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Abstract

Objectives—Inflammasomes are signaling platforms that upon sensing pathogens and sterile 

stressors mediate the release of mature forms of interleukin (IL)-1β and IL-18. The aims of this 

study were to determine: 1) the expression of major inflammasome components in the 

Address correspondence to: Roberto Romero, MD, D. Med. Sci, Perinatology Research Branch, NICHD/NIH/DHHS, Wayne State 
University/Hutzel Women’s Hospital, 3990 John R, Box 4, Detroit, MI 48201, USA, Telephone: (313) 993-2700, Fax: (313) 
993-2694, romeror@mail.nih.gov, Nardhy Gomez-Lopez, PhD, Department of Obstetrics and Gynecology, Wayne State University 
School of Medicine, Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan 48201, USA, Tel (313) 577-8904, 
ngomezlo@med.wayne.edu. 

DISCLOSURE/CONFLICT OF INTEREST

The authors disclose no conflicts of interest.

HHS Public Access
Author manuscript
Am J Reprod Immunol. Author manuscript; available in PMC 2019 June 01.

Published in final edited form as:

Am J Reprod Immunol. 2018 June ; 79(6): e12440. doi:10.1111/aji.12440.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chorioamniotic membranes in spontaneous labor at term; 2) whether there are changes in the 

inflammasome components associated with activation of caspase-1 and caspase-4; and 3) whether 

these events are associated with the release of the mature forms of IL-1β and IL-18.

Methods—Chorioamniotic membranes were collected from women at term with and without 

spontaneous labor. mRNA abundance and protein concentrations of inflammasome components, 

nucleotide-binding oligomerization domain-containing (NOD)–1 and NOD–2 proteins, caspase-1 

and caspase-4, IL-1β, and IL-18 were quantified by qRT-PCR (n=28-29 each), ELISA (n=10 each) 

or immunoblotting (n=8 each), and immunohistochemistry (n=10 each). Active caspase-1 and 

caspase-4, as well as mature IL-18, were determined by immunoblotting (n=4 each), and pro- and 

mature forms of IL-1β were determined by ELISA (n=4-7 each).

Results—Inflammasome components and NOD proteins were expressed in the chorioamniotic 

membranes obtained from women at term. The chorioamniotic membranes from women who had 

undergone labor had: 1) higher NLRP3 (NOD-like receptor family, pyrin domain–containing 

protein 3) and NOD1 protein concentrations; 2) greater immunoreactivity for caspase-1 and 

caspase-4; 3) higher quantity of the active form of caspase 1 (p20); and 4) higher mRNA 

abundance and protein concentrations of pro- and mature IL-1β. However, mRNA abundance and 

protein concentrations of the mature form of IL-18 were not increased in tissues from women who 

underwent labor at term.

Conclusions—Spontaneous labor at term is characterized by the expression of inflammasome 

components, which may participate in the activation of caspase-1 leading to the consequent 

cleavage and release of mature IL-1β by the chorioamniotic membranes. These results support the 

participation of the inflammasome in the mechanisms responsible for spontaneous parturition at 

term.
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INTRODUCTION

Spontaneous term labor is a state of physiologic sterile inflammation.1-6 The evidence in 

support of this concept includes the increased bioavailability of cytokines7-21 and 

chemokines22-27 in the amniotic fluid, maternal circulation,28-31 and reproductive tissues.
20, 32-46 Moreover, parturition is accompanied by an influx of inflammatory cells, e.g., 

neutrophils and macrophages, into the cervix,39, 47-56 myometrium,49, 57-63 and 

chorioamniotic membranes.35, 64-67 T cells are also present in the chorioamniotic 

membranes.66, 68 The inflammatory response associated with normal spontaneous labor is 

considered sterile since intra-amniotic infection is absent in most women.1, 2, 69-72

The mechanisms responsible for sterile inflammation in parturition have not been elucidated, 

but are thought to involve inflammasomes,73-75 which are high-molecular-weight multi-

subunit protein complexes found in the cytoplasm capable of inducing an inflammatory 

response through the production of interleukin (IL)-1β and IL-18.76-110 Their basic structure 
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consists of–: 1) an inflammasome sensor molecule, 2) the adaptor protein ASC (an 

apoptosis-associated speck-like protein), and 3) pro-caspase-1(pro-CASP-1).76-110 Once 

activated, the inflammasome complex induces auto-catalytic cleavage of pro-CASP-1 into its 

mature/active form. Caspase-1 (CASP-1) can then cleave pro-IL-1β and pro-IL-18, and the 

newly described pro-IL-33, into the mature, secreted forms of the cytokines.111-124 In 

addition, CASP-1 is required for a specific type of programmed cell death induced by 

inflammation: pyroptosis.125-127 Recently, it was demonstrated that CASP-4 expression is 

required for activation of CASP-1 in ultraviolet B-irradiated keratinocytes and activated 

macrophages,128 suggesting that caspase-4 acts upstream of caspase-1 and the 

inflammasome.129

Several inflammasomes have been identified and named after their respective pattern 

recognition receptors (PRRs):130 NLR family pyrin domain (NLRP)1,76 NLRP3,131 NLR 

family caspase activation and recruitment domain (CARD) (NLRC)4 (also known as IPAF),
132, 133 interferon gamma-inducible protein 16 (IFI16),134 or absent in melanoma (AIM2).
135-143 Inflammasome specificity depends on which ligand(s) the PRR recognizes, and once 

PRR-ligand binding occurs, the inflammasomes oligomerize with other components of the 

multi-protein complexes and become activated.86, 94, 104, 110, 144, 145 Two additional PRRs 

belonging to the NLR family – the nucleotide-binding oligomerization domain-containing 

proteins 1 and 2 (NOD1 and NOD2) – recognize bacterial peptidoglycan segments, but do 

not recruit inflammasome components.90, 146-153 Instead, the NODs directly activate nuclear 

factor kappa B (NF-κB) proinflammatory signaling, which can induce the expression of pro-

IL-1β76, 87, 131, 146, 154-158 and pro-IL-18.115 The functional combination of NOD proteins 

and inflammasome components (e.g., NOD2 and NLRP3) improves immune responses in 

murine dendritic cells.159 Moreover, inflammasome activation is associated with an 

increased production of eicosanoids (prostaglandins and leukotrienes), which leads to further 

inflammation.160

We proposed that the inflammasome participates in labor at term73, 74 and in pregnancy 

complications.161-171 Indeed, we demonstrated that CASP-1, the predominant 

inflammasome-activated caspase,82, 172 is present in the amniotic fluid and that its 

concentration increases as a function of gestational age.75 In addition, we found that 

amniotic fluid CASP-1 concentration is higher in women in spontaneous labor at term than 

in those without labor.75 This is mirrored by increased amniotic fluid IL-1β bioactivity and 

immunoreactivity in women in spontaneous labor at term.8, 9, 36 IL-18 concentration in the 

amniotic fluid is also higher in term pregnancies than in the second trimester.173 

Collectively, this evidence supports the hypothesis that inflammasomes are involved in the 

physiologic sterile inflammatory process associated with spontaneous labor at term. The 

aims of this study were to determine whether: 1) inflammasomes are expressed in the 

chorioamniotic membranes from women who underwent spontaneous labor at term; 2) 

changes in inflammasome components are associated with activation of CASP-1 and 

CASP-4; and 3) these events are associated with the release of the mature forms of IL-1β 
and IL-18.
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MATERIALS AND METHODS

Human subjects, clinical specimens, and definitions

A case control study was conducted including patients who delivered at term without labor 

(TNL) or at term after labor (TIL). Chorioamniotic membrane samples were collected from 

the Bank of Biological Specimens of the Perinatology Research Branch, NICHD/NIH/

DHHS, Wayne State University, and The Detroit Medical Center (Detroit, MI, USA). The 

Institutional Review Boards of these institutions approved the collection and use of 

biological materials for research purposes. All participating women provided written 

informed consent, and samples were collected within 30 minutes after delivery. 

Demographic and clinical characteristics of these study groups are represented in Table I. 

Patients with multiple births or with neonates having congenital or chromosomal 

abnormalities were excluded. Labor was defined by the presence of regular uterine 

contractions at a frequency of at least two contractions every 10 minutes with cervical 

changes resulting in delivery.174 In each case, tissue sections of the chorioamniotic 

membranes were evaluated for acute histologic chorioamnionitis, according to published 

criteria,175, 176 by pathologists who had been blinded to the clinical outcome. Samples 

collected from women with acute histologic chorioamnionitis were excluded from this study.

RNA isolation, cDNA generation, and qRT-PCR analysis

TRIzol® (Invitrogen™, Life Technologies Corporation, Grand Island, NY, USA) and 

Qiagen RNeasy® Kits (Qiagen, Gaithersburg, MD, USA) were used to extract total RNA 

from snap-frozen chorioamniotic membrane tissues (TNL, n=29, and TIL, n=28). RNA 

purity and concentration were assessed with the NanoDrop® 1000 spectrophotometer 

(Thermo Scientific, Wilmington, DE, USA), and RNA integrity was evaluated with the 

Bioanalyzer 2100 (Agilent Technologies, Wilmington, DE, USA). The SuperScript® III 

First-Strand Synthesis System (Invitrogen) and oligo(dT)20 primers (Invitrogen) were 

utilized to generate cDNA. Gene expression profiling was performed on the BioMark™ 

System for high-throughput qRT-PCR (Fluidigm, San Francisco, CA, USA) and on the ABI 

7500 FAST Real-Time PCR System (Applied Biosystems®, Life Technologies Corporation, 

Foster City, CA, USA) with TaqMan® gene expression assays (Applied Biosystems) listed 

in Table II.

Chorioamniotic membrane tissue lysates

Fragments of snap-frozen chorioamniotic membranes (TNL and TIL; n=10 each) were 

homogenized using a mechanical tissue homogenizer (T-25 Ultra-Turrax®, IKA® Works, 

Inc., Wilmington, NC, USA) in 2ml of 1X PBS containing a complete protease inhibitor 

cocktail (Cat. No. 11697498001; Roche Applied Science, Mannheim, Germany). Tissue 

lysates were centrifuged at 15700 × g for 5 min at 4°C, and the supernatant was collected 

and stored at -80°C. The protein concentration of the lysates was determined using the 

Quick Start™ Bradford Protein Assay Kit (Bio-Rad, Hercules, CA, USA). Triplicate cell 

lysates were obtained from the membranes of each patient.
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Chorioamniotic membrane tissue supernatants

Chorioamniotic membrane samples were collected from each group of women (TNL, n=7, 

and TIL, n=4) and processed the same day. Tissue samples were washed with 1X PBS 

(Invitrogen) and cut into 2cm × 2cm pieces. These tissue explants were transferred into 6-

well tissue culture plates containing 2ml of Dulbecco’s Modified Eagle Medium (DMEM) 

(Invitrogen) per well supplemented with 10% Fetal Bovine Serum (FBS) (Invitrogen) and 

1% Penicillin/Streptomycin (P/S) (Invitrogen). Tissue samples were placed in a humidified 

5% CO2 incubator at 37°C overnight, and then tissue culture supernatants were collected 

and stored at -80°C. Triplicate supernatants were obtained from the membranes of each 

patient.

Enzyme-linked immunosorbent assays

The concentrations of NLRP1, NLRP3, AIM2, NOD2, CASP-1, CASP-4, IL18, pro-IL-1β, 

and IL-1β were measured in the chorioamniotic membrane tissue lysates or supernatants 

using specific and sensitive immunoassays (NLRP1, NLRP3, and NOD2 ELISA kits from 

Cusabio, Wuhan, Hubei, P.R. China; AIM2, CASP-1, and CASP-4 ELISA kits from Cloud 

Clone, Houston, TX, USA; pro-IL-1β and IL-1β ELISA kits from R&D Systems, 

Minneapolis, MN, USA; IL-18 ELISA kits from MBL International Corporation, Woburn, 

MA, USA), following the manufacturers’ instructions. Briefly, recombinant human 

standards and the samples were incubated in duplicate wells of the 96-well microplates pre-

coated with monoclonal antibodies specific for target analytes. During incubation, 

immobilized antibodies in the microplates bound to the target proteins present in the 

standard and sample groups. After washing the unbound substances, enzyme-conjugated 

antibodies bound to the target analytes were added to the wells. After the incubation, assay 

plates were washed to remove the unbound antibodies, followed by the addition of a 

substrate solution that developed color proportional to the amount of target protein bound in 

the initial step. Finally, the color development was stopped by the addition of a sulfuric acid 

solution, and the microplates were read using a programmable spectrophotometer 

(SpectraMax M5 Multi-Mode Microplate Reader, Molecular Devices, Sunnyvale, CA, 

USA). The sensitivities of the assays were <4.68 pg/mL for NLRP1, <0.039 ng/mL for 

NLRP3, <0.056 ng/mL for AIM2, <6.25 pg/mL for NOD2, <0.112 ng/mL for CASP-1, 

<0.053 ng/mL for CASP-4, 3.3 pg/mL for pro-IL-1β, <1 pg/mL for mature IL-1β, and <12.5 

pg/mL for IL-18. The IL-1β ELISA kit measures approximately 10% of the pro-IL-1β. The 

immunoassays for NLRC4 and NOD1 ELISA did not meet our criteria for validation; 

instead, immunoblotting was performed.

Immunohistochemistry

Samples of chorioamniotic membranes collected from each study group (TNL and TIL; 

n=10 each) were included. Five-μm-thick sections of formalin-fixed, paraffin-embedded 

chorioamniotic membrane tissues were placed on silanized slides. Immunostainings for 

NLRP1, NLRP3, NLRC4, AIM2, NOD1, NOD2, CASP-1, CASP-4, IL-1β, and IL-18 were 

performed using a Leica Bond Max automatic staining system (Leica Microsystems, 

Wetzlar, Germany), and the Bond™ Polymer Refine Detection Kit (Leica Microsystems) 

was used to detect the chromogenic reaction of horseradish peroxidase. Primary antibodies 
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and a description of the immunostaining conditions are presented in Table III. Mouse IgG 

(Invitrogen) and rabbit IgG (Invitrogen) were used as negative controls. A PerkinElmer 

Pannoramic MIDI slide scanner (PerkinElmer, Waltham, MA, USA) was used to assess the 

intensity of staining (a semi-quantitative method of analysis).

Chorioamniotic membrane tissue extracts

Chorioamniotic membrane samples from the two study groups (TNL and TIL; n=4 each) 

were collected and processed on the same day. Ten or 12 tissue explants were obtained from 

each membrane using a dermatological punch (12mm Acu-Punch, Acuderm Inc., Fort 

Lauderdale, FL, USA). Tissue explants were placed at 37°C in a humidified 5% CO2 

incubator for 24h in 500μL of DMEM (4.5 g/L glucose, L-glutamine, sodium pyruvate, and 

1% antibiotics; Gibco®, Life Technologies) in a 24-well plate. Following incubation, tissue 

explants were homogenized in their conditioned medium using a mechanical tissue 

homogenizer (T-25 Ultra-Turrax, IKA Works, Inc.). Tissue extracts were centrifuged at 

14,000 g for 3-5 min at 4°C, and the supernatant was collected and filtered using a syringe 

filter (Millex-GV Syringe Filter Unit, 0.22μm, PVDF, 33mm, gamma-sterilized, EMD 

Millipore, Billerica, MA, USA). Tissue extracts were stored at -80°C until use.

Immunoblotting

Chorioamniotic membrane tissue extracts (40μg for the caspases and 100μg for IL-18 per 

well) or tissue lysates (20μg for NOD1 and NLRC4 per well) were subjected to 4-12% SDS-

polyacrylamide gel electrophoresis (Invitrogen). After electrophoresis, separated proteins 

were transferred onto nitrocellulose membranes (Bio-Rad), and the membranes were 

blocked with 5% non-fat dry milk in Tris-buffered saline containing 0.1% Tween-20 

(BioRad) and probed overnight at 4°C with specific human antibodies (mouse anti-CASP-1 

monoclonal antibody [R&D Systems], rabbit anti-CASP-4 polyclonal antibody [Abcam, 

Cambridge, MA, USA], rabbit anti-IL-18 polyclonal antibody [Santa Cruz Biotechnology, 

Dallas, TX, USA], rabbit anti-NOD1 polyclonal antibody [Enzo Life Sciences, Farmingdale, 

NY, USA],165 or mouse anti-NLRC4 (IPAF) antibody [BioLegend, San Diego, CA, USA]). 

Nitrocellulose membranes were then stripped with Restore™ Plus Western Blot Stripping 

Buffer (Pierce Biotechnology, Thermo Fisher Scientific Inc., Rockford, IL, USA) for 15 

min, washed with PBS, blocked, and probed for 1h at room temperature with a mouse anti-

GAPDH monoclonal antibody (Santa Cruz Biotechnology) or a mouse anti-ACTB 

monoclonal antibody (Sigma-Aldrich Co., Saint Louis, MO, USA). A horseradish 

peroxidase-conjugated anti-mouse or anti-rabbit IgG (Cell Signaling, Boston, MA, USA) 

was used as a secondary antibody. Signals were detected by chemiluminescence with 

ChemiGlow West Reagents (Protein Simple, Santa Clara, CA, USA). Images were acquired 

using the FUJIFILM LAS-4000 Imaging System (FUJIFILM North America Corporation, 

Valhalla, NY, USA).

Statistical analyses

Demographic and clinical data were analyzed using SPSS v.19.0 (SPSS Inc., Chicago, IL, 

USA). Comparisons among the groups were performed using the Chi-square and Fisher’s 

exact tests for proportions, as well as the Mann-Whitney U-test for non-normally distributed 

continuous variables. All other data were analyzed in the R statistical language and 
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environment (www.r-project.org). The qRT-PCR dataset, gene expressions relative to ACTB/

GAPDH/RPLP0 were calculated, and the fold-changes between the groups were estimated 

using a linear model in which the -ΔCt value of a gene (surrogate for log2 gene expression) 

was the dependent variable and the group was the independent variable. ELISA, IHC, and 

immunoblotting data were analyzed using linear models in which the protein concentration 

or intensity was the dependent variable. A fold-change of expression >1.5 and a P value of 

<0.05 were regarded as statistically significant.

RESULTS

NLRP3 and NOD2 concentrations increase in the chorioamniotic membranes in 

spontaneous labor at term

We first investigated whether major inflammasome components (NLRP1, NLRP3, NLRC4, 

and AIM2), and NOD proteins (NOD1 and NOD2) were expressed by the chorioamniotic 

membranes from women who had undergone spontaneous labor at term. All genes encoding 

for these proteins were expressed at a detectable level in the chorioamniotic membranes 

from women with or without spontaneous labor at term. However, no differences were 

observed in the expression of the evaluated genes, except NOD1, between these two groups 

of women (Figure 1A, Figures 2A and 2D).

NLRP3 and NOD2 concentrations were higher in the chorioamniotic membrane tissue 

lysates from women who underwent spontaneous labor at term than in those without labor 

(Figure 1B). However, no differences between these two groups of women were observed in 

the protein concentrations of the other evaluated NLRs (Figure 1B, Figures 2B and 2E). 

Immunostaining on formalin-fixed, paraffin-embedded tissue sections collected from the 

same samples showed that all these proteins are expressed in the chorioamniotic membranes. 

In general, most of the proteins showed immunoreactivity in the chorionic trophoblast cells 

as well as in the decidual stromal cells, while some showed weak immunoreactivity in the 

amniotic mesodermal and epithelial cells (Figure 1C, Figures 2C and 2F).

Collectively, these results suggest that inflammasomes –may participate in the physiologic 

sterile inflammatory process of spontaneous parturition at term. Additionally, the 

constitutive expression of the investigated inflammasome components and NOD proteins in 

the chorioamniotic membranes suggests that inflammasomes may participate in pathological 

innate immune activation leading to preterm labor and term labor in the setting of intra-

amniotic infection or sterile intra-amniotic inflammation.

Activation of CASP-1 in the chorioamniotic membranes in spontaneous labor at term

Activation of the inflammasome leads to the activation of the inflammatory caspases, i.e., 

CASP-1 and CASP-4.76, 110, 128, 177, 178 We previously demonstrated that amniotic fluid 

concentration of CASP-1 is higher in women in spontaneous labor at term than in those 

wihout labor at term.75 Therefore, we investigated whether the higher NLRP3 and NOD2 

concentrations were associated with the activation of CASP-1 and CASP-4 in the 

chorioamniotic membranes in spontaneous labor at term. Genes encoding for CASP-1 and 

CASP-4 were expressed at detectable levels in the chorioamniotic membranes from women 
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with or without spontaneous labor at term; however, the mRNA abundance and protein 

concentration were not significantly different between these two groups (Figures 3A and 

3B). Semi-quantitative analysis of immunostaining indicated that the intensity of both 

CASP-1 and CASP-4 was higher in the chorioamniotic membranes from women who 

underwent spontaneous labor at term than in those without labor (Figure 3C). We also found 

that the immunoreactivity of the active form of CASP-1 (p20) was greater in the 

chorioamniotic membranes from women who underwent spontaneous labor at term than in 

women who did not undergo labor. The active form of CASP-4 was undetectable by 

immunoblotting (Figure 3D). These data suggest that spontaneous labor at term involves the 

participation of inflammasomes which, in turn, could activate CASP-1 in the chorioamniotic 

membranes.

Increased mRNA abundance and protein concentration of IL-1β in the chorioamniotic 

membranes in spontaneous labor at term

Activated CASP-1 subunits (p10 and p20) are able to convert inactive pro-IL-1β into its 

bioactive and secreted form.112-114 We previously reported that the IL-1β concentration in 

amniotic fluid (and IL-1 bioactivity) was higher among women in labor than in those wihout 

labor.7-9 Therefore, we investigated whether the activation of CASP-1 was associated with 

the release of mature IL-1β in the chorioamniotic membranes in women who underwent 

spontaneous labor at term. mRNA abundance of IL1B in the chorioamniotic membranes was 

higher in women who had undergone spontaneous labor at term than in those from women 

without labor (Figure 4A). The concentrations of mature IL-1β and its pro-form were also 

higher in the chorioamniotic membranes from women who underwent labor than in those 

from women without labor (Figure 4B). IL-1β immunoreactivity appeared to be greater in 

the chorioamniotic membranes from women with labor than in those without labor (Figure 

4C). These data suggest that the active forms of CASP-1 may participate in the release of the 

mature form of IL-1β by the chorioamniotic membranes in spontaneous labor at term.

IL-18 expression does not increase in the chorioamniotic membranes in spontaneous 

labor at term

Activated CASP-1 subunits (p10 and p20) are also able to convert inactive pro-IL-18 into its 

bioactive and secreted form.115 We previously demonstrated that during term pregnancies 

the IL-18 amniotic fluid concentration tends to be higher in women who undergo 

spontaneous labor than in women without labor; yet, this increase was not statistically 

significant.173 We therefore investigated whether activation of CASP-1 was associated with 

the release of mature IL-18 in the chorioamniotic membranes of women who underwent 

spontaneous labor at term. Consistent with our published findings,173 we found that the 

mRNA abundance and protein concentration of IL-18 in the chorioamniotic membranes 

were not different between women with and without spontaneous labor at term (Figure 5A-

C). Indeed, mRNA expression of IL-18 was lower in the chorioamniotic membranes from 

women who underwent labor at term than in those without labor (Figure 5A). No differences 

were observed in the abundance of the mature form of IL-18 in the chorioamniotic 

membranes between women with and without spontaneous labor at term (Figure 5D). These 

data suggest that IL-18 does not participate in the physiologic sterile inflammatory process 

of spontaneous parturition at term.
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DISCUSSION

Principal findings of the study

1) Inflammasome components and NOD proteins were expressed in the chorioamniotic 

membranes from women with normal term pregnancies; 2) NLRP3 and NOD2 protein 

concentrations were greater in the chorioamniotic membrane tissue lysates from women who 

underwent labor at term than in those from women who did not undergo labor; 3) the 

immunoreactivity of CASP-1 and CASP-4 in the chorioamniotic membranes was higher 

among women in labor at term than in those without labor; 4) the active form of CASP-1 

(p20) was higher in the chorioamniotic membranes from women in labor at term than in 

women without labor; 5) mRNA abundance and protein expression profiles of IL-1β were 

greater in the chorioamniotic membranes from women in spontaneous labor at term than in 

those without labor; and 6) mRNA abundance and protein expression profiles of IL-18 did 

not increase in the chorioamniotic membranes from women who underwent spontaneous 

labor at term. Collectively, these data support a role for the inflammasome (NLRP1, NLRP3, 

AIM2 or NLRC4) in the activation of CASP-1 and the consequent release of mature IL-1β 
by the chorioamniotic membranes of patients who underwent spontaneous labor at term.

The expression of inflammasome components and NOD proteins in the chorioamniotic 

membranes at term

We first demonstrated that inflammasome components NLRP1, NLRP3, NLRC4, and 

AIM2, as well as NOD1 and NOD2 proteins, were expressed at the mRNA and protein 

levels by the chorioamniotic membranes from women at term. This is consistent with 

previous studies showing that the human placenta constitutively expresses inflammasome 

components including NOD1, NOD2, NOD3, NOD4, NALP1, NALP2, NALP4, NALP7, 

NALP10, NALP12, and NAIP, as well as CASP-1, CASP-4, and CASP-5,179 and that the 

chorioamniotic membranes express NOD1, NOD2, NLRP1, NLRP3, and ASC.165 The 

expression of inflammasome components and inflammatory caspases in the chorioamniotic 

membranes may be an important feature of innate immune mechanisms at the maternal-fetal 

interface, which will ensure the rapid activation of an immune response when exogenous 

and/or endogenous signal(s) are recognized.

Increased concentrations of NLRP3 and NOD2 in the chorioamniotic membranes in 

spontaneous labor at term

A role for the inflammasomein the physiological proinflammatory processes of spontaneous 

labor at term was initially suggested by our group.73, 75 Herein, we provide evidence to 

support this hypothesis, and demonstrate for the first time that NLRP3 (also known as 

cryopyrin), the PRR component of the NLRP3 inflammasome, is increased in the 

chorioamniotic membranes during spontaneous labor at term. Besides cryopyrin, the NLRP3 

inflammasome contains the adaptor molecule ASC containing two death-fold domains, one 

pyrin domain and one CARD, and pro-caspase-1.104, 131, 180, 181 Activation of the NLRP3 

inflammasome can be triggered by several stimuli,182-188 chemically and structurally 

different, including crystalline material,184, 189 extracellular ATP released from dying cells,
190 peptide aggregates such as vaccine adjuvant,191-195 phospholipid cardiolipin and 

mitochondrial DNA,196-198 bacterial toxins 190, 199, 200 [i.e., nigericin (Streptomyces 
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hygroscopicus), listeriolysin O (Listeria monoccytogenes), aerolysin (Aeromonas), β-and-γ 
hemolysins (Staphylococcus aureus)], DAMPs (damage-associated molecular patterns),
186, 187 and PAMPs (pathogen-associated molecular patterns) 80, 201-211. Activation of the 

NLRP3 inflammasome requires two steps: priming and assembly of the inflammasome 

complex.212, 213 The priming step is initiated by PRRs, cytokine receptors, or any other 

factor able to induce activation of NF-κB, which results in the up-regulation of NLRP3 to a 

functional level and pro-IL-1β expression.212-214 The second step is post-transcriptional and 

allows the assembly of the NLRP3 inflammasome complex.212, 213 Taken together, these 

data suggest that during spontaneous labor at term the chorioamniotic membranes increase 

the production of NLRP3 as an initial step for inflammasome activation. Whether there is 

assembly of the NLRP3 inflammasome complex in the chorioamniotic membranes during 

spontaneous labor at term requires further investigation.

We also found that the chorioamniotic membranes from women who underwent spontaneous 

labor had greater concentrations of NOD2 than those from women without labor, and such 

an increase was not associated with an up-regulation of NOD2. Recently, it was 

demonstrated that the mRNA expression of NOD1 and NOD2 in the myometrium is higher 

in women at term with labor than in those at term without labor.215 NOD2 is an intracellular 

receptor that recognizes bacterial muramyl dipeptide (MDP) and activates NF-κB and 

MAPK pathways.216, 217 In dendritic cells, NOD2 can act synergistically with the NLRP3 

inflammasome in response to MDP and uric acid.159 These results led us to suggest that the 

chorioamniotic membranes overproduce NOD2 protein which, in turn, could synergistically 

participate with the NLRP3 inflammasome in the physiological proinflammatory processes 

of spontaneous labor at term.

Activation of CASP-1, but not CASP-4, in the chorioamniotic membranes in spontaneous 

labor at term

Oligomerization of the inflammasome leads to the recruitment of ASC, which binds and 

activates pro-caspase-1 via its CARD.104, 218 We therefore hypothesized that the active 

forms of CASP-1, p10 and p20, would be increased in the chorioamniotic membranes from 

women who underwent spontaneous labor at term. We previously demonstrated that CASP-1 

concentration in the amniotic fluid from women in spontaneous labor at term is higher than 

in women wihout labor.75 In the current study, we provide evidence to support our initial 

observation: CASP-1 immunoreactivity and its active form p20 are increased in the 

chorioamniotic membranes from women who underwent spontaneous labor at term. 

Recently, it was also found that the mRNA expression and active form p10 of CASP-1 are 

increased in the zone of rupture of the chorioamniotic membranes from women who 

undergo spontaneous labor at term.219 Together, these data suggest that during spontaneous 

labor at term, the chorioamniotic membranes release active forms of CASP1.

Unlike Lappas,219 we did not find differences between the mRNA expression of CASP-1 in 

the chorioamniotic membranes from women who underwent labor and non-labor deliveries. 

This discrepancy could be attributed to differences in sampling, number of observations, and 

inclusion of decidua in our experiments. Specifically, we sampled the middle portion of the 

chorioamniotic membranes and did not restrict ourselves to sampling the zone of rupture.66 
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Moreover, we utilized full-thickness, unaltered chorioamniotic membranes containing 

decidua parietalis since this type of sample includes immune cells that participate in labor;
220, 221 and our sample size (n=28-29) was considerably larger than that included in the 

aforementioned study (n=8).

CASP-11 (human homologue CASP-4) is necessary for the activation of CASP-1, which 

results in the non-canonical NLRP3 inflammasome activation in response to Gram-negative 

bacteria such as Citrobacter rodentium, Escherichia coli, Vibrio cholerae, and Salmonella 

typhimurium.210, 222, 223 Although we found that CASP-4 immunoreactivity was higher in 

the chorioamniotic membranes from women who underwent spontaneous labor at term than 

in those without labor, we did not find the active form of CASP-4 in these tissues. These 

results demonstrate that the activation of CASP-4 is not implicated in the physiological 

proinflammatory processes of spontaneous labor at term. Our results also suggest that the 

chorioamniotic membranes can synthesize CASP-4 in the event of infection, where Gram-

negative bacteria may cause non-canonical activation of inflammasomes.

Increased mRNA abundance and protein concentration of IL-1β in the chorioamniotic 

membranes in spontaneous labor at term

The produced active forms of CASP-1 (p10 and p20) assemble to form hetero-tetramers that 

convert inactive pro-IL-1β into its bioactive and secreted form.113, 224-230 Therefore, we 

investigated whether the chorioamniotic membranes express IL1B and release its bioactive 

form. We found that the mRNA abundance and release of the pro- and mature forms of 

IL-1β were higher in the chorioamniotic membranes from women who had undergone 

spontaneous labor at term than in those without labor. Elevated amniotic fluid IL-1β in 

spontaneous labor at term was demonstrated more than two decades ago.7-9 IL-1β actively 

participates in the process of labor by inducing: 1) the biosynthesis of prostaglandin E2 by 

the human amnion231 and myometrial cells232, 233, 2) the expression of cyclooxygenase-2 in 

human myometrial cells,234 and 3) the expression of matrix-metabolizing enzymes (MMP-1, 

-3, -9, and cathepsin S) in human cervical smooth muscle cells.235 Indeed, systemic 

administration of IL-1β causes preterm birth in mice10, 236 and monkeys,237-244 confirming 

a central role for IL-1β in the process of labor, and this effect can be abrogated by the 

administration of the IL-1 receptor antagonist.10 In the study herein, we demonstrated that 

the chorioamniotic membranes release mature IL-1β, which is most likely mediated by 

active CASP-1. This mature form of IL-1β will then participate in the physiological process 

of spontaneous labor at term.

mRNA abundance and protein concentration of IL-18 in the chorioamniotic membranes do 

not increase in spontaneous labor at term

In addition to cleaving IL-1β, active CASP-1 converts pro-IL-18 into its mature form.
115-118, 124 Yet, contrary to IL-1β, IL-18 concentration in the amniotic fluid does not 

significantly increase during term and preterm parturition.173 This is consistent with our 

results since no increase was observed in the concentration of IL-18 in the chorioamniotic 

membrane extracts from women who underwent spontaneous labor at term when compared 

to those women without labor. Indeed, the mRNA abundance of IL-18 was lower in the 

chorioamniotic membranes from women who underwent labor than in those without labor, 
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and the mature form of IL-18 was observed mainly in non-laboring tissues at term. IL-18 is 

a major IFN-γ inducing factor that activates Th-1 responses in T cells and NK cells,245-252 

and its concentration in the amniotic fluid increased in response to intra-amniotic infection.
173, 253 It is possible that IL-18 participates in host defense against pathogens in the 

chorioamniotic membranes rather than in the physiologic inflammatory process of 

spontaneous labor at term.

In summary, the study herein provides evidence that supports a role for the inflammasome 

(NLRP1, NLRP3, AIM2, or NLRC4) in the activation of CASP-1 and the consequent 

release of mature IL-1β by the chorioamniotic membranes in spontaneous labor at term. Up-

regulation of NLRP3 and NOD2 proteins suggests that these NLRs are implicated in the 

physiological proinflammatory process of spontaneous labor at term; yet, further research is 

needed in order to prove inflammasome assembly and activation in the chorioamniotic 

membranes.
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Figure 1. Inflammasome components and NOD2 protein in the chorioamniotic membranes

(A) mRNA abundance of inflammasome components and NOD2 protein in the 

chorioamniotic membranes from women at term with (TIL, n=28) or without labor (TNL, 

n=29). Relative gene expressions are presented as -ΔCt values. (B) Protein concentrations of 

inflammasome components and NOD2 in chorioamniotic membrane tissue lysates (n=10 

each). (C) Representative immunostainings for inflammasome components and NOD2 in the 

chorioamniotic membranes (n=10 each), 200× magnification.
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Figure 2. NOD1 and NLRC4 in the chorioamniotic membranes

(A and D) mRNA abundance of NOD1 and NLRC4 in the chorioamniotic membranes from 

women at term with (TIL, n=28) or without labor (TNL, n=29). Relative gene expressions 

are presented as -ΔCt values. (B and E) Protein quantity of NOD1 and NLRC4 in 

chorioamniotic membrane tissue lysates (n=8 each). (C and F) Intensity of the 

immunostainings for NOD1 and NLRC4 in the chorioamniotic membranes (n=10 each) and 

representative immunostainings, 200× magnification.
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Figure 3. Inflammatory caspases in the chorioamniotic membranes

(A) mRNA abundance of CASP-1 and CASP-4 in the chorioamniotic membranes from 

women at term with (TIL, n=28) or without labor (TNL, n=29). Relative gene expressions 

are presented as -ΔCt values. (B) Protein concentrations of CASP-1 and CASP-4 in 

chorioamniotic membrane tissue lysates (n=10 each). (C) Intensity of the immunostainings 

for CASP-1 and CASP-4 in the chorioamniotic membranes (n=10 each) and representative 

immunostainings, 200× magnification. (D) Immunoblotting of CASP-1, CASP-4, and 

GAPDH in the chorioamniotic membranes and their quantifications (n=4 each).
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Figure 4. IL-1β in the chorioamniotic membranes

(A) mRNA abundance of IL1β in the chorioamniotic membranes from women at term with 

(TIL, n=28) or without labor (TNL, n=29). Relative gene expressions are presented as -ΔCt 

values. (B) Protein concentrations of mature and pro-form IL-1β in chorioamniotic 

membrane supernatants (TNL, n=7, and TIL, n=4). (C) Intensity of the immunostainings for 

IL-1β in the chorioamniotic membranes (n=10 each) and representative immunostainings, 

200× magnification.
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Figure 5. IL-18 in the chorioamniotic membranes

(A) mRNA abundance of IL-18 in the chorioamniotic membranes from women at term with 

(TIL, n=28) or without labor (TNL, n=29). Relative gene expressions are presented as -ΔCt 

values. (B) Protein concentrations of IL-18 in chorioamniotic membrane tissue lysates (n=10 

each). (C) Intensity of the immunostainings for IL-18 in the chorioamniotic membranes 

(n=10 each) and representative immunostainings, 200× magnification. (D) Immunoblotting 

of IL-18 and GAPDH in the chorioamniotic membranes (n=4 each).
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Table II

TaqMan® assays used for gene expression profiling

Gene Symbol Protein Name Assay ID

ACTB Actin beta Hs99999903_m1

GAPDH Glyceraldehyde-3-phosphate dehydrogenase Hs99999905_m1

RPLP0 Ribosomal protein, large, P0 Hs99999902_m1

NLRP1 NACHT, LRR and PYD domains-containing protein 1 Hs00248187_m1

NLRP3 NACHT, LRR and PYD domains-containing protein 3 Hs00918082_m1

NLRC4 NLR family CARD domain-containing protein 4 Hs00368367_m1

NOD1 Nucleotide-binding oligomerization domain-containing protein 1 Hs00196075_m1

NOD2 Nucleotide-binding oligomerization domain-containing protein 2 Hs00223394_m1

AIM2 Absent in melanoma 2 Hs00915710_m1

CASP1 Caspase-1 / Interleukin-1 converting enzyme Hs00354836_m1

CASP4 Caspase-4 Hs01031947_m1

IL1B Interleukin-1 beta Hs00174097_m1

IL18 Interleukin-18 Hs01038788_m1
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