gene HsfA3 in 

seedlings after exposure to 37°C for 1h. HsfA3 expression was induced to similar levels 

in WT and SCE1 plants but was not induced in SCE1(C139S) plants (SI Appendix, fig. 

S4D) suggesting that signalling through C139 of SCE1 is also required for optimal 

transcriptional responses to heat stress. 

 

S-nitrosylation of SCE1 impacts plant immunity  

Next, we tested SA-induced immunity in SCE1 and SCE1(C139S) plants. As expected, 

pre-treatment of WT plants with SA resulted in dramatically less growth of Pst DC3000 

compared to mock treated lines (Fig. 4A). In agreement with previous experiments, 

mock-treated SCE1(C139S) plants showed significantly higher levels of Pst DC3000 

growth compared to mock treated WT and SCE1 plants (Fig. 4A). However, SA 

treatment of both SCE1 and SCE1(C139S) plants reduced the titre of Pst DC3000 to 

similar levels (Fig. 4A). To confirm that exogenous SA treatment rescued immunity in 

SCE1(C139S) plants, we monitored SA-induced PR1 expression. SA-induced PR1 

expression reached a similar level in WT, SCE1 and SCE1(C139S) plants (SI 

Appendix, fig. S5). Therefore, to establish if the disease-susceptible phenotype of 

SCE1(C139S) plants was attributed to reduced endogenous SA accumulation, we 
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challenged with Pst DC3000 to induce accumulation of this metabolite and 

subsequently determined its concentration. SA accumulated to a lesser extent in 

SCE1(C139S) plants compared to SCE1 plants in response to both Pst DC3000 and 

Pst DC3000 (avrB) (Fig 4B). Collectively, these data suggest that S-nitrosylation of 

SCE1 at C139 is required for maximal SA accumulation and associated disease 

resistance. Thus, our findings support a model in which attempted pathogen infection 

promotes increasing levels of NO, leading to S-nitrosylation of SCE1 at Cys139. This 

serves to limit SUMO1/2 conjugation by SCE1 enabling both the accumulation of SA 

and maximal activation of SA-dependent defence gene expression (Fig. 4C). 
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DISCUSSION  

SUMO conjugation has been implicated in a plethora of regulatory systems across 

eukaryotes, including human disease pathways (29). The control of global 

SUMOylation integral to cellular signalling is currently thought to occur predominantly 

at the level of each protein target via local regulatory mechanisms, rather than by direct 

modulation of the core SUMOylation machinery by PTMs (30).  However, acetylation 

or SUMOylation of UBC9 is thought to enable discrimination between individual target 

substrates (31, 32). Conversely, the redox active small molecule, hydrogen peroxide, 

has been shown to reduce total SUMOylation, by driving the formation of disulphide 

bonds between SUMO E1 and E2 enzymes (33). These modifications, however, have 

not yet been linked to cellular signalling. Our findings suggest that changes in global 

SUMOylation, which underpin plant immune function, may result from direct regulation 

of the SUMOylation apparatus, by SNO formation at Cys139 of SCE1. This means of 

controlling SUMO conjugation may also serve to limit SUMOylation of proteins involved 

in heat-stress signalling and thus may be a widespread means of transcriptional 

regulation in general. Significantly, this Cys is evolutionary conserved and specifically 

S-nitrosylated in the corresponding human enzyme, UBC9, modulating its activity. 

Therefore, this mechanism might be conserved between plants and animals thereby 

providing a potential target for either future agrochemical or pharmaceutical 

intervention, respectively.  

 The effect of S-nitrosylation on enzymatic activity can typically be directly 

mediated through modification of active site Cys residues (4). However, our findings 

suggest that Cys139 is the only S-nitrosylation site of SCE1 both in vitro and in vivo. 

In a mutational study of S. cerevisiae Ubc9, residues close to this area were shown to 

be important for Smt3p-Smt3p conjugate formation (34). Similar to S-nitrosylation of 
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SCE1 at Cys139, these same mutations did not have any effect on Ubc9-Smt3p 

thioester formation. The fact that S-nitrosylation of SCE1 at Cys139 does not affect 

SUMO thioester formation suggests that it does not interfere with binding to the E1 

complex. This is not surprising since a well-defined region of the Ubc9 N-terminal has 

been identified as the binding site for E1:E2 noncovalent interactions (34-37) and 

Cys139 is located at a distant site near the C-terminus. Although there are currently no 

structures available for components of the Arabidopsis SUMOylation machinery, data 

from the structure of human Ubc9 in complex with the SUMO substrate RanGAP1 

revealed that residues close to Cys138 on the same α-helix are important for 

interaction with RanGAP1 (38). Mutation of a conserved tyrosine to phenylalanine 

(Y134F) dramatically reduced the ability of Ubc9 to conjugate SUMO to RanGAP1 

suggesting this residue plays an important role. This tyrosine is conserved in SCE1 

(Tyr135) and its side chain is predicted to occupy a similar position in Ubc9. A possible 

mechanism for S-nitrosylation of Cys139 to inhibit SUMOylation is therefore by 

interfering with interactions between Tyr135 and substrate proteins. 

  The means by which SUMOylation by SUMO1/2 regulates plant immunity are 

now beginning to emerge. Loss of SIZ1 function results in elevated SA levels, 

constitutive activation of PR gene expression and increased resistance to Pst DC3000 

(16). These phenotypes were reverted to WT by expression of the bacterial salicylate 

hydroxylase NahG, which degrades SA, suggesting that the phenotypes of siz1 mutant 

plants are due to the elevated levels of SA. More recently, evidence has emerged that 

SIZ1-mediated SUMOylation of TPR1 inhibits its transcriptional repressor activity (39). 

Since TPR1 functions together with SNC1 to activate plant immunity (40), it appears 

that the TPR1/SNC1 complex is a central node of SUMO-mediated immune signalling 

in plants (18, 39, 41). Interestingly, studies also suggest that SUMO1/2 conjugation 



 15 

regulated by SUMO proteases might have a positive role in SA signalling. Mutation of 

the SUMO proteases OVERLY TOLERANT TO SALT1 and -2 (OTS1/2) was shown to 

increase SA levels in plants leading to constitutive activation of SA signalling pathways 

(42). Similarly, the SUMO protease EARLY IN SHORT DAYS 4 (ESD4) has also been 

shown to accumulate SA (43). Therefore, SUMOylation by SUMO1/2 appears to have 

both positive and negative effects on SA-mediated immunity. Indeed, SUMOylation 

can both positively and negatively regulate immune responses in animals depending 

on the substrate proteins affected (44). Therefore, the balance between which 

substrates are SUMOylated at a given time under certain cellular conditions can have 

diverse effects on signalling at the organism level. To further elucidate the complex 

roles of SUMOylation in plant immunity, proteins that are SUMOylated after immune 

activation must be identified and the effect of their modification studied. Interestingly, 

the central regulator of SA-mediated immunity, the transcription coactivator 

NONEXPRESSOR OF PATHOGENESIS RELATED 1 (NPR1) has recently been 

identified as a SUMO substrate (15). Modification of NPR1 by SUMO3 appears to be 

regulate its stability and binding to cognate transcription factors promoting immunity. 

In Arabidopsis, SUMO3 is expressed at lower levels and appears to be conjugated to 

far less proteins that SUMO1/2 (17, 20). Furthermore, patterns of SUMO3 conjugation 

do not appear to be affected by various cellular stresses that increase conjugation of 

SUMO1/2 (20). However, SUMO3 expression is strongly induced by SA suggesting a 

key role in SA-mediated immunity (17). Thus, SUMO3 conjugation is also a key 

regulatory mechanism in plant immunity. Nonetheless, the fact that suppression by 

SUMO1/2 conjugation appears to be required to prevent the induction of immune 

function (17) suggests that defence responses are constitutively primed and ready for 

rapid deployment. Thus, our proposed model may constitute a molecular mechanism 
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by which the nitrosative burst associated with attempted pathogen ingress is perceived 

and translated into immune activation.  
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MATERIALS AND METHODS 

Detailed descriptions of materials and methods used including plant growth conditions, 

pathogen inoculations, protoplast isolation, protein analyses, gene expression 

analyses and statistics are provided in SI Materials and Methods. All primers used are 

listed in Table S1. 
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FIGURE LEGENDS 

Figure 1. S-nitrosylation of SUMO E2 enzymes inhibits SUMOylation in vitro  

(A) WT protoplasts were pretreated with or without 1 mM GSNO before 15 min 

incubation at either 22°C or 37°C. Protein extracts were analysed by western blot 

against SUMO1/2 and S5a (loading control). (B) Purified recombinant SCE1 was 

subjected to the stated treatments before the BST. Total SCE1 was detected by 

Coomassie staining, while SNO-SCE1 was detected by western blot against biotin. (C) 

Each cysteine mutant form of SCE1 was incubated with either 100 μM GSH or GSNO 

as in (B). (D) Purified recombinant UBC9 was incubated with or without 500 μM GSNO 

before the BST. Biotinylated protein (SNO-UBC9) was enriched by streptavidin 

pulldown before detection by western blot against His-tag. The omission of ascorbate 

(-Asc) serves as a negative control for the BST. (E) The stated proteins were incubated 

with or without  500 μM GSNO for 20 mins. before addition to in vitro SUMOylation 

reactions, which were incubated at 30°C for the stated times. SUMO1 species were 

detected by western blot against SUMO1/2. (F)  Proteins were incubated as in (E) 

before adding to in vitro SUMOylation reactions and incubating  at 37°C for the stated 

times. before western blot against SUMO2. (G) Proteins were incubated as in (E), then 

added to a reaction mix containing the E1 heterodimer and SUMO1, before the addition 

of ATP and incubation at 30°C for the stated times. The SCE1-SUMO1 thioester was 

observed by western blot against SCE1. (H) SCE1 was pretreated with the stated 

concentrations of GSNO before adding to reaction mixtures. SUMOylated forms of 

PCNA were visualized by western blot against SUMO1/2. 

 

Figure 2. S-nitrosylation of SCE1 Cys139 inhibits SUMOylation in vivo 
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(A) Protein extracts from 35S::FLAG-SCE1 plants were subjected to the BST with or 

without pre-incubation with 1 mM GSNO. Biotinylated proteins were enriched by 

Streptavidin affinity pull-down before western blot against FLAG. (B) Protein extracts 

from control, or plants inoculated with107 cfu/ml Pst DC3000 or Pst DC3000 (avrB) (6 

hpi) were subjected to the BST and both SNO-SCE1 and Total SCE1 were detected 

by western blot against FLAG. (C) Plants were inoculated as in (B), and leaf tissue 

collected at 6 hpi. Protein extracts were then analysed by western blot against 

SUMO1/2. Ponceau S staining of the large subunit of Rubisco indicates equal loading. 

(D) Liquid-grown seedlings of the stated lines were exposed to 37°C for the indicated 

times and analysed as in (C). 

 

Figure 3. Cys139 of SCE1 is required for resistance to Pst DC3000 

(A, B) Plants were inoculated with 105 cfu/ml (A) Pst DC3000 or (B) Pst DC3000 (avrB) 

and leaf discs were assayed for bacterial growth at 3 dpi. Data points represent mean 

± SD (n=6 biological replicates), with asterisks indicating significant difference from WT 

(Student’s t test, P < 0.05). (C) Plants were inoculated with106 cfu/ml Pst DC3000 and 

leaf tissue was harvested at the stated times. The expression of PR1 was analysed 

using qPCR and normalized against the constitutively expressed UBQ5. Data points 

represent mean ± SD (n=3) of three independent biological samples while asterisks 

represent significant differences between the indicated samples (Student’s t test,* P < 

0.05, *** P < 0.0001). (D) Plants were inoculated with with106 cfu/ml Pst DC3000 (avrB) 

and PR1 expression analysed as in (C). 

 

Figure 4. S-nitrosylation of SCE1 impacts plant immunity  
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(A) Plants were sprayed with either 0.5 mM SA or H2O and inoculated with 105 cfu/ml 

Pst DC3000 24 hours post-spraying. Leaf discs were then assayed for bacterial growth 

at 3 dpi. Data points represent mean ± SD (n=6 biological replicates), with letters 

indicating significant differences between samples (Tukey Kramer ANOVA; α = 0.05). 

(B) Plants were inoculated with 106 cfu/ml Pst DC3000 or Pst DC3000 (avrB) and SA 

levels were measured after 24 hours. Data points represent mean ± SD (n=3 biological 

replicates) with asterisks representing significant differences between the indicated 

samples (Student’s t test, P < 0.01). (C) In pathogen unchallenged plant cells, SCE1-

dependent conjugation of SUMO1/2 contributes to the repression of PR1 gene 

expression in part through limiting SA levels. In pathogen challenged cells, increasing 

NO levels associated with attempted pathogen infection promote the S-nitrosylation of 

SCE1 at Cys139. This inhibits the SUMO-conjugating activity of SCE1 and reduces 

global SUMOylation, which in turn allows accumulation of SA, relieves repression of 

PR1 gene expression and contributes to the activation of immunity. 


